Статті в журналах з теми "Enhanced steam generation"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Enhanced steam generation".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.
Ghafurian, Mohammad Mustafa, Hamid Niazmand, Ehsan Ebrahimnia-Bajestan, and Robert A. Taylor. "Wood surface treatment techniques for enhanced solar steam generation." Renewable Energy 146 (February 2020): 2308–15. http://dx.doi.org/10.1016/j.renene.2019.08.036.
Повний текст джерелаWang, Yida, Xuan Wu, Bo Shao, Xiaofei Yang, Gary Owens, and Haolan Xu. "Boosting solar steam generation by structure enhanced energy management." Science Bulletin 65, no. 16 (August 2020): 1380–88. http://dx.doi.org/10.1016/j.scib.2020.04.036.
Повний текст джерелаChaar, Marwan, Milton Venetos, Justin Dargin, and Daniel Palmer. "Economics Of Steam Generation For Thermal Enhanced Oil Recovery." Oil and Gas Facilities 4, no. 06 (December 1, 2015): 42–50. http://dx.doi.org/10.2118/172004-pa.
Повний текст джерелаWang, Kongxiang, Jiaojiao Xing, Ankang Kan, Huaqing Xie, and Wei Yu. "Investigation of Enhanced Volumetric Solar Steam Generation by a Lower Concentration of ZrC Nanofluid." Nano 15, no. 03 (March 2020): 2050030. http://dx.doi.org/10.1142/s1793292020500307.
Повний текст джерелаLiu, Xing, Xinzhi Wang, Jian Huang, Gong Cheng, and Yurong He. "Volumetric solar steam generation enhanced by reduced graphene oxide nanofluid." Applied Energy 220 (June 2018): 302–12. http://dx.doi.org/10.1016/j.apenergy.2018.03.097.
Повний текст джерелаZou, Yuan, Peng Yang, Lu Yang, Ning Li, Gaigai Duan, Xianhu Liu, and Yiwen Li. "Boosting solar steam generation by photothermal enhanced polydopamine/wood composites." Polymer 217 (March 2021): 123464. http://dx.doi.org/10.1016/j.polymer.2021.123464.
Повний текст джерелаJin, Xin, Guiping Lin, and Haichuan Jin. "Experimental Investigations on Steam Generation in Nanofluids under Concentrated Solar Radiation." Energies 14, no. 13 (July 2, 2021): 3985. http://dx.doi.org/10.3390/en14133985.
Повний текст джерелаCheng, Gong, Xinzhi Wang, Xing Liu, Yurong He, and Boris V. Balakin. "Enhanced interfacial solar steam generation with composite reduced graphene oxide membrane." Solar Energy 194 (December 2019): 415–30. http://dx.doi.org/10.1016/j.solener.2019.10.065.
Повний текст джерелаAziznezhad, Mohammad, Elaheh K. Goharshadi, Roya Mehrkhah, and Mohammad Mustafa Ghafurian. "Alkaline earth metals doped VO2 nanoparticles for enhanced interfacial solar steam generation." Materials Research Bulletin 149 (May 2022): 111705. http://dx.doi.org/10.1016/j.materresbull.2021.111705.
Повний текст джерелаSoo Joo, Beom, In Soo Kim, Il Ki Han, Hyungduk Ko, Jin Gu Kang, and Gumin Kang. "Plasmonic silicon nanowires for enhanced heat localization and interfacial solar steam generation." Applied Surface Science 583 (May 2022): 152563. http://dx.doi.org/10.1016/j.apsusc.2022.152563.
Повний текст джерелаZhang, Wentao, Wenxin Zhu, Shuo Shi, Na Hu, Yourui Suo, and Jianlong Wang. "Bioinspired foam with large 3D macropores for efficient solar steam generation." Journal of Materials Chemistry A 6, no. 33 (2018): 16220–27. http://dx.doi.org/10.1039/c8ta04296a.
