Добірка наукової літератури з теми "Emergent hydrodynamics"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Emergent hydrodynamics".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Emergent hydrodynamics"
Joshi, M. K., F. Kranzl, A. Schuckert, I. Lovas, C. Maier, R. Blatt, M. Knap, and C. F. Roos. "Observing emergent hydrodynamics in a long-range quantum magnet." Science 376, no. 6594 (May 13, 2022): 720–24. http://dx.doi.org/10.1126/science.abk2400.
Повний текст джерелаWang, Yuting, Huilan Zhang, Pingping Yang, and Yunqi Wang. "Experimental Study of Overland Flow through Rigid Emergent Vegetation with Different Densities and Location Arrangements." Water 10, no. 11 (November 12, 2018): 1638. http://dx.doi.org/10.3390/w10111638.
Повний текст джерелаManna, Raj Kumar, and P. B. Sunil Kumar. "Emergent topological phenomena in active polymeric fluids." Soft Matter 15, no. 3 (2019): 477–86. http://dx.doi.org/10.1039/c8sm01981a.
Повний текст джерелаZhang, Bokai, Premkumar Leishangthem, Yang Ding, and Xinliang Xu. "An effective and efficient model of the near-field hydrodynamic interactions for active suspensions of bacteria." Proceedings of the National Academy of Sciences 118, no. 28 (July 6, 2021): e2100145118. http://dx.doi.org/10.1073/pnas.2100145118.
Повний текст джерелаSáenz, Pedro J., Tudor Cristea-Platon, and John W. M. Bush. "A hydrodynamic analog of Friedel oscillations." Science Advances 6, no. 20 (May 2020): eaay9234. http://dx.doi.org/10.1126/sciadv.aay9234.
Повний текст джерелаLAUGHLIN, R. B. "EMERGENT RELATIVITY." International Journal of Modern Physics A 18, no. 06 (March 10, 2003): 831–53. http://dx.doi.org/10.1142/s0217751x03014071.
Повний текст джерелаZu, C., F. Machado, B. Ye, S. Choi, B. Kobrin, T. Mittiga, S. Hsieh, et al. "Emergent hydrodynamics in a strongly interacting dipolar spin ensemble." Nature 597, no. 7874 (September 1, 2021): 45–50. http://dx.doi.org/10.1038/s41586-021-03763-1.
Повний текст джерелаMaji, Soumen, Prashanth Hanmaiahgari, Ram Balachandar, Jaan Pu, Ana Ricardo, and Rui Ferreira. "A Review on Hydrodynamics of Free Surface Flows in Emergent Vegetated Channels." Water 12, no. 4 (April 24, 2020): 1218. http://dx.doi.org/10.3390/w12041218.
Повний текст джерелаCornacchia, Loreta, Geraldene Wharton, Grieg Davies, Robert C. Grabowski, Stijn Temmerman, Daphne van der Wal, Tjeerd J. Bouma, and Johan van de Koppel. "Self-organization of river vegetation leads to emergent buffering of river flows and water levels." Proceedings of the Royal Society B: Biological Sciences 287, no. 1931 (July 15, 2020): 20201147. http://dx.doi.org/10.1098/rspb.2020.1147.
Повний текст джерелаSuh, In-Saeng, Grant J. Mathews, J. Reese Haywood, and N. Q. Lan. "Analysis of the Conformally Flat Approximation for Binary Neutron Star Initial Conditions." Advances in Astronomy 2017 (2017): 1–12. http://dx.doi.org/10.1155/2017/6127031.
Повний текст джерелаДисертації з теми "Emergent hydrodynamics"
Liu, David. "Flow through Rigid Vegetation Hydrodynamics." Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/35068.
Повний текст джерелаMaster of Science
Maji, S., P. R. Hanmaiahgari, R. Balachandar, Jaan H. Pu, A. M. Ricardo, and R. M. L. Ferreira. "A review on hydrodynamics of free surface flows in emergent vegetated channels." MDPI, 2020. http://hdl.handle.net/10454/17820.
