Статті в журналах з теми "Encapsulation of molecules of interest"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Encapsulation of molecules of interest.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Encapsulation of molecules of interest".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Guzmán, Eduardo, Laura Fernández-Peña, Lorenzo Rossi, Mathieu Bouvier, Francisco Ortega, and Ramón G. Rubio. "Nanoemulsions for the Encapsulation of Hydrophobic Actives." Cosmetics 8, no. 2 (June 1, 2021): 45. http://dx.doi.org/10.3390/cosmetics8020045.

Повний текст джерела
Анотація:
This work analyzes the dispersion of two highly hydrophobic actives, (9Z)-N-(1,3-dihydroxyoctadecan-2-yl)octadec-9-enamide (ceramidelike molecule) and 2,6-diamino-4-(piperidin-1-yl)pyrimidine 1-oxide (minoxidil), using oil-in-water nanoemulsions with the aim of preparing stable and safe aqueous-based formulations that can be exploited for enhancing the penetration of active compounds through cosmetic substrates. Stable nanoemulsions with a droplet size in the nanometric range (around 200 nm) and a negative surface charge were prepared. It was possible to prepare formulations containing up to 2 w/w% of ceramide-like molecules and more than 10 w/w% of minoxidil incorporated within the oil droplets. This emulsions evidenced a good long-term stability, without any apparent modification for several weeks. Despite the fact that this work is limited to optimize the incorporation of the actives within the nanoemulsion-like formulations, it demonstrated that nanoemulsions should be considered as a very promising tool for enhancing the distribution and availability of hydrophobic molecules with technological interest.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kuganathan, Navaratnarajah, and Alexander Chroneos. "Ru-Doped Single Walled Carbon Nanotubes as Sensors for SO2 and H2S Detection." Chemosensors 9, no. 6 (May 24, 2021): 120. http://dx.doi.org/10.3390/chemosensors9060120.

Повний текст джерела
Анотація:
Carbon nanotubes are of great interest for their ability to functionalize with atoms for adsorbing toxic gases such as CO, NO, and NO2. Here, we use density functional theory in conjunction with dispersion correction to examine the encapsulation and adsorption efficacy of SO2 and H2S molecules by a (14,0) carbon nanotube and its substitutionally doped form with Ru. Exoergic encapsulation and adsorption energies are calculated for pristine nanotubes. The interaction of molecules with pristine nanotube is non-covalent as confirmed by the negligible charge transfer. The substitutional doping of Ru does not improve the encapsulation significantly. Nevertheless, there is an important enhancement in the adsorption of molecules by Ru-doped (14,0) nanotube. Such strong adsorption is confirmed by the strong chemical interaction between the nanotube and molecules. The promising feature of Ru-doped nanotubes can be tested experimentally for SO2 and H2S gas sensing.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

RICO-LATTES, ISABELLE, MURIEL BLANZAT, EMILE PEREZ, ELODIE SOUSSAN, and CRISTINA STEFANIU. "CATANIONIC SUGAR DERIVED AMPHIPHILES: FROM MOLECULES TO TARGETED BIOMIMETIC SYSTEMS." Biophysical Reviews and Letters 01, no. 04 (October 2006): 423–31. http://dx.doi.org/10.1142/s179304800600029x.

Повний текст джерела
Анотація:
In the course of our investigations of routes for general and convenient synthesis of amphiphiles derived from sugars, we reported new synthetic ways to prepare catanionic surfactants, polymers and dendrimers using unprotected lactose or lactobionic acid. Moreover we developed amphiphilic dendrimers bearing sugar polar heads. These compounds are of interest for their biological applications (mimics of natural ligands of proteins (e.g. gp 120 of HIV), encapsulation, vectorisation).
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fukuta, Tatsuya, Mayumi Ikeda-Imafuku, Satoshi Kodama, Junko Kuse, Ko Matsui, and Yasunori Iwao. "One-Step Pharmaceutical Preparation of PEG-Modified Exosomes Encapsulating Anti-Cancer Drugs by a High-Pressure Homogenization Technique." Pharmaceuticals 16, no. 1 (January 11, 2023): 108. http://dx.doi.org/10.3390/ph16010108.

Повний текст джерела
Анотація:
The use of exosomes encapsulating therapeutic agents for the treatment of diseases is of increasing interest. However, some concerns such as limited efficiency and scalability of conventional drug encapsulation methods to exosomes have still remained; thus, a new approach that enables encapsulation of therapeutic agents with superior efficiency and scalability is required. Herein, we used RAW264 macrophage cell-derived exosomes (RAW-Exos) and demonstrated that high-pressure homogenization (HPH) using a microfluidizer decreased their particle size without changing their morphology, the amount of exosomal marker proteins, and cellular uptake efficiency into RAW264 and colon-26 cancer cells. Moreover, HPH allowed for modification of polyethylene glycol (PEG)-conjugated lipids onto RAW-Exos, as well as encapsulation of the anti-cancer agent doxorubicin. Importantly, the doxorubicin encapsulation efficiency became higher upon increasing the process pressure and simultaneous HPH with PEG-lipids. Moreover, treatment with PEG-modified RAW-Exos encapsulating doxorubicin significantly suppressed tumor growth in colon-26-bearing mice. Taken together, these results suggest that HPH using a microfluidizer could be useful to prepare PEG-modified Exos encapsulating anti-cancer drugs via a one-step pharmaceutical process, and that the prepared functional Exos could be applied for the treatment of cancer in vivo.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Souto, Manuel, Joaquín Calbo, Samuel Mañas-Valero, Aron Walsh, and Guillermo Mínguez Espallargas. "Charge-transfer interactions between fullerenes and a mesoporous tetrathiafulvalene-based metal–organic framework." Beilstein Journal of Nanotechnology 10 (September 18, 2019): 1883–93. http://dx.doi.org/10.3762/bjnano.10.183.

Повний текст джерела
Анотація:
The design of metal–organic frameworks (MOFs) incorporating electroactive guest molecules in the pores has become a subject of great interest in order to obtain additional electrical functionalities within the framework while maintaining porosity. Understanding the charge-transfer (CT) process between the framework and the guest molecules is a crucial step towards the design of new electroactive MOFs. Herein, we present the encapsulation of fullerenes (C60) in a mesoporous tetrathiafulvalene (TTF)-based MOF. The CT process between the electron-acceptor C60 guest and the electron-donor TTF ligand is studied in detail by means of different spectroscopic techniques and density functional theory (DFT) calculations. Importantly, gas sorption measurements demonstrate that sorption capacity is maintained after encapsulation of fullerenes, whereas the electrical conductivity is increased by two orders of magnitude due to the CT interactions between C60 and the TTF-based framework.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Poulson, Benjamin Gabriel, Qana A. Alsulami, Abeer Sharfalddin, Emam F. El Agammy, Fouzi Mouffouk, Abdul-Hamid Emwas, Lukasz Jaremko, and Mariusz Jaremko. "Cyclodextrins: Structural, Chemical, and Physical Properties, and Applications." Polysaccharides 3, no. 1 (December 28, 2021): 1–31. http://dx.doi.org/10.3390/polysaccharides3010001.

Повний текст джерела
Анотація:
Due to their unique structural, physical and chemical properties, cyclodextrins and their derivatives have been of great interest to scientists and researchers in both academia and industry for over a century. Many of the industrial applications of cyclodextrins have arisen from their ability to encapsulate, either partially or fully, other molecules, especially organic compounds. Cyclodextrins are non-toxic oligopolymers of glucose that help to increase the solubility of organic compounds with poor aqueous solubility, can mask odors from foul-smelling compounds, and have been widely studied in the area of drug delivery. In this review, we explore the structural and chemical properties of cyclodextrins that give rise to this encapsulation (i.e., the formation of inclusion complexes) ability. This review is unique from others written on this subject because it provides powerful insights into factors that affect cyclodextrin encapsulation. It also examines these insights in great detail. Later, we provide an overview of some industrial applications of cyclodextrins, while emphasizing the role of encapsulation in these applications. We strongly believe that cyclodextrins will continue to garner interest from scientists for many years to come, and that novel applications of cyclodextrins have yet to be discovered.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Veloso, Sérgio R. S., Raquel G. D. Andrade, Beatriz C. Ribeiro, André V. F. Fernandes, A. Rita O. Rodrigues, J. A. Martins, Paula M. T. Ferreira, Paulo J. G. Coutinho, and Elisabete M. S. Castanheira. "Magnetoliposomes Incorporated in Peptide-Based Hydrogels: Towards Development of Magnetolipogels." Nanomaterials 10, no. 9 (August 29, 2020): 1702. http://dx.doi.org/10.3390/nano10091702.

