Дисертації з теми "Energy and glucose homeostasis"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Energy and glucose homeostasis".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Forsyth, Robert J. "The contribution of astrocyte glycogen to brain energy homeostasis." Thesis, University of Newcastle Upon Tyne, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361387.
Повний текст джерелаBurke, Luke Kennedy. "Neurocircuitry underlying serotonin's effects on energy and glucose homeostasis." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708592.
Повний текст джерелаMatthäus, Dörte. "The role of CADM1 in energy and glucose homeostasis." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2014. http://dx.doi.org/10.18452/16905.
Повний текст джерелаMore than 300 million people world-wide are affected by diabetes, the majority suffering from type 2 diabetes. Type 2 diabetes is characterized by insulin resistance, usually caused by obesity and overweight. Enhanced pancreatic insulin secretion largely compensates insulin resistance for years. A failure of pancreatic beta-cells to meet increased insulin demands drastically increases blood glucose levels and marks the onset of type 2 diabetes. Besides environmental influences, mainly elevated food intake and reduced physical activity, also genetic mutations are important factors in the pathophysiology of type 2 diabetes. Recent literature highlights the role of microRNA 375 (miR-375) in the growth and function of pancreatic insulin-producing beta-cells. MiR-375 gene expression is regulated in diabetic humans and rodents, suggesting that this microRNA is involved in the pathogenesis of type 2 diabetes. Genes regulated by miR-375 have been described in pancreatic beta-cells. Nevertheless, the exact mechanisms how miR-375 regulates beta-cell growth and insulin secretion have not been understood. Cell adhesion molecule 1 (CADM1) is a known target of miR-375 and has mainly been described as regulator of synapse number and synaptic function in the brain. CADM1 is also expressed in pancreatic beta-cells and might regulate beta-cell growth and function and might be involved in the control of glucose and energy homeostasis. The aim of this work was to investigate whether CADM1 in pancreatic beta-cells or neuronal tissue contributes to the regulation of energy and glucose homeostasis by using total and conditional Cadm1 deficient mice. Total Cadm1 deficient (Cadm1KO) mice showed increased sensitivity to glucose and insulin as well as enhanced glucose-stimulated insulin secretion compared to littermate control mice. Elevated glucose-stimulated insulin secretion after Cadm1 depletion could be confirmed in an in vitro beta-cell model.
Wang, Xun. "IRF3 is a Critical Regulator of Adipose Glucose and Energy Homeostasis." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10537.
Повний текст джерелаHall, Jessica Ann. "Thyroid Hormone and Insulin Metabolic Actions on Energy and Glucose Homeostasis." Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11663.
Повний текст джерелаRahman, S. A. "Investigating the role of gut hormones in energy and glucose homeostasis." Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1417078/.
Повний текст джерелаStump, Madeliene. "The role of brain PPAR[gamma] in regulation of energy balance and glucose homeostasis." Diss., University of Iowa, 2017. https://ir.uiowa.edu/etd/6000.
Повний текст джерелаAatsinki, S. M. (Sanna-Mari). "Regulation of hepatic glucose homeostasis and Cytochrome P450 enzymes by energy-sensing coactivator PGC-1α". Doctoral thesis, Oulun yliopisto, 2015. http://urn.fi/urn:isbn:9789526208053.