Повний текст джерелаThis review paper addresses the structure of the mean flow and key turbulence quantities in free-surface flows with emergent vegetation. Emergent vegetation in open channel flow affects turbulence, flow patterns, flow resistance, sediment transport, and morphological changes. The last 15 years have witnessed significant advances in field, laboratory, and numerical investigations of turbulent flows within reaches of different types of emergent vegetation, such as rigid stems, flexible stems, with foliage or without foliage, and combinations of these. The influence of stem diameter, volume fraction, frontal area of stems, staggered and non-staggered arrangements of stems, and arrangement of stems in patches on mean flow and turbulence has been quantified in different research contexts using different instrumentation and numerical strategies. In this paper, a summary of key findings on emergent vegetation flows is offered, with particular emphasis on: (1) vertical structure of flow field, (2) velocity distribution, 2nd order moments, and distribution of turbulent kinetic energy (TKE) in horizontal plane, (3) horizontal structures which includes wake and shear flows and, (4) drag effect of emergent vegetation on the flow. It can be concluded that the drag coefficient of an emergent vegetation patch is proportional to the solid volume fraction and average drag of an individual vegetation stem is a linear function of the stem Reynolds number. The distribution of TKE in a horizontal plane demonstrates that the production of TKE is mostly associated with vortex shedding from individual stems. Production and dissipation of TKE are not in equilibrium, resulting in strong fluxes of TKE directed outward the near wake of each stem. In addition to Kelvin–Helmholtz and von Kármán vortices, the ejections and sweeps have profound influence on sediment dynamics in the emergent vegetated flows.
El, Allaoui Nazha. "Modified hydrodynamics in fragmented canopies exposed to oscillatory flows." Doctoral thesis, Universitat de Girona, 2016. http://hdl.handle.net/10803/403066.
Повний текст джерелаL'objectiu general d'aquesta tesi doctoral ha estat contribuir a entendre la modificació de la hidrodinàmica en praderies aquàtiques fragmentades. En aquesta tesi doctoral s’ha estudiat l'efecte de diferents paràmetres com ara la densitat de la praderia, l'alçada de la planta i la flexibilitat i l'arquitectura dels blancs sense vegetació. S'han discutit les conseqüències ecològiques dels resultats. Els resultats assenyalen que els fluxos de partícules biològiques, nutrients i sediments en praderies fragmentades són modificats en comparació amb els que s’obtindrien en praderies no fragmentades, fet que modifica la seva funció ecològica. Per tant, les praderies poden optimitzar les seves característiques estructurals per moderar l'impacte de la fragmentació. Aquesta tesi mostra que la densitat de plantes i flexibilitat interactua amb les dimensions del blanc i el grau de fragmentació per facilitar el refugi d'una manera no prevista anteriorment
Alarcón, Oseguera Francisco. "Computational study of the emergent behavior of micro-swimmer suspensions." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/394065.
Повний текст джерелаLos sistemas activos se definen como materiales fuera del equilibrio termodinámico compuestos por muchas unidades interactuantes que individualmente consumen energía y colectivamente generan movimiento o estreses mecánicos. Ejemplos se pueden encontrar en un enorme rango de escalas de longitud, desde el mundo biológico hasta artificial, incluyendo organismos unicelulares, tejidos y organismos pluricelulares, grupos de animales, coloides auto-propulsados y nano-nadadores artificiales. Actualmente se están desarrollando experimentos en este campo a un ritmo muy veloz, en consecuencia son necesarias nuevas ideas teóricas para traer unidad al campo de estudio e identificar comportamientos “universales” en estos sistemas propulsados internamente. El objetivo de esta tesis es el estudiar mediante simulaciones numéricas, el comportamiento colectivo de un modelo de micro-nadadores. En particular, el modelo de squirmers, donde el movimiento del fluido es axi-simétrico. Existen estructuras coherentes que emergen de estos sistemas así que, el entender si las estructuras coherentes son generadas por la firma hidrodinámica intrínseca de los squirmers individuales o por un efecto de tamaño finito se vuelve algo de primordial importancia. Nosotros también estudiamos la influencia que tiene la geometría en la aparición de estructuras coherentes, la interacción directa entre las partículas, la concentración, etc.