Повний текст джерела
Анотація:
A major problem with magnetogels is the encapsulation of hydrophobic drugs. Magnetoliposomes not only provide these domains but also improve drug stability and avert the aggregation of the magnetic nanoparticles. In this work, two magnetoliposome architectures, solid and aqueous, were combined with supramolecular peptide-based hydrogels, which are of biomedical interest owing to their biocompatibility, easy tunability, and wide array of applications. This proof-of-concept was carried out through combination of magnetoliposomes (loaded with the model drug curcumin and the lipid probe Nile Red) with the hydrogels prior to pH triggered gelation, and fluorescence spectroscopy was used to assess the dynamics of the encapsulated molecules. These systems allow for the encapsulation of a wider array of drugs. Further, the local environment of the encapsulated molecules after gelation is unaffected by the used magnetoliposome architecture. This system design is promising for future developments on drug delivery as it provides a means to independently modify the components and adapt and optimize the design according to the required conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dumitrescu, Dan G., Wei-xu Feng, Yves-Marie Legrand, Arie van der Lee, Eddy Petit, and Mihail Barboiu. "Pyrene-box capsules for adaptive encapsulation and structure determination of unstable or non-crystalline guest molecules." CrystEngComm 20, no. 3 (2018): 261–70. http://dx.doi.org/10.1039/c7ce01741c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Alshehri, Mansoor H. "Continuum Modelling for Encapsulation of Anticancer Drugs inside Nanotubes." Mathematics 9, no. 19 (October 3, 2021): 2469. http://dx.doi.org/10.3390/math9192469.

Повний текст джерела
Анотація:
Nanotubes, such as those made of carbon, silicon, and boron nitride, have attracted tremendous interest in the research community and represent the starting point for the development of nanotechnology. In the current study, the use of nanotubes as a means of drug delivery and, more specifically, for cancer therapy, is investigated. Using traditional applied mathematical modelling, I derive explicit analytical expressions to understand the encapsulation behaviour of drug molecules into different types of single-walled nanotubes. The interaction energies between three anticancer drugs, namely, cisplatin, carboplatin, and doxorubicin, and the nanotubes are observed by adopting the Lennard–Jones potential function together with the continuum approach. This study is focused on determining a favourable size and an appropriate type of nanotube to encapsulate anticancer drugs. The results indicate that the drug molecules with a large size tend to be located inside a large nanotube and that encapsulation depends on the radius and type of the tube. For the three nanotubes used to encapsulate drugs, the results show that the nanotube radius must be at least 5.493 Å for cisplatin, 6.452 Å for carboplatin, and 10.208 Å for doxorubicin, and the appropriate type to encapsulate drugs is the boron nitride nanotube. There are some advantages to using different types of nanotubes as a means of drug delivery, such as improved chemical stability, reduced synthesis costs, and improved biocompatibility.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Villa, Federico, Rodolfo Quarto, and Roberta Tasso. "Extracellular Vesicles as Natural, Safe and Efficient Drug Delivery Systems." Pharmaceutics 11, no. 11 (October 28, 2019): 557. http://dx.doi.org/10.3390/pharmaceutics11110557.

Повний текст джерела
Анотація:
Extracellular vesicles (EVs) are particles naturally released from cells, delimited by a lipid bilayer, carrying functionally active biological molecules. In addition to their physiological role in cellular communication, the interest of the scientific community has recently turned to the use of EVs as vehicles for delivering therapeutic molecules. Several attempts are being made to ameliorate drug encapsulation and targeting, but these efforts are thwarted if the starting material does not meet stringent quality criteria. Here, we take a step back to the sources and isolation procedures that could guarantee significant improvements in the purification of EVs to be used as drug carriers, highlighting the advantages and shortcomings of each approach.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Opatha, Shakthi Apsara Thejani, Varin Titapiwatanakun, and Romchat Chutoprapat. "Transfersomes: A Promising Nanoencapsulation Technique for Transdermal Drug Delivery." Pharmaceutics 12, no. 9 (September 9, 2020): 855. http://dx.doi.org/10.3390/pharmaceutics12090855.

Повний текст джерела
Анотація:
Transdermal delivery systems have gained much interest in recent years owing to their advantages compared to conventional oral and parenteral delivery systems. They are noninvasive and self-administered delivery systems that can improve patient compliance and provide a controlled release of the therapeutic agents. The greatest challenge of transdermal delivery systems is the barrier function of the skin’s outermost layer. Molecules with molecular weights greater than 500 Da and ionized compounds generally do not pass through the skin. Therefore, only a limited number of drugs are capable of being administered by this route. Encapsulating the drugs in transfersomes are one of the potential approaches to overcome this problem. They have a bilayered structure that facilitates the encapsulation of lipophilic and hydrophilic, as well as amphiphilic, drug with higher permeation efficiencies compared to conventional liposomes. Transfersomes are elastic in nature, which can deform and squeeze themselves as an intact vesicle through narrow pores that are significantly smaller than its size. This review aims to describe the concept of transfersomes, the mechanism of action, different methods of preparation and characterization and factors affecting the properties of transfersomes, along with their recent applications in the transdermal administration of drugs.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Basilotta, Rossella, Deborah Mannino, Alessia Filippone, Giovanna Casili, Angela Prestifilippo, Lorenzo Colarossi, Gabriele Raciti, Emanuela Esposito, and Michela Campolo. "Role of Calixarene in Chemotherapy Delivery Strategies." Molecules 26, no. 13 (June 29, 2021): 3963. http://dx.doi.org/10.3390/molecules26133963.

Повний текст джерела
Анотація:
Since cancer is a multifactorial disease with a high mortality rate, the study of new therapeutic strategies is one of the main objectives in modern research. Numerous chemotherapeutic agents, although widely used, have the disadvantage of being not very soluble in water or selective towards cancerous cells, with consequent side effects. Therefore, in recent years, a greater interest has emerged in innovative drug delivery systems (DDSs) such as calixarene, a third-generation supramolecular compound. Calixarene and its water-soluble derivatives show good biocompatibility and have low cytotoxicity. Thanks to their chemical–physical characteristics, calixarenes can be easily functionalized, and by itself can encapsulate host molecules forming nanostructures capable of releasing drugs in a controlled way. The encapsulation of anticancer drugs in a calixarene derivate improves their bioavailability and efficacy. Thus, the use of calixarenes as carriers of anticancer drugs could reduce their side effects and increase their affinity towards the target. This review summarizes the numerous research advances regarding the development of calixarene nanoparticles capable of encapsulating various anticancer drugs.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Romano, Eugenia, Paolo Antonio Netti, and Enza Torino. "A High Throughput Approach Based on Dynamic High Pressure for the Encapsulation of Active Compounds in Exosomes for Precision Medicine." International Journal of Molecular Sciences 22, no. 18 (September 13, 2021): 9896. http://dx.doi.org/10.3390/ijms22189896.

Повний текст джерела
Анотація:
In recent decades, endogenous nanocarrier-exosomes have received considerable scientific interest as drug delivery systems. The unique proteo-lipid architecture allows the crossing of various natural barriers and protects exosomes cargo from degradation in the bloodstream. However, the presence of this bilayer membrane as well as their endogenous content make loading of exogenous molecules challenging. In the present work, we will investigate how to promote the manipulation of vesicles curvature by a high-pressure microfluidic system as a ground-breaking method for exosomes encapsulation. Exosomes isolated from Uppsala 87 Malignant Glioma (U87-MG) cell culture media were characterized before and after the treatment with high-pressure homogenization. Once their structural and biological stability were validated, we applied this novel method for the encapsulation in the lipidic exosomal bilayer of the chemotherapeutic Irinotecan HCl Trihydrate-CPT 11. Finally, we performed in vitro preliminary test to validate the nanobiointeraction of exosomes, uptake mechanisms, and cytotoxic effect in cell culture model.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Boland, Patricia G., Sara J. Accardi, Carrie A. Snow, and Brian D. Wagner. "Investigations of the supramolecular host properties of a fluorescent bistren cage compound." Canadian Journal of Chemistry 87, no. 2 (February 2009): 448–52. http://dx.doi.org/10.1139/v08-179.

Повний текст джерела
Анотація:
The host properties of a bistren cage compound, previously reported to be an efficient anion sensor, are shown to include encapsulation of small aromatic guest molecules. It is also shown that the intrinsic fluorescence of this cage compound, arising from the anthracenyl moiety in its structure, is sensitive to the encapsulation of aromatic guests in aqueous solution and can be used to measure the binding constants for any such guest. This makes this bistren cage a rare example of a fluorescent host for aromatic guests, and suggests potential applications of this compound as a versatile fluorescent sensor for a variety of guests of interest. The binding of a number of benzene derivatives was studied; these were all found to form 1:2 host–guest inclusion complexes with a wide range in total binding constants (K1K2), from 6.4 × 103 to 3.5 × 107 (mol/L)–2, indicating a significant degree of selectivity for different benzene derivatives. The binding strength was found to depend on both the guest polarity and aqueous solubility.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Reverter, J. "New metal-organic system for encapsulation and delivery of compounds of interest." New Biotechnology 25 (September 2009): S39—S40. http://dx.doi.org/10.1016/j.nbt.2009.06.098.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Ahmed, Ahmed, Darragh McHugh, and Constantina Papatriantafyllopoulou. "Synthesis and Biomedical Applications of Highly Porous Metal–Organic Frameworks." Molecules 27, no. 19 (October 5, 2022): 6585. http://dx.doi.org/10.3390/molecules27196585.