Повний текст джерелаTiivistelmä Peroksisomiproliferaattori-aktivoituvan reseptori γ:n koaktivaattori 1α (PGC-1α) on merkittävä glukoosiaineenvaihdunnan ja mitokondrioiden toiminnan säätelijä korkeaenergisissä soluissa ja kudoksissa. PGC-1α:a säädellään monin tavoin: sekä transkriptionaalisella säätelyllä että transkription jälkeisellä muokkauksella on merkittävä rooli. Monet ulkoiset tekijät säätelevät PGC-1α:n aktiivisuutta, joka puolestaan säätelee solunsisäisiä signaalireittejä vastaamaan tähän signaaliin. Esimerkiksi paasto ja diabetes mellitus (DM) ovat fysiologisia tiloja, jotka lisäävät voimakkaasti PGC-1α:n ilmentymistä maksassa, jolloin glukoosin uudistuotanto eli glukoneogeneesi kiihtyy. Tässä väitöskirjassa tutkittiin PGC-1α:n säätelyä sekä PGC-1α -säädeltyjä signaalireittejä maksassa. Osoitimme, että tyypin 2 diabeteslääke metformiini indusoi PGC-1α:n ilmentymistä maksassa, vastoin aikaisempia käsityksiä. PGC-1α indusoitui AMPK:n ja SIRT1:n välityksellä, säädelleen edelleen mitokondriaalisten geenien aktiivisuutta. Samalla glukoneogeneesi kuitenkin repressoitui muilla mekanismeilla. Lisäksi osoitimme, että PGC-1α indusoi tulehdusreaktiota vaimentavaa interleukiini 1 reseptorin antagonistia (IL1Rn). PGC-1α esti interleukiini 1β:n aiheuttamaa tulehdusvastetta hepatosyyteissä. Lisäksi väitöskirjassa tunnistettiin uusia, PGC-1α -säädeltyjä lääkeaineita ja elimistön sisäisiä yhdisteitä metaboloivia sytokromi P450 -entsyymejä (CYP). Hiiren CYP2A5:n ilmentymisen osoitettiin olevan PGC-1α- ja HNF4α-välitteistä. Lisäksi osoitettiin, että D-vitamiinia metaboloivat CYP2R1 ja CYP24A1 ovat uusia PGC-1α -säädeltyjä geenejä. Tämä löydös viittaa siihen, että PGC-1α:lla on rooli aktiivisen D-vitamiinin säätelyssä. Tämän väitöskirjan löydökset lisäävät tietoa glukoosiaineenvaihdunnan häiriöiden kuten tyypin 2 diabeteksen molekulaarisista mekanismeista, joita voidaan hyödyntää mahdollisten uusien lääkeaineiden kehittämisessä. Lisäksi väitöskirjassa osoitettiin, että D-vitamiinimetabolia on kytköksissä energia-aineenvaihduntaan ja että PGC-1α:lla on tässä rooli, jota ei aiemmin ole tunnettu
Eftychidis, Vasileios. "Elucidating the principal role of cholecystokinin neurons of the ventromedial hypothalamic nucleus in energy homeostasis." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:906a0aa6-847a-43b8-a527-458252aca825.
Повний текст джерелаBirkenfeld, Andreas L. [Verfasser]. "The role of natriuretic peptides in the regulation of energy metabolism, lipid- and glucose homeostasis / Andreas L. Birkenfeld." Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2013. http://d-nb.info/1035182424/34.
Повний текст джерелаMeyer, Cornelius [Verfasser], and Rey Adriana [Akademischer Betreuer] del. "Effects of interleukin-1 on glucose uptake and energy homeostasis in lymphocytes / Cornelius Meyer ; Betreuer: Adriana del Rey." Marburg : Philipps-Universität Marburg, 2020. http://d-nb.info/1224046765/34.
Повний текст джерелаMatthäus, Dörte [Verfasser], Thomas [Akademischer Betreuer] Sommer, Mathias [Akademischer Betreuer] Treier, and Susanne [Akademischer Betreuer] Klaus. "The role of CADM1 in energy and glucose homeostasis / Dörte Matthäus. Gutachter: Thomas Sommer ; Mathias Treier ; Susanne Klaus." Berlin : Humboldt Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2014. http://d-nb.info/104785273X/34.
Повний текст джерелаWeigt, Carmen. "Impact of estradiol, estrogen receptor subtype-selective agonists and genistein on energy homeostasis." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-127919.