Cecile, Mario Guillaume. "Exploring quantum dynamics : from hydrodynamics to measurement induced phase transition." Electronic Thesis or Diss., CY Cergy Paris Université, 2024. http://www.theses.fr/2024CYUN1298.
Повний текст джерелаIn this thesis, we take a deep dive into the world of quantum dynamics, aiming to understand the complex behaviours that arise in quantum many-body systems and the emergence of hydrodynamics behaviour. Throughout the chapters, we simplify key concepts essential for understanding how quantum systems operate. Chapter 1 presents an overview of fundamental concepts on emergent phenomena in quantum integrable systems and generalized hydrodynamics, which is essential to understand the complexities of quantum dynamics. Additionally, we offer an in-depth introduction to Matrix Product States, which are a valuable tool for efficiently simulating quantum dynamics in 1D systems. In Chapter 2, we develop a model to describe the relaxation of spin helices using the framework of generalized hydrodynamics with diffusive corrections and a modified version of the local density approximation. Our analysis demonstrates that this hydrodynamic framework accurately reproduces the experimentally observed relaxation dynamics. Additionally, it predicts the long-term relaxation behaviour, which lies beyond the experimentally accessible time scales. Our theoretical framework elucidates the occurrence of temporal regimes exhibiting seemingly anomalous diffusion and highlights the asymmetry between positive and negative anisotropy regimes at short and intermediate time intervals. Chapter 3 delves into the intriguing phenomena observed in the easy-axis regime |Δ| ≥ 1, where initial states with zero magnetic fluctuations instead locally relax to an exotic equilibrium states that we will refer to as squeezed generalized Gibbs ensemble. At the isotropic point, interestingly, we found an unusual behaviour which explicitly depend on the initial state. Namely, for the Néel state, we found extensive fluctuations and a super-diffusive dynamical exponent compatible with Kardar-Parisi-Zhang universality. For another non-fluctuating initial state, e.g., product state of spin singlets, we instead found diffusive scaling. In Chapter 4, we investigate the time evolution of an extended quantum spin chains under continuous monitoring using matrix product states with a fixed bond dimension, employing the Time-Dependent Variational Principle algorithm. This algorithm yields an effective classical nonlinear evolution with a conserved charge, offering an approximation to the true quantum evolution with some error. We find that the error rate exhibits a phase transition as the strength of the monitoring varies, and this transition can be accurately identified through scaling analysis with relatively small bond dimensions. Our approach enables efficient numerical determination of critical parameters associated with measurement-induced phase transitions in many-body quantum systems. Furthermore, in the presence of U(1) global spin charge, we observe a distinct charge-sharpening transition, which occurs independently of the entanglement transition. This transition is identified by analysing the charge fluctuations within a local subset of the system over extended time periods. Our findings highlight the effectiveness of TDVP time evolution as a means to detect measurement-induced phase transitions in systems of varying dimensions and sizes.Finally, the last chapter provides a conclusive summary of the findings and discusses potential avenues for future research
Feriani, Luigi. "Understanding the collective dynamics of motile cilia in human airways." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/288418.
Повний текст джерелаJerbi, Zouhaier. "Contribution à l'étude de l'étalement de matériaux fondus avec solidification." Grenoble INPG, 1996. http://www.theses.fr/1996INPG0216.
Повний текст джерелаCheung, Chun Ming Mark. "Magnetic flux emergence in the solar photosphere." Doctoral thesis, 2006. http://hdl.handle.net/11858/00-1735-0000-0006-B597-A.