Повний текст джерела
Анотація:
In this review, aspects of the synthesis, framework topologies, and biomedical applications of highly porous metal–organic frameworks are discussed. The term “highly porous metal–organic frameworks” (HPMOFs) is used to denote MOFs with a surface area larger than 4000 m2 g−1. Such compounds are suitable for the encapsulation of a variety of large guest molecules, ranging from organic dyes to drugs and proteins, and hence they can address major contemporary challenges in the environmental and biomedical field. Numerous synthetic approaches towards HPMOFs have been developed and discussed herein. Attempts are made to categorise the most successful synthetic strategies; however, these are often not independent from each other, and a combination of different parameters is required to be thoroughly considered for the synthesis of stable HPMOFs. The majority of the HPMOFs in this review are of special interest not only because of their high porosity and fascinating structures, but also due to their capability to encapsulate and deliver drugs, proteins, enzymes, genes, or cells; hence, they are excellent candidates in biomedical applications that involve drug delivery, enzyme immobilisation, gene targeting, etc. The encapsulation strategies are described, and the MOFs are categorised according to the type of biomolecule they are able to encapsulate. The research field of HPMOFs has witnessed tremendous development recently. Their intriguing features and potential applications attract researchers’ interest and promise an auspicious future for this class of highly porous materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Cimino, Cinzia, Oriana Maria Maurel, Teresa Musumeci, Angela Bonaccorso, Filippo Drago, Eliana Maria Barbosa Souto, Rosario Pignatello, and Claudia Carbone. "Essential Oils: Pharmaceutical Applications and Encapsulation Strategies into Lipid-Based Delivery Systems." Pharmaceutics 13, no. 3 (March 3, 2021): 327. http://dx.doi.org/10.3390/pharmaceutics13030327.

Повний текст джерела
Анотація:
Essential oils are being studied for more than 60 years, but a growing interest has emerged in the recent decades due to a desire for a rediscovery of natural remedies. Essential oils are known for millennia and, already in prehistoric times, they were used for medicinal and ritual purposes due to their therapeutic properties. Using a variety of methods refined over the centuries, essential oils are extracted from plant raw materials: the choice of the extraction method is decisive, since it determines the type, quantity, and stereochemical structure of the essential oil molecules. To these components belong all properties that make essential oils so interesting for pharmaceutical uses; the most investigated ones are antioxidant, anti-inflammatory, antimicrobial, wound-healing, and anxiolytic activities. However, the main limitations to their use are their hydrophobicity, instability, high volatility, and risk of toxicity. A successful strategy to overcome these limitations is the encapsulation within delivery systems, which enable the increase of essential oils bioavailability and improve their chemical stability, while reducing their volatility and toxicity. Among all the suitable platforms, our review focused on the lipid-based ones, in particular micro- and nanoemulsions, liposomes, solid lipid nanoparticles, and nanostructured lipid carriers.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

d’Orlyé, Fanny, Laura Trapiella-Alfonso, Camille Lescot, Marie Pinvidic, Bich-Thuy Doan, and Anne Varenne. "Synthesis, Characterization and Evaluation of Peptide Nanostructures for Biomedical Applications." Molecules 26, no. 15 (July 29, 2021): 4587. http://dx.doi.org/10.3390/molecules26154587.

Повний текст джерела
Анотація:
There is a challenging need for the development of new alternative nanostructures that can allow the coupling and/or encapsulation of therapeutic/diagnostic molecules while reducing their toxicity and improving their circulation and in-vivo targeting. Among the new materials using natural building blocks, peptides have attracted significant interest because of their simple structure, relative chemical and physical stability, diversity of sequences and forms, their easy functionalization with (bio)molecules and the possibility of synthesizing them in large quantities. A number of them have the ability to self-assemble into nanotubes, -spheres, -vesicles or -rods under mild conditions, which opens up new applications in biology and nanomedicine due to their intrinsic biocompatibility and biodegradability as well as their surface chemical reactivity via amino- and carboxyl groups. In order to obtain nanostructures suitable for biomedical applications, the structure, size, shape and surface chemistry of these nanoplatforms must be optimized. These properties depend directly on the nature and sequence of the amino acids that constitute them. It is therefore essential to control the order in which the amino acids are introduced during the synthesis of short peptide chains and to evaluate their in-vitro and in-vivo physico-chemical properties before testing them for biomedical applications. This review therefore focuses on the synthesis, functionalization and characterization of peptide sequences that can self-assemble to form nanostructures. The synthesis in batch or with new continuous flow and microflow techniques will be described and compared in terms of amino acids sequence, purification processes, functionalization or encapsulation of targeting ligands, imaging probes as well as therapeutic molecules. Their chemical and biological characterization will be presented to evaluate their purity, toxicity, biocompatibility and biodistribution, and some therapeutic properties in vitro and in vivo. Finally, their main applications in the biomedical field will be presented so as to highlight their importance and advantages over classical nanostructures.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Holser, Ronald. "Encapsulation of Polyunsaturated Fatty Acid Esters with Solid Lipid Particles." Lipid Insights 5 (December 6, 2011): LPI.S7901. http://dx.doi.org/10.4137/lpi.s7901.

Повний текст джерела
Анотація:
Encapsulation of structurally sensitive compounds within a solid lipid matrix provides a barrier to prooxidant compounds and effectively limits the extent of oxidative degradation. This offers a simple approach to preserve the bioactivity of labile structures. The technology was developed for cosmetic and pharmaceutical products but may be applied to additives used in food and feed formulations. The encapsulation of docosahexaenoic acid (DHA) and α-linolenic acid (ALA) was examined as model compounds of current interest in functional foods and feeds. Solid lipid particles were prepared from triglycerides containing saturated and unsaturated fatty acids and evaluated by differential scanning calorimetry. The thermal characteristics of the lipids used to form the particle were related to molecular structure and could be adjusted by selection of the appropriate component fatty acids. Encapsulation by solid lipid particles provides a method to inhibit oxidation and improve shelf life of products formulated with DHA and ALA.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Tănase, Maria Antonia, Andreia Cristina Soare, Lia Mara Diţu, Cristina Lavinia Nistor, Catalin Ionut Mihaescu, Ioana Catalina Gifu, Cristian Petcu, and Ludmila Otilia Cinteza. "Influence of the Hydrophobicity of Pluronic Micelles Encapsulating Curcumin on the Membrane Permeability and Enhancement of Photoinduced Antibacterial Activity." Pharmaceutics 14, no. 10 (October 8, 2022): 2137. http://dx.doi.org/10.3390/pharmaceutics14102137.

Повний текст джерела
Анотація:
Apart from its well-known activity as an antimicrobial agent, Curcumin (CURC) has recently started to arouse interest as a photosensitizer in the photodynamic therapy of bacterial infections. The aim of the present study was to evidence the influence of the encapsulation of Curcumin into polymeric micelles on the efficiency of photoinduced microbial inhibition. The influence of the hydrophobicity of the selected Pluronics (P84, P123, and F127) on the encapsulation, stability, and antimicrobial efficiency of CURC-loaded micelles was investigated. In addition, the size, morphology, and drug-loading capacity of the micellar drug delivery systems have been characterized. The influence of the presence of micellar aggregates and unassociated molecules of various Pluronics on the membrane permeability was investigated on both normal and resistant microbial strains of E. coli, S. aureus, and C. albicans. The antimicrobial efficiency on the common pathogens was assessed for CURC-loaded polymeric micelles in dark conditions and activated by blue laser light (470 nm). Significant results in the reduction of the microorganism’s growth were found in cultures of C. albicans, even at very low concentrations of surfactants and Curcumin. Unlike the membrane permeabilization effect of the monomeric solution of Pluronics, reported in the case of tumoral cells, a limited permeabilization effect was found on the studied microorganisms. Encapsulation of the Curcumin in Pluronic P84 and P123 at very low, nontoxic concentrations for photosensitizer and drug-carrier, produced CURC-loaded micelles that prove to be effective in the light-activated inhibition of resistant species of Gram-positive bacteria and fungi.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Bjerk, Thiago R., Patricia Severino, Sona Jain, Conrado Marques, Amélia M. Silva, Tatiana Pashirova, and Eliana B. Souto. "Biosurfactants: Properties and Applications in Drug Delivery, Biotechnology and Ecotoxicology." Bioengineering 8, no. 8 (August 13, 2021): 115. http://dx.doi.org/10.3390/bioengineering8080115.