Повний текст джерелаDie dramatisch zunehmende Prävalenz der Adipositas und das damit verbundene Risiko für Folgeerkrankungen wie Diabetes mellitus, Hypertonie, Dyslipidämie und koronare Herzkrankheiten stellt eine große Herausforderung für das Gesundheitswesen dar. Als Hauptursache wird ein chronisches Missverhältnis der Energiehomöostase aufgrund permanenter Überernährung und Bewegungsmangel postuliert. Estrogene beeinflussen den Glukose- und Lipidstoffwechsel und sind somit in die Regulation des Energiehaushaltes involviert. Estrogene vermitteln ihre Effekte über zwei Estrogenrezeptor (ER)-Subtypen, den ER alpha und den ER beta. Ziel der vorliegenden Arbeit war es mittels tierexperimentellen Studien den Einfluss von Estrogenen, speziell 17beta-Estradiol, auf den Energiehaushalt zu untersuchen. Um einen tieferen Einblick in die zugrundeliegenden molekularen Mechanismen zu erhalten, wurden zwei Subtyp-selektive ER-Agonisten, 16alpha-LE2 (Alpha) and 8beta-VE2 (Beta), synthetischer Herkunft eingesetzt. Aufgrund der estrogenen Aktivität und der Verfügbarkeit als Nahrungsergänzungsmittel wurde des Weiteren der Einfluss des Isoflavons Genistein untersucht. Für die Studien wurden zwei Tiermodelle genutzt: zum einen weibliche Wistar-Ratten mit ernährungsinduzierter Adipositas und zum anderen weibliche leptinresistente „Zucker diabetic fatty“ (ZDF)-Ratten. Die Tiere wurden ovarektomiert (OVX) und entweder mit einem Vehikel (unbehandelte Kontrolltiere) oder mit der entsprechenden estrogenen Substanz behandelt. Die interessanteste Erkenntnis war, dass im Vergleich zu unbehandelten OVX-Tieren beider Tiermodelle die Behandlung mit Beta zur Vergrößerung der Faserquerschnitte im Soleusmuskel führte. Dieser anabole Effekt könnte die muskuläre Aufnahme und Verwertung von Brennstoffmolekülen verbessern und sich insgesamt positiv auf die Körperzusammensetzung auswirken. Den stärksten Effekt hinsichtlich einer erhöhten Expression und Translokation des insulinabhängigen Glukosetransporters 4 (GLUT4) in die Zellmembran des Gastrocnemiusmuskels zeigte sich dagegen durch die Behandlung von OVX ZDF-Ratten mit Alpha. Im Endergebnis zeigten die Tiere beider Modelle durch die Behandlung mit estrogenen Substanzen eine verbesserte systemische Insulinsensitivität im Vergleich zu unbehandelten Kontrolltieren. E2-behandelte Tiere tolerierten die Glukose am besten und lassen einen additiven Effekt aufgrund der Aktivierung beider Signalwege vermuten. Im Vergleich zu unbehandelten OVX Wistar-Ratten führte die Behandlung mit E2 oder mit jeweils einem der beiden ER-Subtyp-selektiven Agonisten zu einer geringeren viszeralen Fettmasse, kleineren Fettzellen, niedrigeren Leptinspiegeln im Serum und geringeren Triglyzeridwerten in Leber und Muskel. Auf der Ebene der Genexpression waren zudem geringere mRNA-Spiegel von lipo- und adipogenen Genen messbar. Somit scheinen beide ER-Subtypen in die antilipogene Wirkung von E2 involviert zu sein. Sowohl die reduzierte viszerale Fettmasse als auch die geringere Anreicherung von Triglyzeriden in Leber und Muskel tragen sehr wahrscheinlich ebenfalls zur verbesserten Insulinsensitivität bei. Die Behandlung von OVX Tieren mit Gen führte zu ähnlichen Ergebnissen wie die Behandlung mit Beta. Eine alleinige Ausnahme stellte das Fettgewebe dar, da hier eine Gen-Behandlung keine antilipogenen/-adipogenen Effekte zeigte. Speziell die Fähigkeit von Gen ebenfalls anabol zu wirken, könnte die molekulare Grundlage sein, weshalb Gen-behandelte Tiere im Vergleich zu unbehandelten Tiere eine verbesserte Toleranz gegenüber Glukose und eine geringere Anreicherung von Triglyzeriden in Muskel und Leber zeigten. Der ER beta ist nicht in die estrogenvermittelte Proliferation von Uterus und Brustdrüse involviert. Vor diesem Hintergrund lassen meine Ergebnisse vermuten, dass eine