Повний текст джерелаAyeleso, Ayokunle Oluwaseun, and Atanda Kamoru Raji. "An Enhanced Solar Hybrid Brayton and Rankine Cycles with Integrated Magnetohydrodynamic Conversion System for Electrical Power Generation." International Journal of Renewable Energy Development 10, no. 4 (May 8, 2021): 755–67. http://dx.doi.org/10.14710/ijred.2021.34927.
Повний текст джерелаXu, Chao, and Haibo Li. "Engineering of porous graphene oxide membranes for solar steam generation with improved efficiency." Environmental Science: Water Research & Technology 8, no. 2 (2022): 249–56. http://dx.doi.org/10.1039/d1ew00583a.
Повний текст джерелаHong, Yong-Cheol, Taihyeop Lho, Bong-Ju Lee, and Han-Sup Uhm. "Development of Steam Plasma-Enhanced Coal Gasifier and Future Plan for Poly-Generation." Journal of the Korean institute of surface engineering 42, no. 3 (June 30, 2009): 139–44. http://dx.doi.org/10.5695/jkise.2009.42.3.139.
Повний текст джерелаMiao, En-Dong, Meng-Qi Ye, Cheng-Long Guo, Lin Liang, Qi Liu, and Zhong-Hao Rao. "Enhanced solar steam generation using carbon nanotube membrane distillation device with heat localization." Applied Thermal Engineering 149 (February 2019): 1255–64. http://dx.doi.org/10.1016/j.applthermaleng.2018.12.123.
Повний текст джерелаZhang, Rong, Yuewei Zhou, Bo Xiang, Xujia Zeng, Yanlong Luo, Xiangkang Meng, and Shaochun Tang. "Scalable Carbon Black Enhanced Nanofiber Network Films for High‐Efficiency Solar Steam Generation." Advanced Materials Interfaces 8, no. 24 (November 12, 2021): 2101160. http://dx.doi.org/10.1002/admi.202101160.
Повний текст джерелаGao, Lan, Elyes Nefzaoui, Frédéric Marty, Xueyong Wei, Stéphane Bastide, Yamin Leprince-Wang, and Tarik Bourouina. "Two-dimensional metamaterials as meta-foams for optimized surface-enhanced solar steam generation." Solar Energy Materials and Solar Cells 243 (August 2022): 111793. http://dx.doi.org/10.1016/j.solmat.2022.111793.
Повний текст джерелаZhang, Chaofan, Baohua Yuan, Ying Liang, Lixia Yang, Liangjiu Bai, Huawei Yang, Donglei Wei, et al. "Carbon nanofibers enhanced solar steam generation device based on loofah biomass for water purification." Materials Chemistry and Physics 258 (January 2021): 123998. http://dx.doi.org/10.1016/j.matchemphys.2020.123998.
Повний текст джерелаHe, Jingxian, Yukang Fan, Chaohu Xiao, Fang Liu, Hanxue Sun, Zhaoqi Zhu, Weidong Liang, and An Li. "Enhanced solar steam generation of hydrogel composite with aligned channel and shape memory behavior." Composites Science and Technology 204 (March 2021): 108633. http://dx.doi.org/10.1016/j.compscitech.2020.108633.
Повний текст джерелаFayazi, Amir, and Apostolos Kantzas. "A review on steam-solvent processes for enhanced heavy oil/bitumen recovery." Reviews in Chemical Engineering 35, no. 3 (March 26, 2019): 393–419. http://dx.doi.org/10.1515/revce-2017-0008.
Повний текст джерелаLi, Wei, Xiaohan Tian, Xiaofeng Li, Ji Liu, Changjun Li, Xinyue Feng, Chao Shu, and Zhong-Zhen Yu. "An environmental energy-enhanced solar steam evaporator derived from MXene-decorated cellulose acetate cigarette filter with ultrahigh solar steam generation efficiency." Journal of Colloid and Interface Science 606 (January 2022): 748–57. http://dx.doi.org/10.1016/j.jcis.2021.08.043.