Повний текст джерела
Анотація:
Surfactants are amphiphilic compounds having hydrophilic and hydrophobic moieties in their structure. They can be of synthetic or of microbial origin, obtained respectively from chemical synthesis or from microorganisms’ activity. A new generation of ecofriendly surfactant molecules or biobased surfactants is increasingly growing, attributed to their versatility of applications. Surfactants can be used as drug delivery systems for a range of molecules given their capacity to create micelles which can promote the encapsulation of bioactives of pharmaceutical interest; besides, these assemblies can also show antimicrobial properties. The advantages of biosurfactants include their high biodegradability profile, low risk of toxicity, production from renewable sources, functionality under extreme pH and temperature conditions, and long-term physicochemical stability. The application potential of these types of polymers is related to their properties enabling them to be processed by emulsification, separation, solubilization, surface (interfacial) tension, and adsorption for the production of a range of drug delivery systems. Biosurfactants have been employed as a drug delivery system to improve the bioavailability of a good number of drugs that exhibit low aqueous solubility. The great potential of these molecules is related to their auto assembly and emulsification capacity. Biosurfactants produced from bacteria are of particular interest due to their antibacterial, antifungal, and antiviral properties with therapeutic and biomedical potential. In this review, we discuss recent advances and perspectives of biosurfactants with antimicrobial properties and how they can be used as structures to develop semisolid hydrogels for drug delivery, in environmental bioremediation, in biotechnology for the reduction of production costs and also their ecotoxicological impact as pesticide alternative.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Ghiman, Raluca, Madalina Nistor, Monica Focșan, Adela Pintea, Simion Aștilean, and Dumitrita Rugina. "Fluorescent Polyelectrolyte System to Track Anthocyanins Delivery inside Melanoma Cells." Nanomaterials 11, no. 3 (March 19, 2021): 782. http://dx.doi.org/10.3390/nano11030782.

Повний текст джерела
Анотація:
Over the past decades, there has been a growing interest in using natural molecules with therapeutic potential for biomedical applications. In this context, our aim is focused on anthocyanins (AN) as molecules with anticancer properties that could be used in melanoma local therapies. Due to their susceptibility to environmental changes, current study is based on the design and development of a fluorescent system for carrying and trafficking AN inside melanoma cells. The architectural structure of the proposed system CaCO3(PAH)@RBITC@AN reflects a spherical shape, 1080 nm diameter and a solid groundwork CaCO3(PAH), on which rhodamine B isothiocyanate (RBITC) fluorophore was firstly added; then, poly(acrylic acid) (PAA) polyelectrolytes and poly(allylamine hydrochloride) (PAH) were successfully deposited. Purified AN from chokeberries were entrapped between PAA layers (rate of 94.6%). In vitro tests confirmed that CaCO3(PAH)@RBITC@AN does not affect the proliferation of melanoma B16-F10 cells and proved that their internalization and trafficking can be followed after 24 h of treatment. Data presented here could contribute not only to the existing knowledge about the encapsulation technology of AN but also might bring relevant information for a novel formula to deliver therapeutic molecules or other bio-imaging agents directly into melanoma cells, a strategy that could positively improve tumor therapies.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Plati, Fotini, Rigini Papi, and Adamantini Paraskevopoulou. "Characterization of Oregano Essential Oil (Origanum vulgare L. subsp. hirtum) Particles Produced by the Novel Nano Spray Drying Technique." Foods 10, no. 12 (November 25, 2021): 2923. http://dx.doi.org/10.3390/foods10122923.

Повний текст джерела
Анотація:
Oregano essential oil (OEO), due to its wide variety of biological activities, could be a “green” alternative to chemical preservatives. On the other hand, the difficulties in its use or storage have turned researchers’ interest in encapsulation strategies as a way to face stability and handling issues. Fabrication of OEO-loaded particles, using nano spray drying technique (NSD) and whey protein isolate-maltodextrin mixtures (1:1, 1:3) as wall materials appears to be a novel and promising strategy. The obtained particles were characterized in terms of volatile composition, encapsulation efficiency, and physicochemical, molecular, morphological, and antibacterial properties. The results confirmed that encapsulation of OEO using NSD achieved high levels of powder recovery (>77%) and encapsulation efficiency (>98%) while assisting in the retention of the main bioactive compounds. The partial replacement of WPI by MD significantly affected particles’ physical properties. FTIR analyses revealed the possible structural stabilization of core and wall materials, while SEM verified the very fine size and spherical shape. Finally, antibacterial studies demonstrated their activity against Escherichia coli and Staphylococcus aureus, which is much stronger in comparison with that of pure OEO, proving the positive effect of NSD and particles’ potential in future food applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Perinelli, Diego Romano, Giovanni Filippo Palmieri, Marco Cespi, and Giulia Bonacucina. "Encapsulation of Flavours and Fragrances into Polymeric Capsules and Cyclodextrins Inclusion Complexes: An Update." Molecules 25, no. 24 (December 11, 2020): 5878. http://dx.doi.org/10.3390/molecules25245878.

Повний текст джерела
Анотація:
Flavours and fragrances are volatile compounds of large interest for different applications. Due to their high tendency of evaporation and, in most cases, poor chemical stability, these compounds need to be encapsulated for handling and industrial processing. Encapsulation, indeed, resulted in being effective at overcoming the main concerns related to volatile compound manipulation, and several industrial products contain flavours and fragrances in an encapsulated form for the final usage of customers. Although several organic or inorganic materials have been investigated for the production of coated micro- or nanosystems intended for the encapsulation of fragrances and flavours, polymeric coating, leading to the formation of micro- or nanocapsules with a core-shell architecture, as well as a molecular inclusion complexation with cyclodextrins, are still the most used. The present review aims to summarise the recent literature about the encapsulation of fragrances and flavours into polymeric micro- or nanocapsules or inclusion complexes with cyclodextrins, with a focus on methods for micro/nanoencapsulation and applications in the different technological fields, including the textile, cosmetic, food and paper industries.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Zeng, Wenhui, Calvin O. Nyapete, Alexander H. H. Benziger, Paul A. Jelliss, and Steven W. Buckner. "Encapsulation of Reactive Nanoparticles of Aluminum, Magnesium, Zinc, Titanium, or Boron within Polymers for Energetic Applications." Current Applied Polymer Science 3, no. 1 (January 9, 2019): 3–13. http://dx.doi.org/10.2174/2452271602666180917095629.

Повний текст джерела
Анотація:
Background: There is increasing academic and industrial interest in fabricating reactive metal and metalloid nanoparticles for a number of energetics applications. Objective: Because of inherent thermodynamic instability, the greatest challenge for producing such metal nanoparticles is to kinetically stabilize their high surface areas toward reactive atmospheric constituents. Such stabilization can effectively produce nanocomposite materials that retain their high energy content or other useful properties with a respectable shelf-life. The primary focus is to summarize methods of synthesis and characterization of these energetically valuable nanoparticles. Method and Results: Method and Results: A popular and convenient method to passivate and protect reactive metal nanoparticles is to either graft pre-assembled polymer molecules to the nanoparticle surface or use the reactive nanoparticle surface to initiate and propagate oligomer or polymer growth. Conclusion: Reactive nanoparticles composed of aluminum, magnesium, zinc, titanium, or boron may be effectively passivated, capped, and protected by a variety of organic polymers. Such treatment mitigates degradation due to atmospheric reaction, while retaining the unique properties associated with the metal-polymer nanocomposites.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Hunt, Lee E., Susan A. Bourne, and Mino R. Caira. "Inclusion of Hydroxycinnamic Acids in Methylated Cyclodextrins: Host-Guest Interactions and Effects on Guest Thermal Stability." Biomolecules 11, no. 1 (December 31, 2020): 45. http://dx.doi.org/10.3390/biom11010045.

Повний текст джерела
Анотація:
There is ongoing interest in exploiting the antioxidant activity and other medicinal properties of natural monophenolic/polyphenolic compounds, but their generally low aqueous solubility limits their applications. Numerous studies have been undertaken to solubilize such compounds via supramolecular derivatization with co-crystal formation with biocompatible coformer molecules and cyclodextrin (CD) complexation being two successful approaches. In this study, eight new crystalline products obtained by complexation between methylated cyclodextrins and the bioactive phenolic acids (ferulic, hydroferulic, caffeic, and p-coumaric acids) were investigated using thermal analysis (hot stage microscopy, thermogravimetry, differential scanning calorimetry) and X-ray diffraction. All of the complexes crystallized as ternary systems containing the host CD, a phenolic acid guest, and water. On heating each complex, the primary thermal events were dehydration and liberation of the respective phenolic acid component, the mass loss for the latter step enabling determination of the host-guest stoichiometry. Systematic examination of the X-ray crystal structures of the eight complexes enabled their classification according to the extent of inclusion of each guest molecule within the cavity of its respective CD molecule. This revealed three CD inclusion compounds with full guest encapsulation, three with partial guest inclusion, and two that belong to the rare class of ‘non-inclusion’ compounds.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Ahmad, Rahaf M., Yaser E. Greish, Hesham F. El-Maghraby, Loay Lubbad, Yahia Makableh, and Fayez T. Hammad. "Preparation and Characterization of Blank and Nerolidol-Loaded Chitosan–Alginate Nanoparticles." Nanomaterials 12, no. 7 (April 1, 2022): 1183. http://dx.doi.org/10.3390/nano12071183.