Behandlung mit ER beta-selektiven Substanzen eine effektive Möglichkeit darstellt, um Adipositas und deren Folgeerkrankungen in postmenopausalen Frauen zu behandeln, ohne deren Risiko für estrogenabhängige Krebsformen zu erhöhen. Eine Kombination mit regelmäßiger körperlicher Aktivität könnte die Erfolge bei der Behandlung von Adipositas und deren Folgeerkrankungen noch maximieren bzw. eine geringere Dosierung der verwendeten Substanz bei gleichbleibendem Behandlungserfolg ermöglichen. Das Isoflavon Gen mit seiner Fähigkeit beide ERs zu aktivieren ist eine bereits auf dem Markt befindliche Substanz und wird zur Behandlung von postmenopausalen Beschwerden eingesetzt, obwohl mögliche negative Effekte (z.B. ein erhöhtes Brustkrebsrisiko) noch nicht abschließend geklärt sind. Falls diese Risiken von Gen ausgeräumt werden können, könnte diese Substanz eventuell eine kostengünstige Alternative darstellen, um sowohl postmenopausale Beschwerden als auch Adipositas und deren Folgekrankheiten zu behandeln
Hillier, Sarah Elizabeth. "The effects of fluctuations in oestrogen and progesterone during the menstrual cycle on glucose homeostasis, energy balance, exercise and premenstrual syndrome." Thesis, Oxford Brookes University, 2014. https://radar.brookes.ac.uk/radar/items/95a77132-ec7c-487b-8dde-11f3b7f57b2f/1/.
Повний текст джерелаQian, Yanrong. "Internalization of Extracellular ATP in Cancer Cells and Development of New Generations of Anticancer Glucose Transport Inhibitors." Ohio University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1416411921.
Повний текст джерелаTroke, Rachel Clare. "A medical bypass : can the manipulation of gut hormone levels replicate the favourable effects on energy and glucose homeostasis seen following gastric bypass surgery?" Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/47922.
Повний текст джерелаChretien, Chloé. "Un nouvel acteur dans la détection hypothalamique du glucose : les canaux Transient Receptor Potential Canonical (TRPC)." Thesis, Dijon, 2015. http://www.theses.fr/2015DIJOS027/document.
Повний текст джерелаHyperglycemia is detected and integrated by the mediobasal hypothalamus (MBH) which, in turn, inhibits food intake and triggers insulin secretion. The MBH houses specialized glucose-sensitive (GS) neurons, which directly or indirectly modulate their electrical activity in response to changes in glucose level. In a first study, we hypothesized that indirect detection of glucose by MBH GS neurons involves the secretion of endozepine by astrocytes, a gliotransmitter known to inhibit food intake in response to hyperglycemia. The present work shows that endozepines selectively activate anorexigenic MBH pro-opiomelanotortine (POMC) neurons. In the second study, we show that the direct detection of increased glucose level involves hypothalamic glucose-excited (HGE) neurons. Using pharmacological and genetic approaches, we demonstrate that the redox-sensitive Transient Receptor Potential Canonical 3 et 4 (TRPC3/4) channels are involved in MBH HGE response to glucose in vitro and increased insulin secretion and decreased food intake in response to cerebral hyperglycemia in vivo. We also obtained evidences that MBH TRPC3 channel is a critical new player for energy homeostasis. This thesis work identifies two new mechanisms involved in hypothalamic detection of hyperglycemia: the first based on the involvement of TRPC3/4 channels in HGE neurons and the second highlighting the astroglial endozepines as a relay of the “glucose” signal to POMC neurons
Desmoulins, Lucie. "Détection hypothalamique du glucose chez le rat soumis à un régime gras enrichi en saccharose : rôle de la dynamique mitochondriale et des espèces actives de l'oxygène d'origine mitochondriale." Thesis, Dijon, 2016. http://www.theses.fr/2016DIJOS024/document.