Повний текст джерелаMa, Qiang, Zhengda Yang, Liqiang Zhang, Riyi Lin, and Xinwei Wang. "Generation of hydrogen sulfide during the thermal enhanced oil recovery process under superheated steam conditions." RSC Advances 9, no. 58 (2019): 33990–96. http://dx.doi.org/10.1039/c9ra07735a.
Повний текст джерелаWang, Xinzhi, Yurong He, Xing Liu, and Jiaqi Zhu. "Enhanced direct steam generation via a bio-inspired solar heating method using carbon nanotube films." Powder Technology 321 (November 2017): 276–85. http://dx.doi.org/10.1016/j.powtec.2017.08.027.
Повний текст джерелаWang, Hongqiang, Ai Du, Xiujie Ji, Chen Zhang, Bin Zhou, Zhihua Zhang, and Jun Shen. "Enhanced Photothermal Conversion by Hot-Electron Effect in Ultrablack Carbon Aerogel for Solar Steam Generation." ACS Applied Materials & Interfaces 11, no. 45 (October 21, 2019): 42057–65. http://dx.doi.org/10.1021/acsami.9b12918.
Повний текст джерелаLi, Chuang, Li Fan, Runzhi Zhu, Xin Li, Piao Wen, Xiaowen Zhao, Gang Wang, Jianli Zou, and Franklin Kim. "Adjusting Channel Size within PVA-Based Hydrogels via Ice Templating for Enhanced Solar Steam Generation." ACS Applied Energy Materials 3, no. 9 (August 10, 2020): 9216–25. http://dx.doi.org/10.1021/acsaem.0c01584.
Повний текст джерелаLi, Zhengtong, Chengbing Wang, Tao Lei, Hailing Ma, Jinbu Su, San Ling, and Wei Wang. "Arched Bamboo Charcoal as Interfacial Solar Steam Generation Integrative Device with Enhanced Water Purification Capacity." Advanced Sustainable Systems 3, no. 4 (January 29, 2019): 1800144. http://dx.doi.org/10.1002/adsu.201800144.
Повний текст джерелаZhang, Wei, Zhenlin Li, Canying Zhang, Yusheng Lin, Haitao Zhu, Zhaoguo Meng, and Daxiong Wu. "Improvement of the efficiency of volumetric solar steam generation by enhanced solar harvesting and energy management." Renewable Energy 183 (January 2022): 820–29. http://dx.doi.org/10.1016/j.renene.2021.11.054.
Повний текст джерелаXu, Yunfan, Jinlei Zhang, Shuyi Wu, Yunsong Di, Cihui Liu, Lifeng Dong, Liyan Yu, and Zhixing Gan. "Solar‐Driven Airflow‐Enhanced All‐Daytime Solar Steam Generation Based on Inverse‐Bowl‐Shaped Graphene Aerogels." Energy Technology 10, no. 3 (January 17, 2022): 2100757. http://dx.doi.org/10.1002/ente.202100757.
Повний текст джерелаMorenov, Valentin, Ekaterina Leusheva, Alexander Lavrik, Anna Lavrik, and George Buslaev. "Gas-Fueled Binary Energy System with Low-Boiling Working Fluid for Enhanced Power Generation." Energies 15, no. 7 (March 31, 2022): 2551. http://dx.doi.org/10.3390/en15072551.
Повний текст джерелаLi, X., J. L. Gaddis, and T. Wang. "Mist/Steam Heat Transfer in Confined Slot Jet Impingement." Journal of Turbomachinery 123, no. 1 (February 1, 2000): 161–67. http://dx.doi.org/10.1115/1.1331536.
Повний текст джерелаRupesh, Shanmughom, Chandrasekharan Muraleedharan, and Palatel Arun. "Analysis of Hydrogen Generation through Thermochemical Gasification of Coconut Shell Using Thermodynamic Equilibrium Model Considering Char and Tar." International Scholarly Research Notices 2014 (November 4, 2014): 1–9. http://dx.doi.org/10.1155/2014/654946.