Повний текст джерела
Анотація:
Recently, there has been a growing interest in using natural products as treatment alternatives in several diseases. Nerolidol is a natural product which has been shown to have protective effects in several conditions. The low water solubility of nerolidol and many other natural products limits their delivery to the body. In this research, a drug delivery system composed of alginate and chitosan was fabricated and loaded with nerolidol to enhance its water solubility. The chitosan–alginate nanoparticles were fabricated using a new method including the tween 80 pre-gelation, followed by poly-ionic crosslinking between chitosan negative and alginate positive groups. Several characterization techniques were used to validate the fabricated nanoparticles. The molecular interactions between the chitosan, alginate, and nerolidol molecules were confirmed using the Fourier transform infrared spectroscopy. The ultraviolet spectroscopy showed an absorbance peak of the blank nanoparticles at 200 nm and for the pure nerolidol at 280 nm. Using both scanning and transmission electron microscopy, the nanoparticles were found to be spherical in shape with an average size of 12 nm and 35 nm for the blank chitosan–alginate nanoparticles and the nerolidol-loaded chitosan–alginate nanoparticles, respectively. The nanoparticles were also shown to have a loading capacity of 51.7% and an encapsulation efficiency of 87%. A controlled release profile of the loaded drug for up to 28 h using an in vitro model was also observed, which is more efficient than the free form of nerolidol. In conclusion, chitosan–alginate nanoparticles and nerolidol loaded chitosan–alginate nanoparticles were successfully fabricated and characterized to show potential encapsulation and delivery using an in vitro model.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Nowacka, Maria, Anna Kowalewska, and Dorota Kręgiel. "Farnesol-Containing Macromolecular Systems for Antibiofilm Strategies." Surfaces 3, no. 2 (May 21, 2020): 197–210. http://dx.doi.org/10.3390/surfaces3020015.

Повний текст джерела
Анотація:
Farnesol is a natural sesquiterpenoid and an interesting quorum-sensing molecule. Its insolubility in water is the biggest obstacle to its application for bacterial biofilm treatments since it compromises the bioavailability. Recently, an increasing interest in farnesol encapsulation or loading in polymeric materials may be noted due to the prolonged action of the active macromolecular systems. In this short review, we present an overview of methods leading to improved interactions between farnesol and microbial biofilms.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Ali, Fayaz, Imran Khan, Jianmin Chen, Kalsoom Akhtar, Esraa M. Bakhsh, and Sher Bahadar Khan. "Emerging Fabrication Strategies of Hydrogels and Its Applications." Gels 8, no. 4 (March 24, 2022): 205. http://dx.doi.org/10.3390/gels8040205.

Повний текст джерела
Анотація:
Recently, hydrogels have been investigated for the controlled release of bioactive molecules, such as for living cell encapsulation and matrices. Due to their remote controllability and quick response, hydrogels are widely used for various applications, including drug delivery. The rate and extent to which the drugs reach their targets are highly dependent on the carriers used in drug delivery systems; therefore the demand for biodegradable and intelligent carriers is progressively increasing. The biodegradable nature of hydrogel has created much interest for its use in drug delivery systems. The first part of this review focuses on emerging fabrication strategies of hydrogel, including physical and chemical cross-linking, as well as radiation cross-linking. The second part describes the applications of hydrogels in various fields, including drug delivery systems. In the end, an overview of the application of hydrogels prepared from several natural polymers in drug delivery is presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Jian, Min Kun, Wen Ping Chen, Miao Feng, and Hong Bing Zhan. "Controlled Release of Aspirin from SiO2-PEG Hybrid Coating on 316Lss Substrate for the Preparation of Drug Eluting Stents." Advanced Materials Research 287-290 (July 2011): 1956–59. http://dx.doi.org/10.4028/www.scientific.net/amr.287-290.1956.

Повний текст джерела
Анотація:
Despite drug eluting stents (DESs) have revolutionized the interventional cardiology over the past decade since the first DES became commercially available nearly a decade ago, burst release of loaded drugs and late thrombosis caused by polymer coatings of the stents are high concerned. In this situation, inorganic coatings, such as silica-based hybrid materials, have aroused researcher’s interest. In this study, aspirin (ASA) was incorporated into the sol-gel derived silica matrix with polyethylene glycol (PEG) as an organic modifier to improve the flexibility and extensibility of the inorganic matrices. We also used L-3,4-dihydroxyphenylalanine (L-DOPA) as a bio-adhesive reagent to enhance interface adhesion between the coating materials and the 316L stainless steel substrate. The results show that the introduction of D-LOPA can greatly improve the coating quality by enhancement of uniformity and adhesion. The loading ASA was slowly released from the coatings and burst release was effectively inhibited owing to the encapsulation of ASA molecules in the silica-PEG matrices.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Gadziński, Piotr, Anna Froelich, Barbara Jadach, Monika Wojtyłko, Adam Tatarek, Antoni Białek, Julia Krysztofiak, Michał Gackowski, Filip Otto, and Tomasz Osmałek. "Ionotropic Gelation and Chemical Crosslinking as Methods for Fabrication of Modified-Release Gellan Gum-Based Drug Delivery Systems." Pharmaceutics 15, no. 1 (December 28, 2022): 108. http://dx.doi.org/10.3390/pharmaceutics15010108.

Повний текст джерела
Анотація:
Hydrogels have a tridimensional structure. They have the ability to absorb a significant amount of water or other natural or simulated fluids that cause their swelling albeit without losing their structure. Their properties can be exploited for encapsulation and modified targeted drug release. Among the numerous natural polymers suitable for obtaining hydrogels, gellan gum is one gaining much interest. It is a gelling agent with many unique features, and furthermore, it is non-toxic, biocompatible, and biodegradable. Its ability to react with oppositely charged molecules results in the forming of structured physical materials (films, beads, hydrogels, nanoparticles). The properties of obtained hydrogels can be modified by chemical crosslinking, which improves the three-dimensional structure of the gellan hydrogel. In the current review, an overview of gellan gum hydrogels and their properties will be presented as well as the mechanisms of ionotropic gelation or chemical crosslinking. Methods of producing gellan hydrogels and their possible applications related to improved release, bioavailability, and therapeutic activity were described.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Beaumont, Pauline, Arnaud Courtois, Tristan Richard, Stéphanie Krisa та Chrystel Faure. "Encapsulation of ε-Viniferin into Multi-Lamellar Liposomes: Development of a Rapid, Easy and Cost-Efficient Separation Method to Determine the Encapsulation Efficiency". Pharmaceutics 13, № 4 (16 квітня 2021): 566. http://dx.doi.org/10.3390/pharmaceutics13040566.

Повний текст джерела
Анотація:
Onion-type multi-lamellar liposomes (MLLs), composed of a mixture of phosphatidylcholine and Tween 80, were analyzed for their ability to encapsulate ε-Viniferin (εVin), a resveratrol dimer. Their encapsulation efficiency (EE) was measured by UV-VIS spectroscopy using three different separation methods—ultracentrifugation, size exclusion chromatography, and a more original and advantageous one, based on adsorption filtration. The adsorption filtration method consists indeed of using syringe filters to retain the molecule of interest, and not the liposomes as usually performed. The process is rapid (less than 10 min), easy to handle, and inexpensive in terms of sample amount (around 2 mg of liposomes) and equipment (one syringe filter is required). Whatever the separation method, a similar EE value was determined, validating the proposed method. A total of 80% ± 4% of εVin was found to be encapsulated leading to a 6.1% payload, roughly twice those reported for resveratrol-loaded liposomes. Finally, the release kinetics of εVin from MLLs was followed for a 77 day period, demonstrating a slow release of the polyphenol.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

BenJemaa, Mariem, Fatma Zohra Rahali, Hanen Falleh, Raja Beji-Serairi, Wided Megdiche-Ksouri, Ibtissem Hamrouni, Majdi Hammami, et al. "Essential Oil Stabilisation by Response Surface Methodology (RSM): Nanoemulsion Formulation, Physicochemical, Microbiological, and Sensory Investigations." Molecules 27, no. 21 (October 28, 2022): 7330. http://dx.doi.org/10.3390/molecules27217330.

Повний текст джерела
Анотація:
This manuscript aimed to optimise the encapsulation of Thymus capitatus essential oil into nanoemulsion. Response Surface Methodology results were best fitted into polynomial models with regression coefficient values of more than 0.95. The optimal nanoemulsion showed nanometer-sized droplets (380 nm), a polydispersity index less than 0.5, and a suitable Zeta potential (−10.3 mV). Stability results showed that nanoemulsions stored at 4 °C were stable with the lowest d3,2, PolyDispersity Index (PDI), and pH (day 11). Significant ameliorations in the capacity to neutralise DPPH radical after the encapsulation of the antimicrobial efficacy of thyme essential oil were recorded. S. typhimurium growth inhibition generated by nanoencapsulated thyme essential oil was 17 times higher than by bulk essential oil. The sensory analysis highlighted that the encapsulation of thyme essential oil improved enriched milk’s sensory appreciation. Indeed, 20% of the total population attributed a score of 4 and 5 on the scale used for milk enriched with nanoemulsion. In comparison, only 11% attributed the same score to milk enriched with bulk essential oil. The novel nanometric delivery system presents significant interest for agroalimentary industries.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Laos, Roberto, and Steven Benner. "Fluorinated oil-surfactant mixtures with the density of water: Artificial cells for synthetic biology." PLOS ONE 17, no. 1 (January 20, 2022): e0252361. http://dx.doi.org/10.1371/journal.pone.0252361.