Повний текст джерелаКниги з теми "Emergent hydrodynamics"
M, Soward A., ed. Fluid dynamics and dynamos in astrophysics and geophysics: Reviews emerging from the Durham Symposium on Astrophysical Fluid Mechanics, July 29 to August 8, 2002. Boca Raton: CRC Press, 2005.
Знайти повний текст джерелаEmerging Techniques in Drag Reduction. Wiley, 1996.
Знайти повний текст джерелаMeshell, Lida. Hydrodynamic Cavitation : an Emerging Technology in a Chemical Process Industry: Characteristics of Fluid Flow. Independently Published, 2021.
Знайти повний текст джерелаЧастини книг з теми "Emergent hydrodynamics"
Maji, Soumen, Susovan Pal, Prashanth Reddy Hanmaiahgari, and Vikas Garg. "Turbulent Hydrodynamics Along Lateral Direction in and Around Emergent and Sparse Vegetated Open-Channel Flow." In Water Science and Technology Library, 455–67. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55125-8_39.
Повний текст джерелаPal, Debasish, Bapon Halder, and Prashanth R. Hanmaiahgari. "Comparison of Turbulent Hydrodynamics with and without Emergent and Sparse Vegetation Patch in Free Surface Flow." In Water Science and Technology Library, 205–19. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55125-8_18.
Повний текст джерелаMahanti, Naveen Kumar, Subir Kumar Chakraborty, S. Shiva Shankar, and Ajay Yadav. "Hydrodynamic Cavitation Technology for Food Processing and Preservation." In Emerging Thermal and Nonthermal Technologies in Food Processing, 199–224. Includes bibliographical references and index.: Apple Academic Press, 2020. http://dx.doi.org/10.1201/9780429297335-8.
Повний текст джерелаClaus, James R. "Application of hydrodynamic shock wave processing associated with meat and processed meat products." In Emerging Technologies in Meat Processing, 171–210. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118350676.ch7.
Повний текст джерелаRios, S., A. Vianada Fonseca, L. Ribeiro, C. Cengiz, and S. J. M. van Eekelen. "Centrifuge model tests to evaluate the stability of embankments in hydrodynamic conditions." In Geotechnical Engineering Challenges to Meet Current and Emerging Needs of Society, 1920–22. London: CRC Press, 2024. http://dx.doi.org/10.1201/9781003431749-360.
Повний текст джерелаSingh, Daljeet, Erkki Vihriälä, Mariella Särestöniemi, and Teemu Myllylä. "Microwave Technique Based Noninvasive Monitoring of Intracranial Pressure Using Realistic Phantom Models." In Communications in Computer and Information Science, 413–25. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-59091-7_27.
Повний текст джерелаBellona, Christopher L., and Jörg E. Drewes. "Comparing the Phenomenological and Hydrodynamic Modeling Approaches for Describing the Rejection of Emerging Nonionic Organic Contaminants by a Nanofiltration Membrane." In ACS Symposium Series, 397–420. Washington, DC: American Chemical Society, 2010. http://dx.doi.org/10.1021/bk-2010-1048.ch020.
Повний текст джерелаCamarillo E., R. M., J. A. Padilla M., J. A. García M., C. A. Ocón D., Ch Reyes C., J. M. Camarillo E., and R. Rodríguez R. "Auto-Calibration and Micro-Flow Injection Procedure Based on Automated Hydrodynamic System for Spectrophotometric Determination of Cobalt." In Emerging Challenges for Experimental Mechanics in Energy and Environmental Applications, Proceedings of the 5th International Symposium on Experimental Mechanics and 9th Symposium on Optics in Industry (ISEM-SOI), 2015, 255–63. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28513-9_36.
Повний текст джерелаRanjan, P., P. Fischer, and R. O. Tinoco. "Investigation of hydrodynamics and sediment transport within emergent vegetation canopy." In River Flow 2020, 1595–600. CRC Press, 2020. http://dx.doi.org/10.1201/b22619-222.