Повний текст джерелаThe hypothalamus participates in the control of energy homeostasis by detecting circulating nutrients, such as glucose. The mediobasal hypothalamus (MBH), in particular, senses hyperglycemia and initiates physiological responses, e.g., insulin secretion via the autonomous (vagal) nervous system. We have recently demonstrated that glucose sensing requires mitochondrial reactive oxygen species (mROS) signaling heavily dependant on mitochondrial fusion and fission (dynamics). Recently, genetic models have associated some of these dynamics within the MBH to their obesogenic susceptibility. The aims of my thesis were first to establish a model that only presents a hypothalamic glucose sensing defect induced by a high fat high sucrose (HFHS) feeding in rats. After caracterizing this model, our objectives were to determine whether modulating the diet affects mitochondrial dynamics, and thus, mROS signaling, through the mitochondrial respiratory function in the hypothalamus. We finally reversed some dysregulated metabolic signalings potentially involved in mitochondrial dynamics in order to reverse the phenotype observed in HFHS fed rats. Our results demonstrate that after 3 weeks of HFHS feeding, rats had a normal body weight despite an increase in the fat mass compared to control rats. HFHS fed rats displayed also a glucose intolerance, increased fasting glycemia but no modification of fasting insulinemia. Hypothalamic glucose sensing induced insulin secretion, measured after an intra-carotid glucose injection towards the brain that only increases brain glycemia without alteration in peripheral glycemia, was drastically decreased. However, glucose stimulated insulin secretion in isolated islets was not different compared to controls. These defects correlate with a decrease of MBH ROS production in response to glucose, with no modification in the redox status. Efficiency of hypothalamic mitochondrial respiration was evaluated using oxygraphy, and results showed mitochondrial respiratory deficiencies in HFHS fed rats. The fission protein DRP1 exhibited decreased mitochondrial translocation in the MBH in response to glucose, suggesting decreased mitochondrial fission. The increase of AMPK activation in the hypothalamus was not responsible for the alteration of hypothalamic glucose sensing since its reversal with an intracerebroventricular (ICV) injection of compound C failed to restore brain hyperglycemia induced insulin secretion. Likewise, an ICV injection of leptin that induced STAT3 activation also failed to restore brain hyperglycemia induced insulin secretion. Finally, the decrease in AKT activation suggested a central insulin resistance. These results demonstrate for the first time that hypothalamic alteration of mitochondrial ROS signaling, fission and respiration were present in rats exposed to a 3 weeks HFHS diet. Such hypothalamic glucose sensing defects are early events preceding those in islets. These early but drastic hypothalamic modifications could participate in a primary nervous defect of the control of insulin secretion, and finally, the etablishment of a diabetic phenotype
Allard, Camille. "Les astrocytes et la détection hypothalamique du glucose : rôle métabolique et implication des connexines astrocytaires." Phd thesis, Université de Bourgogne, 2012. http://tel.archives-ouvertes.fr/tel-00935261.
Повний текст джерелаDevère, Mélodie. "Découverte et caractérisation de nouveaux réseaux neuronaux peptidergiques gouvernant l'homéostasie énergétique et glucidique." Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR031.