Повний текст джерела
Анотація:
There is a rising interest in biotechnology for the compartmentalization of biochemical reactions in water droplets. Several applications, such as the widely used digital PCR, seek to encapsulate a single molecule in a droplet to be amplified. Directed evolution, another technology with growing popularity, seeks to replicate what happens in nature by encapsulating a single gene and the protein encoded by this gene, linking genotype with phenotype. Compartmentalizing reactions in droplets also allows the experimentalist to run millions of different reactions in parallel. Compartmentalization requires a fluid that is immiscible with water and a surfactant to stabilize the droplets. While there are fluids and surfactants on the market that have been used to accomplish encapsulation, there are reported concerns with these. Span® 80, for example, a commonly used surfactant, has contaminants that interfere with various biochemical reactions. Similarly, synthetic fluids distributed by the cosmetic industry allow some researchers to produce experimental results that can be published, but then other researchers fail to reproduce some of these protocols due to the unreliable nature of these products, which are not manufactured with the intent of being used in biotechnology. The most reliable fluids, immiscible with water and suitable for biochemical reactions, are fluorinated fluids. Fluorinated compounds have the peculiar characteristic of being immiscible with water while at the same time not mixing with hydrophobic molecules. This peculiar characteristic has made fluorinated fluids attractive because it seems to be the basis of their being biologically inert. However, commercially available fluorinated fluids have densities between 1.4 to 1.6 g/mL. The higher-than-water density of fluorinated oils complicates handling of the droplets since these would float on the fluid since the water droplets would be less dense. This can cause aggregation and coalescence of the droplets. Here, we report the synthesis, characterization, and use of fluorinated polysiloxane oils that have densities similar to the one of water at room temperature, and when mixed with non-ionic fluorinated surfactants, can produce droplets encapsulating biochemical reactions. We show how droplets in these emulsions can host many biological processes, including PCR, DNA origami, rolling circle amplification (RCA), and Taqman® assays. Some of these use unnatural DNA built from an Artificially Expanded Genetic Information System (AEGIS) with six nucleotide "letters".
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Capin, Lucille, Nacira Abbassi, Maëlle Lachat, Marie Calteau, Cynthia Barratier, Ali Mojallal, Sandrine Bourgeois, and Céline Auxenfans. "Encapsulation of Adipose-Derived Mesenchymal Stem Cells in Calcium Alginate Maintains Clonogenicity and Enhances their Secretory Profile." International Journal of Molecular Sciences 21, no. 17 (August 31, 2020): 6316. http://dx.doi.org/10.3390/ijms21176316.

Повний текст джерела
Анотація:
Adipose-derived mesenchymal stem cells (ASCs) are well known for their secretory potential, which confers them useful properties in cell therapy. Nevertheless, this therapeutic potential is reduced after transplantation due to their short survival in the human body and their migration property. This study proposes a method to protect cells during and after injection by encapsulation in microparticles of calcium alginate. Besides, the consequences of encapsulation on ASC proliferation, pluripotential, and secretome were studied. Spherical particles with a mean diameter of 500 µm could be obtained in a reproducible manner with a viability of 70% after 16 days in vitro. Moreover, encapsulation did not alter the proliferative properties of ASCs upon return to culture nor their differentiation potential in adipocytes, chondrocytes, and osteocytes. Concerning their secretome, encapsulated ASCs consistently produced greater amounts of interleukin-6 (IL-6), interleukin-8 (IL-8), and vascular endothelial growth factor (VEGF) compared to monolayer cultures. Encapsulation therefore appears to enrich the secretome with transforming growth factor β1 (TGF-β1) and macrophage inflammatory protein-1β (MIP-1β) not detectable in monolayer cultures. Alginate microparticles seem sufficiently porous to allow diffusion of the cytokines of interest. With all these cytokines playing an important role in wound healing, it appears relevant to investigate the impact of using encapsulated ASCs on the wound healing process.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Malmstadt, Noah, Tae Joon Jeon, Michael Nash, Robert Purnell, and Jacob J. Schmidt. "New Approaches to Lipid Bilayer Fabrication: Microfluidic Solvent Extraction and Hydrogel Encapsulation." Advances in Science and Technology 53 (October 2006): 22–31. http://dx.doi.org/10.4028/www.scientific.net/ast.53.22.

Повний текст джерела
Анотація:
Membrane channel proteins play crucial roles in governing the transport of material and energy across every cellular membrane. Accordingly, they are the subjects of interest for science and medicine as well as major targets of drug discovery efforts. Recent work has also shown their potential as highly rapid and sensitive single molecule sensors. However, techniques conventionally used to measure the electrical transport through these proteins can be problematic to form and are extremely fragile, limiting the range and scope of possible studies. We have developed two new technologies which alleviate these shortcomings: in situ encapsulation of lipid membranes in hydrogels and automated microfluidic formation. The hydrogel encapsulated membranes are mechanically robust and long-lived as a result of the intimate contact between the hydrogel and the membrane, enabling measurements of single channel currents for a week or longer. The automated microfluidic formation apparatus enables the creation and manipulation of lipid membranes and the incorporation and measurement of channel proteins in these membranes through an entirely computer controlled process. We are working to apply these technologies toward DNA sequencing, drug discovery, and single molecule biophysics.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Bolhassani, Azam, and Alireza Milani. "Small Interfering RNAs and their Delivery Systems: A Novel Powerful Tool for the Potential Treatment of HIV Infections." Current Molecular Pharmacology 13, no. 3 (July 9, 2020): 173–81. http://dx.doi.org/10.2174/1874467212666191023120954.

Повний текст джерела
Анотація:
: Small interfering RNAs (siRNAs) have rapidly developed into biomedical research as a novel tool for the potential treatment of various human diseases. They are based on altered gene expression. In spite of the availability of highly active antiretroviral therapy (HAART), there is a specific interest in developing siRNAs as a therapeutic agent for human immunodeficiency virus (HIV) due to several problems including toxicity and drug resistance along with long term treatment. The successful use of siRNAs for therapeutic goals needs safe and effective delivery to specific cells and tissues. Indeed, the efficiency of gene silencing depends on the potency of the carrier used for siRNA delivery. The combination of siRNA and nano-carriers is a potent method to prevent the limitations of siRNA formulation. Three steps were involved in non-viral siRNA carriers such as the complex formation of siRNA with a cationic carrier, conjugation of siRNA with small molecules, and encapsulation of siRNA within nanoparticles. : In this mini-review, the designed siRNAs and their carriers are described against HIV-1 infections both in vitro and in vivo.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Solanki, Himanshu K., Dipak D. Pawar, Dushyant A. Shah, Vipul D. Prajapati, Girish K. Jani, Akil M. Mulla, and Prachi M. Thakar. "Development of Microencapsulation Delivery System for Long-Term Preservation of Probiotics as Biotherapeutics Agent." BioMed Research International 2013 (2013): 1–21. http://dx.doi.org/10.1155/2013/620719.

Повний текст джерела
Анотація:
The administration of probiotic bacteria for health benefit has rapidly expanded in recent years, with a global market worth $32.6 billion predicted by 2014. The oral administration of most of the probiotics results in the lack of ability to survive in a high proportion of the harsh conditions of acidity and bile concentration commonly encountered in the gastrointestinal tract of humans. Providing probiotic living cells with a physical barrier against adverse environmental conditions is therefore an approach currently receiving considerable interest. Probiotic encapsulation technology has the potential to protect microorganisms and to deliver them into the gut. However, there are still many challenges to overcome with respect to the microencapsulation process and the conditions prevailing in the gut. This review focuses mainly on the methodological approach of probiotic encapsulation including biomaterials selection and choice of appropriate technology in detailed manner.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Talarico, Luigi, Marco Consumi, Gemma Leone, Gabriella Tamasi, and Agnese Magnani. "Solid Lipid Nanoparticles Produced via a Coacervation Method as Promising Carriers for Controlled Release of Quercetin." Molecules 26, no. 9 (May 4, 2021): 2694. http://dx.doi.org/10.3390/molecules26092694.

Повний текст джерела
Анотація:
Quercetin is a poorly water-soluble flavonoid with many benefits to human health. Besides the natural food resources that may provide Quercetin, the interest in delivery systems that could enhance its bioavailability in the human body has seen growth in recent years. Promising delivery system candidates are represented by Solid Lipid Nanoparticles (SLNs) which are composed of well-tolerated compounds and provide a relatively high encapsulation efficiency and suitable controlled release. In this study, Quercetin-loaded and negatively charged Solid Lipid Nanoparticles were synthesized based on a coacervation method, using stearic acid as a core lipid and Arabic Gum as a stabilizer. Samples were qualitatively characterized by Dynamic light scattering (DLS), Zeta Potential, Surface infrared spectroscopy (FTIR-ATR), and Time of flight secondary ion mass spectrometry (ToF-SIMS). Encapsulation efficiency, drug release, and antioxidant effect against ABTS•+ were evaluated in vitro by UV–VIS spectrophotometry.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Kalinova, Radostina, and Ivaylo Dimitrov. "Functional Polyion Complex Micelles for Potential Targeted Hydrophobic Drug Delivery." Molecules 27, no. 7 (March 28, 2022): 2178. http://dx.doi.org/10.3390/molecules27072178.