Повний текст джерелаLimmer, David T. "Fundamental postulates and definitions." In Statistical Mechanics and Stochastic Thermodynamics, 1–30. Oxford University PressOxford, 2024. http://dx.doi.org/10.1093/oso/9780198919858.003.0001.
Повний текст джерелаТези доповідей конференцій з теми "Emergent hydrodynamics"
Gupta, Aditya, Manasa R. Behera, and Amin Heidarpour. "Numerical Modeling of Wave Damping Induced by Emerged Moving Vegetation." In ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-18588.
Повний текст джерелаChen, Yuxiang, and Ye Gao. "Hydrodynamics Simulation on Axisymmetric Bodies Emerging from an Infinite Moving Plane." In 2010 International Conference on Computational Intelligence and Software Engineering (CiSE). IEEE, 2010. http://dx.doi.org/10.1109/cise.2010.5676715.
Повний текст джерелаSun, Zhiyong, Hui Li, and Heyun Miao. "Numerical Investigation on the Hydrodynamic Characteristics in the Tank of Aquaculture Vessel." In ASME 2024 43rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/omae2024-126082.
Повний текст джерелаPaczkowski, K. W., P. Zhang, R. Rogers, and N. Richardson. "Fluid Structure Interaction Study on Dynamic Response of a Capped Drilling Riser Filled With Mud." In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-23329.
Повний текст джерелаTomiyama, Ryo, Tatsuhiko Uchida, Daisuke Kobayashi, Misako Hatono, and Satoshi Yokojima. "Effects of an emergent cylinder in a group on water flows and evaluation of hydrodynamic force." In Proceedings of the 39th IAHR World Congress From Snow to Sea. Spain: International Association for Hydro-Environment Engineering and Research (IAHR), 2022. http://dx.doi.org/10.3850/iahr-39wc252171192022958.
Повний текст джерелаVasan, A. Mercy, and V. Gopalakrishnan. "Hydrodynamic Modeling of Circulating Fluidised Bed Boilers: An Overview." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87191.
Повний текст джерелаDmitriev, Alexandr S. "Fluctuation Hydrodynamics, Thermophoresis of Nanoparticles and Heat Transfer in Nanofluids." In ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75205.
Повний текст джерелаLaraqi, N., M. M. Rashidi, J. M. Garcia de Maria, and A. Bairi. "Thermo-hydrodynamic behaviour of a thin lubricant film." In 2010 3rd International Conference on Thermal Issues in Emerging Technologies Theory and Applications (ThETA). IEEE, 2010. http://dx.doi.org/10.1109/theta.2010.5766392.
Повний текст джерелаDegtyarev, A., I. Gankevich, and V. Khramushin. "DIRECT COMPUTATIONAL EXPERIMENT IN STORM HYDRODYNAMICS OF MARINE OBJECTS." In 9th International Conference "Distributed Computing and Grid Technologies in Science and Education". Crossref, 2021. http://dx.doi.org/10.54546/mlit.2021.62.36.001.
Повний текст джерелаZhang, De-Qing, Jun-Feng Du, Zhi-Ming Yuan, Ming Zhang, and Feng-Shen Zhu. "Hydrodynamic Modelling of Modularized Floating Photovoltaics Arrays." In ASME 2023 42nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/omae2023-102530.
Повний текст джерелаЗвіти організацій з теми "Emergent hydrodynamics"
Bell, Gary, David Abraham, Nathan Clifton, and Lamkin Kenneth. Wabash and Ohio River confluence hydraulic and sediment transport model investigation : a report for US Army Corps of Engineers, Louisville District. Engineer Research and Development Center (U.S.), March 2022. http://dx.doi.org/10.21079/11681/43441.
Повний текст джерелаGinis, Isaac, Deborah Crowley, Peter Stempel, and Amanda Babson. The impact of sea level rise during nor?easters in New England: Acadia National Park, Boston Harbor Islands, Boston National Historical Park, and Cape Cod National Seashore. National Park Service, 2024. http://dx.doi.org/10.36967/2304306.
Повний текст джерела