Повний текст джерелаThe alarming rise in obesity and diabetes epidemics worldwide has made the treatment of these diseases a major public health issue. To develop new therapeutic approaches to combat "diabesity", it is crucial to understand the etiology of these pathologies. Recent research highlight the key role of hypothalamic neural networks in the brain regulation of energy and glucose homeostasis. In this context, this thesis aimed to determine the role of two neuropeptidergic systems, the 26RFa/GPR103 system and the orexinergic system, within the neural networks governing energy and glucose metabolism.During my thesis, we demonstrated that central injection of 26RFa exerts an antihyperglycemic effect associated with an increased insulin secretion. Furthermore, the central action of insulin is abolished in 26RFa-deficient mice or when co-administering a 26RFa receptor antagonist, establishing that 26RFa neurons relay the central action of insulin to regulate glucose homeostasis, thereby stimulating its own secretion by the pancreas.We conducted a neuroanatomical study revealing the existence of a subpopulation of neurons in the lateral hypothalamic area expressing both 26RFa and orexins. Our data show that orexins exert a central antihyperglycemic action similar to that of 26RFa. Additionally, the glycemic and energy characterization of orexin-deficient mice reveals a hypophagic and pro-hyperglycemic phenotype of the mice.Surprisingly, we observed that chemogenetic activation (DREADD) of 26RFa and orexin neurons in the lateral hypothalamic area induces a pro-hyperglycemic effect. Moreover, this activation reduces the mRNA expression of 26RFa and orexins, while their inhibition increases the expression of both neuropeptides, similar to the effect induced by an hyperglycemia. These observations suggest that, to ensure glucose homeostasis, hyperglycemia would inhibit 26RFa and orexin neurons, leading to the increased expression of the two neuropeptides known for their antihyperglycemic effect.Finally, our data promote the evidence that 26RFa is necessary for the orexinergic response to elevated blood glucose, highlighting the occurrence of a genetic interaction between orexins and 26RFa. Collectively, the data of this thesis emphasize the importance of 26RFa and orexin neurons of the lateral hypothalamic area in the regulation of energy and glucose homeostasis. Studying the modulation of these neuropeptidergic systems in the context of "diabesity" offers hope for improving the existing therapeutic approaches
Cham, Chee Wee. "Glucose homeostasis in rat liver transplantation." Thesis, University of Newcastle Upon Tyne, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.309095.
Повний текст джерелаSte, Marie Linda. "Role of norepinephrine in glucose homeostasis /." Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/9258.
Повний текст джерелаBonDurant, Lucas Donald. "Regulation of glucose homeostasis by FGF21." Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6060.
Повний текст джерелаNg, Natasha Hui Jin. "The role of glucose-6-phosphatase catalytic domain in glucose homeostasis." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:1e5fc469-d474-45e8-9a6b-6b56d1cd3b77.
Повний текст джерелаJohnstone, Helen C. "Glucose homeostasis in fasting children with endocrinopathies." Thesis, University of Newcastle upon Tyne, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424085.
Повний текст джерелаSabatini, Paul Vincent. "The role of NPAS4 in glucose homeostasis." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/58381.
Повний текст джерелаMedicine, Faculty of
Graduate
Sundbom, Maj. "Novel pharmaceutical approaches to regulate glucose homeostasis." Stockholm, 2010. http://diss.kib.ki.se/2010/978-91-7409-743-6/.
Повний текст джерелаMészáros, Gergő. "CaMK1D controls β-cell mass and glucose homeostasis". Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAJ035.
Повний текст джерелаType 2 diabetes mellitus (T2DM) is characterized by hyperglycemia resulting from defects in insulin secretion in combination with impaired insulin action. CaMK1D represents one potential candidate gene, the in vivo function remained elusive. In this work, I have found that CaMK1D plays a central role in blood glucose regulation. Pancreas-specific CaMK1D knockout mice display dramatically reduced fasting blood glucose levels leading to an overall improved glucose tolerance. CaMK1D knockout mice show markedly higher ad libitum and fasting insulin levels. Interestingly, pancreas-specific CaMK1D knockout mice display islet hyperplasia caused by beta-cell hypertrophy. Furthermore, conditional knockout mice are protected against high-fat feeding-induced hepatic steatosis. Overall, my work establishes an essential role of CaMK1D in pancreatic beta-cells and provides further understanding about its role in the development of T2DM
Baggio, Laurie L. "The role of incretin hormones in glucose homeostasis." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ59004.pdf.
Повний текст джерелаSteiler, Tatiana L. "Kinase cascades in the regulation of glucose homeostasis /." Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-201-2/.
Повний текст джерелаLarson, Kara L. "Regulation of Glucose Homeostasis by the PHLPP1 Phosphatase." UKnowledge, 2014. http://uknowledge.uky.edu/biochem_etds/17.
Повний текст джерелаChen, Mimi Zhu. "The effect of bariatric surgery on glucose homeostasis." Thesis, University of Bristol, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.665171.
Повний текст джерелаFlechner, Lawrence Martin. "Role of the CREB pathway in glucose homeostasis /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2004. http://wwwlib.umi.com/cr/ucsd/fullcit?p3129937.
Повний текст джерелаShipley, Timothy I. "The Role of VMN Glucose-Sensitive Neurones in the Control of Glucose Homeostasis." Thesis, Imperial College London, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.511846.
Повний текст джерелаOsundiji, Mayowa Azeez. "Hypothalamic glucose sensing plays a critical role in the control of glucose homeostasis." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612423.
Повний текст джерелаSmith, Kirsty Louise. "Metabolic hormones and energy homeostasis." Thesis, Imperial College London, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.411789.
Повний текст джерелаNeary, Nicola Marguerite. "Gut hormones and energy homeostasis." Thesis, Imperial College London, 2007. http://hdl.handle.net/10044/1/7152.
Повний текст джерелаPears, John Stuart. "Glucose-6-phosphatase : its structure, function and regulation in relation to blood glucose homeostasis." Thesis, University of Edinburgh, 1993. http://hdl.handle.net/1842/20100.
Повний текст джерелаKrishnan, Binu. "Hypothalamic and autonomic responses to change in glucose homeostasis." Thesis, Exeter and Plymouth Peninsula Medical School, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.544012.
Повний текст джерелаAbrahamsson, Niclas. "On the Impact of Bariatric Surgery on Glucose Homeostasis." Doctoral thesis, Uppsala universitet, Institutionen för medicinska vetenskaper, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-276381.
Повний текст джерелаKindel, Tammy Lyn. "The Effects of Duodenal-jejunal Bypass on Glucose Homeostasis." University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1280778030.
Повний текст джерелаStevens, Joseph R. "The Effects of Low Dose Endotoxin on Glucose Homeostasis." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/64849.
Повний текст джерелаPh. D.
Hawke, Zoe Belinda. "Ventromedial hypothalamic neurones in energy homeostasis." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.495608.
Повний текст джерелаLevi, Jasna. "The role of leptin in the regulation of glucose homeostasis." Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/26267.
Повний текст джерелаKaur, Achint. "The role of sterol 12α- hydroxylase (Cyp8b1) in glucose homeostasis". Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/46516.
Повний текст джерелаHawdon, Jane Melinda. "Metabolic adaptation and disordered blood glucose homeostasis in the neonate." Thesis, University of Newcastle Upon Tyne, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240735.
Повний текст джерелаMarkkula, Silja Pauliina. "Hypothalamic hydrogen peroxide signalling in the control of glucose homeostasis." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609384.
Повний текст джерелаCastro, Acosta Monica Lizzette. "Beneficial effects of blackcurrant and apple polyphenols on glucose homeostasis." Thesis, King's College London (University of London), 2017. https://kclpure.kcl.ac.uk/portal/en/theses/beneficial-effects-of-blackcurrant-and-apple-polyphenols-on-glucose-homeostasis(228bad46-5f9c-40be-b7d5-018445aaf7f4).html.
Повний текст джерелаAlkhalidy, Hana Awwad. "Flavonol kaempferol in the regulation of glucose homeostasis in diabetes." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/82485.
Повний текст джерелаPh. D.
Kent, Aysha S. "The role of ghrelin in energy homeostasis." Thesis, Imperial College London, 2006. http://hdl.handle.net/10044/1/11443.
Повний текст джерела