Повний текст джерела
Анотація:
Polyion complex (PIC) micelles have gained an increasing interest, mainly as promising nano-vehicles for the delivery of various hydrophilic charged (macro)molecules such as DNA or drugs to the body. The aim of the present study is to construct novel functional PIC micelles bearing cell targeting ligands on the surface and to evaluate the possibility of a hydrophobic drug encapsulation. Initially, a pair of functional oppositely charged peptide-based hybrid diblock copolymers were synthesized and characterized. The copolymers spontaneously co-assembled in water into nanosized PIC micelles comprising a core of a polyelectrolyte complex between poly(L-aspartic acid) and poly(L-lysine) and a biocompatible mixed shell of disaccharide-modified poly(ethylene glycol) and poly(2-hydroxyethyl methacrylate). Depending on the molar ratio between the oppositely charged groups, PIC micelles varying in surface charge were obtained and loaded with the natural hydrophobic drug curcumin. PIC micelles’ drug loading efficiency, in vitro drug release profiles and antioxidant activity were evaluated. The preliminary results indicate that PIC micelles can be successfully used as carriers of hydrophobic drugs, thus expanding their potential application in nanomedicine.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Saouane, Sofiane, Wolfgang Morgenroth, Hanns-Peter Liermann, Carsten Paulmann та Francesca Fabbiani. "The impact of pressure on β-Cyclodextrin·acetaminophen inclusion complexes". Acta Crystallographica Section A Foundations and Advances 70, a1 (5 серпня 2014): C264. http://dx.doi.org/10.1107/s2053273314097356.

Повний текст джерела
Анотація:
Cyclodextrins (CDs) have attracted considerable interest as model systems in supramolecular host-guest chemistry. They are described as hollow truncated cones with a hydrophilic outer surface and a nonpolar inner cavity suitable for small molecules' encapsulation.[1] By virtue of their character, CDs are used as excipients to improve the aqueous solubility of active pharmaceutical ingredients (APIs). High-pressure crystallisation techniques have been established as a suitable tool for exploring the phenomenon of polymorphism and solvate formation of pharmaceutical compounds throughout numerous examples reported in the literature.[2] Thus, exploring the inclusion-complex formation and the polymorphic behaviour of CDs with APIs at high pressure would be an interesting extension of the technique. The present work describes the attempt of an in-situ crystallisation of β-CD·acetaminophen inclusion complex and compression studies of the known β-CD·acetaminophen complex[3] in different crystallisation media at pressures up to 1.0 GPa. A new high-pressure crystal form observed at 0.8 GPa as well as unexpected results are presented herein. The crystals have been characterised by means of polarised optical microscopy, Raman spectroscopy and single-crystal X-ray diffraction using both home and synchrotron sources.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Heade, Joanne, Robert Kent, Sinead B. Bleiel, and David J. Brayden. "Entrapment of Hydrophilic and Hydrophobic Molecules in Beads Prepared from Isolated Denatured Whey Protein." Pharmaceutics 13, no. 7 (July 1, 2021): 1001. http://dx.doi.org/10.3390/pharmaceutics13071001.

Повний текст джерела
Анотація:
The oral route of administration is by far the most convenient route, especially in the treatment of chronic conditions. However, many therapeutics present formulation difficulties which make them unsuitable for oral delivery. Recently, we synthesized a denatured whey protein isolate (dWPI) bead entrapped with insulin. Our present goal was to assess the suitability of this delivery system to the delivery of other potential molecules, both hydrophilic and hydrophobic. Beads of 1.2–1.5 mm in diameter were entrapped with four payloads representing a range of solubilities. The water-soluble payloads were sodium fluorescein (SF) and FITC dextran 4000 Da (FD4), while the hydrophobic ones were Fast Green and curcumin. Encapsulation efficiency (EE) was 73%, 84%, 70%, and 83% for SF, FD4, Fast Green, and curcumin-loaded beads, respectively. The corresponding loading capacity for each bead was 0.07%, 1.1%, 0.75%, and 1.1%, respectively. Each payload produced different release profiles in simulated gastric fluid (SGF) and simulated intestinal fluids (SIF). SF released steadily in both SGF and SIF. FD4 and curcumin release was not substantial in any buffers, while Fast Green release was low in SGF and high in SIF. The differences in release behaviour were likely due to the varying properties of the payloads. The effect of proteolysis on beads suggested that enzymatic degradation of the whey bead may promote payload release. The beads swelled rapidly in SGF compared to SIF, which likely contributed to the release from the beads, which was largely governed by solvent diffusion and polymer relaxation. Our results offer a systematic examination of the behaviour of hydrophilic and hydrophobic payloads in a dWPI delivery system. These beads may be further designed to orally deliver poorly permeable macromolecules and poorly soluble small molecules of pharmaceutical interest.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Correa, Rodolpho Fagundes, Giovana Colucci, Noureddine Halla, João Alves Pinto, Arantzazu Santamaria-Echart, Silvia Priscila Blanco, Isabel Patrícia Fernandes, and Maria Filomena Barreiro. "Development of Chitosan Microspheres through a Green Dual Crosslinking Strategy Based on Tripolyphosphate and Vanillin." Molecules 26, no. 8 (April 16, 2021): 2325. http://dx.doi.org/10.3390/molecules26082325.

Повний текст джерела
Анотація:
Microencapsulation procedures have recently focused attention on designing novel microspheres via green synthesis strategies. The use of chitosan (CS) as an encapsulating material has increased interest due to its unique bioactive properties and the various crosslinking possibilities offered by their functional groups. The consolidation of the microspheres by physical crosslinking using sodium tripolyphosphate (TPP) combined with chemical crosslinking using vanillin (VA) open new opportunities in the framework of green dual crosslinking strategies. The developed strategy, a straightforward technique based on an aqueous medium avoiding complex separation/washing steps, offers advantages over the processes based on VA, mostly using water-in-oil emulsion approaches. Thus, in this work, the combination of TPP crosslinking (3, 5, and 10 wt.%) via spray-coagulation technique with two VA crosslinking methods (in situ and post-treatment using 1 wt.% VA) were employed in the preparation of microspheres. The microspheres were characterized concerning morphology, particle size, physicochemical properties, thermal stability, and swelling behavior. Results revealed that the combination of 5 wt.% TPP with in situ VA crosslinking led to microspheres with promising properties, being an attractive alternative for natural bioactives encapsulation due to the green connotations associated with the process.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Coutinho, Maria Francisca, Juliana Inês Santos, Liliana S. Mendonça, Liliana Matos, Maria João Prata, Amália S. Jurado, Maria C. Pedroso de Lima, and Sandra Alves. "Lysosomal Storage Disease-Associated Neuropathy: Targeting Stable Nucleic Acid Lipid Particle (SNALP)-Formulated siRNAs to the Brain as a Therapeutic Approach." International Journal of Molecular Sciences 21, no. 16 (August 10, 2020): 5732. http://dx.doi.org/10.3390/ijms21165732.

Повний текст джерела
Анотація:
More than two thirds of Lysosomal Storage Diseases (LSDs) present central nervous system involvement. Nevertheless, only one of the currently approved therapies has an impact on neuropathology. Therefore, alternative approaches are under development, either addressing the underlying enzymatic defect or its downstream consequences. Also under study is the possibility to block substrate accumulation upstream, by promoting a decrease of its synthesis. This concept is known as substrate reduction therapy and may be triggered by several molecules, such as small interfering RNAs (siRNAs). siRNAs promote RNA interference, a naturally occurring sequence-specific post-transcriptional gene-silencing mechanism, and may target virtually any gene of interest, inhibiting its expression. Still, naked siRNAs have limited cellular uptake, low biological stability, and unfavorable pharmacokinetics. Thus, their translation into clinics requires proper delivery methods. One promising platform is a special class of liposomes called stable nucleic acid lipid particles (SNALPs), which are characterized by high cargo encapsulation efficiency and may be engineered to promote targeted delivery to specific receptors. Here, we review the concept of SNALPs, presenting a series of examples on their efficacy as siRNA nanodelivery systems. By doing so, we hope to unveil the therapeutic potential of these nanosystems for targeted brain delivery of siRNAs in LSDs.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Pilipenko, Iuliia, Olga Korovkina, Nina Gubina, Viktoria Ekimova, Anastasia Ishutinova, Evgenia Korzhikova-Vlakh, Tatiana Tennikova, and Viktor Korzhikov-Vlakh. "Random Copolymers of Lysine and Isoleucine for Efficient mRNA Delivery." International Journal of Molecular Sciences 23, no. 10 (May 11, 2022): 5363. http://dx.doi.org/10.3390/ijms23105363.