Повний текст джерелаSittisun, Poramate, Nakorn Tippayawong, and Sirivatch Shimpalee. "Gasification of Pelletized Corn Residues with Oxygen Enriched Air and Steam." International Journal of Renewable Energy Development 8, no. 3 (October 6, 2019): 215–24. http://dx.doi.org/10.14710/ijred.8.3.215-224.
Повний текст джерелаLi, Kerui, Ting‐Hsiang Chang, Zhipeng Li, Haitao Yang, Fanfan Fu, Tingting Li, John S. Ho, and Po‐Yen Chen. "Biomimetic MXene Textures with Enhanced Light‐to‐Heat Conversion for Solar Steam Generation and Wearable Thermal Management." Advanced Energy Materials 9, no. 34 (August 2019): 1901687. http://dx.doi.org/10.1002/aenm.201901687.
Повний текст джерелаYan, Wei, Sheng Sui, Guohua Xiu, and Yanfang He. "Combination of Sorption-Enhanced Steam Methane Reforming and Electricity Generation by MCFC: Concept and Numerical Simulation Analysis." Separation Science and Technology 44, no. 13 (September 30, 2009): 3013–44. http://dx.doi.org/10.1080/01496390903182560.
Повний текст джерелаGao, Can, Jingjing Zhu, Jiecong Li, Buguang Zhou, Xiaojing Liu, Yue Chen, Zhi Zhang, and Jiansheng Guo. "Honeycomb-structured fabric with enhanced photothermal management and site-specific salt crystallization enables sustainable solar steam generation." Journal of Colloid and Interface Science 619 (August 2022): 322–30. http://dx.doi.org/10.1016/j.jcis.2022.03.122.
Повний текст джерелаMitrofanova, O. V., and A. V. Fedorinov. "Influence of pipeline geometry on hydrodynamics and heat transfer processes by an example of a ship steam generator." Journal of Physics: Conference Series 2088, no. 1 (November 1, 2021): 012033. http://dx.doi.org/10.1088/1742-6596/2088/1/012033.
Повний текст джерелаLi, Xianchang, J. Leo Gaddis, and Ting Wang. "Mist/Steam Heat Transfer With Jet Impingement Onto a Concave Surface." Journal of Heat Transfer 125, no. 3 (May 20, 2003): 438–46. http://dx.doi.org/10.1115/1.1561813.
Повний текст джерелаMukhametshina, Albina, Taniya Kar, and Berna Hascakir. "Asphaltene Precipitation During Bitumen Extraction With Expanding-Solvent Steam-Assisted Gravity Drainage: Effects on Pore-Scale Displacement." SPE Journal 21, no. 02 (April 14, 2016): 380–92. http://dx.doi.org/10.2118/170013-pa.
Повний текст джерелаLi, Mingheng, K. Duraiswamy, and Mack Knobbe. "Adsorption enhanced steam reforming of methanol for hydrogen generation in conjunction with fuel cell: Process design and reactor dynamics." Chemical Engineering Science 67, no. 1 (January 2012): 26–33. http://dx.doi.org/10.1016/j.ces.2011.07.024.
Повний текст джерелаZhang, Yan, Peng Han, He Liu, Lihui Zhang, Hongbo Liu, and Bo Fu. "Effect of steam explosion on physicochemical properties of waste activated sludge and the performance of anaerobic digestion." Water Science and Technology 77, no. 11 (May 22, 2018): 2687–98. http://dx.doi.org/10.2166/wst.2018.227.
Повний текст джерелаDetchusananard, Thanaphorn, Shivom Sharma, François Maréchal, and Amornchai Arpornwichanop. "Generation and selection of Pareto-optimal solution for the sorption enhanced steam biomass gasification system with solid oxide fuel cell." Energy Conversion and Management 196 (September 2019): 1420–32. http://dx.doi.org/10.1016/j.enconman.2019.06.033.
Повний текст джерелаIORDANIDIS, A., P. KECHAGIOPOULOS, S. VOUTETAKIS, A. LEMONIDOU, and I. VASALOS. "Autothermal sorption-enhanced steam reforming of bio-oil/biogas mixture and energy generation by fuel cells: Concept analysis and process simulation." International Journal of Hydrogen Energy 31, no. 8 (July 2006): 1058–65. http://dx.doi.org/10.1016/j.ijhydene.2005.10.003.
Повний текст джерелаZhang, Jingxin, Yuxuan Cui, Tengyu Zhang, Qiang Hu, Yen Wah Tong, Yiliang He, Yanjun Dai, Chi-Hwa Wang, and Yinghong Peng. "Food waste treating by biochar-assisted high-solid anaerobic digestion coupled with steam gasification: Enhanced bioenergy generation and porous biochar production." Bioresource Technology 331 (July 2021): 125051. http://dx.doi.org/10.1016/j.biortech.2021.125051.
Повний текст джерелаPafili, Anastasia, Nikolaos Charisiou, Savvas Douvartzides, Georgios Siakavelas, Wen Wang, Guanqing Liu, Vagelis Papadakis, and Maria Goula. "Recent Progress in the Steam Reforming of Bio-Oil for Hydrogen Production: A Review of Operating Parameters, Catalytic Systems and Technological Innovations." Catalysts 11, no. 12 (December 15, 2021): 1526. http://dx.doi.org/10.3390/catal11121526.
Повний текст джерелаAyache, Simon V., Violaine Lamoureux-Var, Pauline Michel, and Christophe Preux. "Reservoir Simulation of Hydrogen Sulfide Production During a Steam-Assisted-Gravity-Drainage Process by Use of a New Sulfur-Based Compositional Kinetic Model." SPE Journal 22, no. 01 (August 3, 2016): 080–93. http://dx.doi.org/10.2118/174441-pa.
Повний текст джерелаWang, Zhenguo, Wangqiong Xu, Ke Yu, Shijing Gong, Huibing Mao, Rong Huang, and Ziqiang Zhu. "NiS 2 Nanocubes Coated Ti 3 C 2 Nanosheets with Enhanced Light‐to‐Heat Conversion for Fast and Efficient Solar Seawater Steam Generation." Solar RRL 5, no. 7 (April 17, 2021): 2100183. http://dx.doi.org/10.1002/solr.202100183.
Повний текст джерелаSilva, Raquel de Pádua Fernandes, José Luiz de Medeiros, and Ofélia de Queiroz Fernandes Araújo. "Integration of Post-Combustion Capture and Reinjection Plant to Power Generation Cycle Using CO2-Rich Natural Gas in Offshore Oil and Gas Installation." Materials Science Forum 965 (July 2019): 49–58. http://dx.doi.org/10.4028/www.scientific.net/msf.965.49.
Повний текст джерелаMikielewicz, Dariusz, Jan Wajs, and Elżbieta Żmuda. "Organic Rankine Cycle as Bottoming Cycle to a Combined Brayton and Clausius - Rankine Cycle." Key Engineering Materials 597 (December 2013): 87–98. http://dx.doi.org/10.4028/www.scientific.net/kem.597.87.
Повний текст джерелаLi, Kerui, Ting‐Hsiang Chang, Zhipeng Li, Haitao Yang, Fanfan Fu, Tingting Li, John S. Ho, and Po‐Yen Chen. "Light‐to‐Heat Conversion: Biomimetic MXene Textures with Enhanced Light‐to‐Heat Conversion for Solar Steam Generation and Wearable Thermal Management (Adv. Energy Mater. 34/2019)." Advanced Energy Materials 9, no. 34 (September 2019): 1970141. http://dx.doi.org/10.1002/aenm.201970141.
Повний текст джерелаHo, Phuoc, Erika Scavetta, Domenica Tonelli, Giuseppe Fornasari, Angelo Vaccari, and Patricia Benito. "Hydrotalcite-Type Materials Electrodeposited on Open-Cell Metallic Foams as Structured Catalysts." Inorganics 6, no. 3 (July 29, 2018): 74. http://dx.doi.org/10.3390/inorganics6030074.
Повний текст джерела