Повний текст джерела
Анотація:
Messenger RNA (mRNA) is currently of great interest as a new category of therapeutic agent, which could be used for prevention or treatment of various diseases. For this mRNA requires effective delivery systems that will protect it from degradation, as well as allow cellular uptake and mRNA release. Random poly(lysine-co-isoleucine) polypeptides were synthesized and investigated as possible carriers for mRNA delivery. The polypeptides obtained under lysine:isoleucine monomer ratio equal to 80/20 were shown to give polyplexes with smaller size, positive ζ-potential and more than 90% encapsulation efficacy. The phase inversion method was proposed as best way for encapsulation of mRNA into polyplexes, which are based on obtained amphiphilic copolymers. These copolymers showed efficacy in protection of bound mRNA towards ribonuclease and lower toxicity as compared to lysine homopolymer. The poly(lysine-co-isoleucine) polypeptides showed greater than poly(ethyleneimine) efficacy as vectors for transfection of cells with green fluorescent protein and firefly luciferase encoding mRNAs. This allows us to consider obtained copolymers as promising candidates for mRNA delivery applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Tan, Kei-Xian, Ling-Ling Evelyn Ng, and Say Chye Joachim Loo. "Formulation Development of a Food-Graded Curcumin-Loaded Medium Chain Triglycerides-Encapsulated Kappa Carrageenan (CUR-MCT-KC) Gel Bead Based Oral Delivery Formulation." Materials 14, no. 11 (May 24, 2021): 2783. http://dx.doi.org/10.3390/ma14112783.

Повний текст джерела
Анотація:
In recent years, curcumin has been a major research endeavor in food and biopharmaceutical industries owing to its miscellaneous health benefits. There is an increasing amount of research ongoing in the development of an ideal curcumin delivery system to resolve its limitations and further enhance its solubility, bioavailability and bioactivity. The emergence of food-graded materials and natural polymers has elicited new research interests into enhanced pharmaceutical delivery due to their unique properties as delivery carriers. The current study is to develop a natural and food-graded drug carrier with food-derived MCT oil and a seaweed-extracted polymer called k-carrageenan for oral delivery of curcumin with improved solubility, high gastric resistance, and high encapsulation of curcumin. The application of k-carrageenan as a structuring agent that gelatinizes o/w emulsion is rarely reported and there is so far no MCT-KC system established for the delivery of hydrophobic/lipophilic molecules. This article reports the synthesis and a series of in vitro bio-physicochemical studies to examine the performance of CUR-MCT-KC as an oral delivery system. The solubility of CUR was increased significantly using MCT with a good encapsulation efficiency of 73.98 ± 1.57% and a loading capacity of 1.32 ± 0.03 mg CUR/mL MCT. CUR was successfully loaded in MCT-KC, which was confirmed using FTIR and SEM with good storage and thermal stability. Dissolution study indicated that the solubility of CUR was enhanced two-fold using heated MCT oil as compared to naked or unformulated CUR. In vitro release study revealed that encapsulated CUR was protected from premature burst under simulated gastric environment and released drastically in simulated intestinal condition. The CUR release was active at intestinal pH with the cumulative release of >90% CUR after 5 h incubation, which is the desired outcome for CUR absorption under human intestinal conditions. A similar release profile was also obtained when CUR was replaced with beta-carotene molecules. Hence, the reported findings demonstrate the potencies of MCT-KC as a promising delivery carrier for hydrophobic candidates such as CUR.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Pascu, Sofia I., Rory L. Arrowsmith, Simon R. Bayly, Simon Brayshaw, and Zhiyuan Hu. "Towards nanomedicines: design protocols to assemble, visualize and test carbon nanotube probes for multi-modality biomedical imaging." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, no. 1924 (August 13, 2010): 3683–712. http://dx.doi.org/10.1098/rsta.2010.0081.

Повний текст джерела
Анотація:
Nanomedicine is an interdisciplinary field, still in its infancy, where an accurate scientific assessment of potential risks and benefits is urgently needed, as is the engagement of end users and the public in this facet of the nanotechnology debate. There is increasing interest in improving our understanding of the interactions between nanomaterials and living systems, with regard to both the underlying chemistry and the physics of effects on the nanoscale. Ultimately, such knowledge promises new vistas for designing the ‘smart’ medicines of the future, of which targeted personalized drugs are the holy grail. Imaging and therapeutic components, including metallic radioisotopes, semiconductor quantum dots and magnetic materials, may be used to construct ‘nanocarriers’ (by encapsulation or conjugation) by rapid and simple (covalent and supramolecular) chemistry. The biomedical functions of the resulting materials are as yet largely unexplored. Encapsulation in nanocarriers could achieve delivery of the reagents (imaging and therapeutic drugs) to the sites of action in the body, while minimizing systemic toxicity and enzymatic degradation. These functional systems have the potential to become a general solution in drug delivery. Here we review recent developments concerning the applications of nanoparticles, including carbon nanotubes, as synthetic scaffolds for designing nanomedicines. This article will also focus on how understanding and design at the molecular level could help interdisciplinary teams develop research towards new diagnostics and therapeutics both in the short and the long term.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Fernández-Peña, Laura, Boutaina Z. El Mojahid, Eduardo Guzmán, Francisco Ortega, and Ramón G. Rubio. "Performance of Oleic Acid and Soybean Oil in the Preparation of Oil-in-Water Microemulsions for Encapsulating a Highly Hydrophobic Molecule." Colloids and Interfaces 5, no. 4 (November 22, 2021): 50. http://dx.doi.org/10.3390/colloids5040050.

Повний текст джерела
Анотація:
This work analyzes the dispersion of a highly hydrophobic molecule, (9Z)-N-(1,3-dihydroxyoctadecan-2-yl)octadec-9-enamide (ceramide-like molecule), with cosmetic and pharmaceutical interest, by exploiting oil-in-water microemulsions. Two different oils, oleic acid and soybean oil, were tested as an oil phase while mixtures of laureth-5-carboxylic acid (Akypo) and 2-propanol were used for the stabilization of the dispersions. This allowed us to obtain stable aqueous-based formulations with a relatively reduced content of oily phase (around 3% w/w), that may enhance the bioavailability of this molecule by its solubilization in nanometric oil droplets (with a size range of 30–80 nm), that allow the incorporation of a ceramide-like molecule of up to 3% w/w, to remain stable for more than a year. The nanometric size of the droplet containing the active ingredient and the stability of the formulations provide the basis for evaluating the efficiency of microemulsions in preparing formulations to enhance the distribution and availability of ceramide-like molecules, helping to reach targets in cosmetic and pharmaceutical formulations.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Adrian, Edyta, Dušana Treľová, Elena Filová, Marta Kumorek, Volodymyr Lobaz, Rafal Poreba, Olga Janoušková, Ognen Pop-Georgievski, Igor Lacík, and Dana Kubies. "Complexation of CXCL12, FGF-2 and VEGF with Heparin Modulates the Protein Release from Alginate Microbeads." International Journal of Molecular Sciences 22, no. 21 (October 28, 2021): 11666. http://dx.doi.org/10.3390/ijms222111666.

Повний текст джерела
Анотація:
Long-term delivery of growth factors and immunomodulatory agents is highly required to support the integrity of tissue in engineering constructs, e.g., formation of vasculature, and to minimize immune response in a recipient. However, for proteins with a net positive charge at the physiological pH, controlled delivery from negatively charged alginate (Alg) platforms is challenging due to electrostatic interactions that can hamper the protein release. In order to regulate such interactions between proteins and the Alg matrix, we propose to complex proteins of interest in this study - CXCL12, FGF-2, VEGF - with polyanionic heparin prior to their encapsulation into Alg microbeads of high content of α-L-guluronic acid units (high-G). This strategy effectively reduced protein interactions with Alg (as shown by model ITC and SPR experiments) and, depending on the protein type, afforded control over the protein release for at least one month. The released proteins retained their in vitro bioactivity: CXCL12 stimulated the migration of Jurkat cells, and FGF-2 and VEGF induced proliferation and maturation of HUVECs. The presence of heparin also intensified protein biological efficiency. The proposed approach for encapsulation of proteins with a positive net charge into high-G Alg hydrogels is promising for controlled long-term protein delivery under in vivo conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Czarnomysy, Robert, Dominika Radomska, Olga Klaudia Szewczyk, Piotr Roszczenko, and Krzysztof Bielawski. "Platinum and Palladium Complexes as Promising Sources for Antitumor Treatments." International Journal of Molecular Sciences 22, no. 15 (July 31, 2021): 8271. http://dx.doi.org/10.3390/ijms22158271.

Повний текст джерела
Анотація:
There is a need for new, safer, and more effective agents to treat cancer. Cytostatics that have transition metals at their core have attracted renewed interest from scientists. Researchers are attempting to use chemotherapeutics, such as cisplatin, in combination therapy (i.e., in order to enhance their effectiveness). Moreover, studies are being carried out to modify molecules, by developing them into multinuclear structures, linking different compounds to commonly used drugs, or encapsulating them in nanoparticles to improve pharmacokinetic parameters, and increase the selectivity of these drugs. Therefore, we attempted to organize recent drug findings that contain palladium and platinum atoms in their structures.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії