Статті в журналах з теми "Electrostatic solitary waves"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Electrostatic solitary waves.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Electrostatic solitary waves".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Qureshi, M. N. S., Jian Kui Shi, and H. A. Shah. "Electrostatic Solitary Waves." Journal of Fusion Energy 31, no. 2 (June 14, 2011): 112–17. http://dx.doi.org/10.1007/s10894-011-9439-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Graham, D. B., Yu V. Khotyaintsev, A. Vaivads, and M. André. "Electrostatic solitary waves and electrostatic waves at the magnetopause." Journal of Geophysical Research: Space Physics 121, no. 4 (April 2016): 3069–92. http://dx.doi.org/10.1002/2015ja021527.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Krasovsky, V. L., H. Matsumoto, and Y. Omura. "Interaction dynamics of electrostatic solitary waves." Nonlinear Processes in Geophysics 6, no. 3/4 (December 31, 1999): 205–9. http://dx.doi.org/10.5194/npg-6-205-1999.

Повний текст джерела
Анотація:
Abstract. Interaction of nonlinear electrostatic pulses associated with electron phase density holes moving in a collisionless plasma is studied. An elementary event of the interaction is analyzed on the basis of the energy balance in the system consisting of two electrostatic solitary waves. It is established that an intrinsic property of the system is a specific irreversibility caused by a nonadiabatic modification of the internal structure of the holes and their effective heating in the process of the interaction. This dynamical irreversibility is closely connected with phase mixing of the trapped electrons comprising the holes and oscillating in the varying self-consistent potential wells. As a consequence of the irreversibility, the "collisions" of the solitary waves should be treated as "inelastic" ones. This explains the general tendency to the merging of the phase density holes frequently observed in numerical simulation and to corresponding coupling of the solitary waves.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

TRIBECHE, MOULOUD. "Small-amplitude analysis of a non-thermal variable charge dust soliton." Journal of Plasma Physics 74, no. 4 (August 2008): 555–68. http://dx.doi.org/10.1017/s002237780800706x.

Повний текст джерела
Анотація:
AbstractSmall-amplitude electrostatic solitary waves are investigated in an unmagnetized dusty plasma with hot variable charge non-thermal dust grains. These nonlinear localized structures are small-amplitude self-consistent solutions of the Vlasov equation in which the dust response is non-Maxwellian. Localized solitary structures that may possibly occur are discussed and the dependence of their characteristics on physical parameters is traced. Our investigation may be taken as a prerequisite for the understanding of the electrostatic solitary waves that may occur in space dusty plasmas.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lan, C., and I. D. Kaganovich. "Electrostatic solitary waves in ion beam neutralization." Physics of Plasmas 26, no. 5 (May 2019): 050704. http://dx.doi.org/10.1063/1.5093760.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Krasovsky, V. L., H. Matsumoto, and Y. Omura. "On the three-dimensional configuration of electrostatic solitary waves." Nonlinear Processes in Geophysics 11, no. 3 (July 2, 2004): 313–18. http://dx.doi.org/10.5194/npg-11-313-2004.

Повний текст джерела
Анотація:
Abstract. The simplest models of the electrostatic solitary waves observed by the Geotail spacecraft in the magnetosphere are developed proceeding from the concept of electron phase space holes. The technique to construct the models is based on an approximate quasi-one-dimensional description of the electron dynamics and three-dimensional analysis of the electrostatic structure of the localized wave perturbations. It is shown that the Vlasov-Poisson set of equations admits a wide diversity of model solutions of different geometry, including spatial configurations of the electrostatic potential similar to those revealed by Geotail and other spacecraft in space plasmas.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

YAROSHENKO, VICTORIA V., and FRANK VERHEEST. "Nonlinear low-frequency waves in dusty self-gravitating plasmas." Journal of Plasma Physics 64, no. 4 (October 2000): 359–70. http://dx.doi.org/10.1017/s0022377800008679.

Повний текст джерела
Анотація:
Nonlinear electrostatic waves in self-gravitating dusty plasmas are considered in two limiting cases, according to whether the charged-particle dynamics is governed mostly by electrostatic forces or mostly by gravitation. This shows a significant difference between these two plasma media with respect to the envelope dynamics in the nonlinear regime. In the former case, when ω2pα > ω2Jα, the amplitude perturbations are longitudinally unstable only in the short-wave range, and the nonlinear effects can result in the formation of longitudinal dust-acoustic solitary waves. But even weak self-gravitational effects can lead to the existence of a long-wavelength range, where self-gravitation prevents the formation of dust-acoustic solitons, and only transverse solitary structures are possible. In the other limiting case (ω2pα < ω2Jα), there is always a transverse modulational instability, which can lead to transverse solitary waves. In both cases, there is a threshold for solitary-wave formation.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Abdullah, Aly R. Seadawy, and Jun Wang. "Stability analysis and applications of traveling wave solutions of three-dimensional nonlinear modified Zakharov–Kuznetsov equation in a magnetized plasma." Modern Physics Letters A 33, no. 25 (August 12, 2018): 1850145. http://dx.doi.org/10.1142/s0217732318501456.

Повний текст джерела
Анотація:
Propagation of three-dimensional nonlinear solitary waves in a magnetized electron–positron plasma is analyzed. Modified extended mapping method is further modified and applied to three-dimensional nonlinear modified Zakharov–Kuznetsov equation to find traveling solitary wave solutions. As a result, electrostatic field potential, electric field, magnetic field and quantum statistical pressure are obtained with the aid of Mathematica. The new exact solitary wave solutions are obtained in different forms such as periodic, kink and anti-kink, dark soliton, bright soliton, bright and dark solitary waves, etc. The results are expressed in the forms of trigonometric, hyperbolic, rational and exponential functions. The electrostatic field potential and electric and magnetic fields are shown graphically. The soliton stability of these solitary wave solutions is analyzed. These results demonstrate the efficiency and precision of the method that can be applied to many other mathematical physical problems.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

MALEKOLKALAMI, BEHROOZ, and TAIMUR MOHAMMADI. "Propagation of solitary waves and shock wavelength in the pair plasma." Journal of Plasma Physics 78, no. 5 (February 22, 2012): 525–29. http://dx.doi.org/10.1017/s0022377812000219.

Повний текст джерела
Анотація:
AbstractThe propagation of electrostatic waves is studied in plasma system consisting of pair-ions and stationary additional ions in presence of the Sagdeev potential (pseudopotential) as function of electrostatic potential (pseudoparticle). It is remarked that both compressive and rarefective solitary waves can be propagated in this plasma system. These electrostatic solitary waves, however, cannot be propagated if the density of stationary ions increases from one critical value or decreases from another when the temperature and the Mach number are fixed. Also, when pseudoparticle is affected with a little dissipation of energy, it is trapped in potential well and can oscillate. Oscillations generate shock wave in the media, and in the negative minimal point of the well it is possible to compute numerically the shock wavelength for the allowed values of the plasma parameters.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

ELIASSON, B., and P. K. SHUKLA. "Ion solitary waves in a dense quantum plasma." Journal of Plasma Physics 74, no. 5 (October 2008): 581–84. http://dx.doi.org/10.1017/s002237780800737x.

Повний текст джерела
Анотація:
AbstractThe existence of localized ion waves in a dense quantum plasma is established. Specifically, ion solitary waves are stationary solutions of the equations composed of the nonlinear ion continuity and ion momentum equations, together with the Poisson equation and the inertialess electron momentum equation in which the electric force is balanced by the quantum force associated with the Bohm potential that causes electron tunneling at nanoscales. The solitary ion waves are characterized by a large-amplitude electrostatic potential and ion density maxima and smaller amplitude minima on the flanks of the solitary waves. We identify the speed interval for the existence of the ion solitary waves around a quantum Mach number that is of the order of unity.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

TRIBECHE, MOULOUD, LEILA AIT GOUGAM, NADIA BOUBAKOUR, and TAHA HOUSSINE ZERGUINI. "Electrostatic solitary structures in a charge-varying pair–ion–dust plasma." Journal of Plasma Physics 73, no. 3 (June 2007): 403–15. http://dx.doi.org/10.1017/s0022377806004636.

Повний текст джерела
Анотація:
AbstractLarge-amplitude electrostatic solitary structures are investigated in an unmagnetized charge-varying pair–ion–dust plasma in which electrons and positrons have equal masses. Their spatial patterns are significantly modified by the presence of the positron component. In particular, it may be noted that an addition of a small concentration of positrons abruptly reduces the potential pulse amplitude as well as the net negative charge residing on the dust grain surface. Under certain conditions, the solitary wave suffers the well-known anomalous damping leading to the development of collisionless shock waves. This investigation may be taken as a prerequisite for the understanding of the electrostatic solitary waves that may occur in space dusty plasmas.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Kojima, H., Y. Omura, H. Matsumoto, K. Miyaguti, and T. Mukai. "Automatic Waveform Selection method for Electrostatic Solitary Waves." Earth, Planets and Space 52, no. 7 (July 2000): 495–502. http://dx.doi.org/10.1186/bf03351653.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Maharaj, S. K., R. Bharuthram, S. V. Singh, S. R. Pillay, and G. S. Lakhina. "Electrostatic solitary waves in a magnetized dusty plasma." Physics of Plasmas 15, no. 11 (November 2008): 113701. http://dx.doi.org/10.1063/1.3028313.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Misra, A. P., and N. C. Adhikary. "Electrostatic solitary waves in dusty pair-ion plasmas." Physics of Plasmas 20, no. 10 (October 2013): 102309. http://dx.doi.org/10.1063/1.4825353.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Gradov, O. M., and L. Stenflo. "Solitary electrostatic waves in a thin plasma slab." Physical Review E 50, no. 2 (August 1, 1994): 1695–96. http://dx.doi.org/10.1103/physreve.50.1695.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

D'Aprile, Teresa. "Solitary charged waves interacting with the electrostatic field." Journal of Mathematical Analysis and Applications 317, no. 2 (May 2006): 526–49. http://dx.doi.org/10.1016/j.jmaa.2005.06.036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Gradov, O. M., L. Stenflo, and D. Sünder. "Solitary surface waves on a magnetized plasma cylinder." Journal of Plasma Physics 33, no. 1 (February 1985): 53–58. http://dx.doi.org/10.1017/s0022377800002312.

Повний текст джерела
Анотація:
We analyse high-frequency electrostatic solitary surface waves that propagate along a plasma cylinder in the presence of a constant axial magnetic field. The width of such a solitary wave, which is found to be inversely proportional to its amplitude, is expressed as a function of the magnitude of the external magnetic field.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Sultana, Sharmin, та Ioannis Kourakis. "Dissipative Ion-Acoustic Solitary Waves in Magnetized κ-Distributed Non-Maxwellian Plasmas". Physics 4, № 1 (20 січня 2022): 68–79. http://dx.doi.org/10.3390/physics4010007.

Повний текст джерела
Анотація:
The propagation of dissipative electrostatic (ion-acoustic) solitary waves in a magnetized plasma with trapped electrons is considered via the Schamel formalism. The direction of propagation is assumed to be arbitrary, i.e., oblique with respect to the magnetic field, for generality. A non-Maxwellian (nonthermal) two-component plasma is considered, consisting of an inertial ion fluid, assumed to be cold for simplicity, and electrons. A (kappa) κ-type distribution is adopted for the electron population, in addition to particle trapping taken into account in phase space. A damped version of the Schamel-type equation is derived for the electrostatic potential, and its analytical solution, representing a damped solitary wave, is used to examine the nonlinear features of dissipative ion-acoustic solitary waves in the presence of trapped electrons. The influence of relevant plasma configuration parameters, namely the percentage of trapped electrons, the electron superthermality (spectral) index, and the direction of propagation on the solitary wave characteristics is investigated.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Stenflo, L., and O. M. Gradov. "Electrostatic surface waves on a plasma with non-uniform boundary." Journal of Plasma Physics 44, no. 2 (October 1990): 313–17. http://dx.doi.org/10.1017/s0022377800015208.

Повний текст джерела
Анотація:
A new analytical method is introduced to consider electrostatic surface waves propagating on a cold plasma. A very simple dispersion relation is derived for a plasma bounded by two dielectrics. Previous theory for solitary surface waves is also generalized.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Bains, Amandeep Singh, Nareshpal Singh Saini, and Tarsem Singh Gill. "Dust acoustic solitary structures in multidust fluids superthermal plasma." Canadian Journal of Physics 91, no. 7 (July 2013): 582–87. http://dx.doi.org/10.1139/cjp-2012-0393.

Повний текст джерела
Анотація:
An investigation has been made to study the properties of large-amplitude electrostatic solitary waves in dusty plasma containing both negatively and positively charged dust fluids in the presence of superthermal electrons and ions. The energy balance equation is derived by using the Sagdeev pseudopotential approach. The influence of the physical parameters (e.g., superthermality of electrons or ions, density concentration of positive and negative dust particles, solitary speed) on the amplitude of dust acoustic solitary waves has been discussed in detail. It is observed that there exists a critical value of density, below which negative potential solitary structures exist and above which positive potential solitary structures exist.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Hazeltine, R. D., D. D. Holm, and P. J. Morrison. "Electromagnetic solitary waves in magnetized plasmas." Journal of Plasma Physics 34, no. 1 (August 1985): 103–14. http://dx.doi.org/10.1017/s0022377800002713.

Повний текст джерела
Анотація:
A Hamiltonian formulation, in terms of a non-canonical Poisson bracket, is presented for a nonlinear fluid system that includes reduced magnetohydro-dynamics and the Hasegawa–Mima equation as limiting cases. The single-helicity and axisymmetric versions possess three nonlinear Casimir invariants, from which a generalized potential can be constructed. Variation of the generalized potential yields a description of exact nonlinear stationary states. The new equilibria, allowing for plasma flow as well as partial electron adiabaticity, are distinct from those found in conventional magnetohydrodynamic theory. They differ from electrostatic stationary states in containing plasma current and magnetic field excitation. One class of steady-state solutions is shown to provide a simple electromagnetic generalization of drift-solitary waves.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

MAMUN, A. A., S. S. DUHA, and P. K. SHUKLA. "Multi-dimensional instability of solitary waves in ultra-relativistic degenerate dense magnetized plasma." Journal of Plasma Physics 77, no. 5 (January 26, 2011): 617–28. http://dx.doi.org/10.1017/s0022377810000772.

Повний текст джерела
Анотація:
AbstractThe basic features and multi-dimensional instability of electrostatic solitary waves propagating in an ultra-relativistic degenerate dense magnetized plasma have been investigated by the reductive perturbation method and the small-k perturbation expansion technique. The Zakharov–Kuznetsov (ZK) equation has been derived, and its numerical solutions for some special cases have been analysed to identify the basic features (viz. amplitude, width, instability, etc.) of these electrostatic solitary structures. The implications of our results in some compact astrophysical objects, particularly white dwarfs and neutron stars, have been briefly discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Akbari-Moghanjoughi, M. "Dressed electrostatic solitary waves in quantum dusty pair plasmas." Physics of Plasmas 17, no. 5 (May 2010): 052302. http://dx.doi.org/10.1063/1.3392289.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Verheest, Frank. "Oblique propagation of solitary electrostatic waves in multispecies plasmas." Journal of Physics A: Mathematical and Theoretical 42, no. 28 (June 24, 2009): 285501. http://dx.doi.org/10.1088/1751-8113/42/28/285501.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Nasir Khattak, M., A. Mushtaq, and Zahida Ehsan. "Electrostatic baryonic solitary waves in ambiplasma with nonextensive leptons." Chinese Journal of Physics 54, no. 4 (August 2016): 503–14. http://dx.doi.org/10.1016/j.cjph.2016.06.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Rubia, R., S. V. Singh, and G. S. Lakhina. "Occurrence of electrostatic solitary waves in the lunar wake." Journal of Geophysical Research: Space Physics 122, no. 9 (September 2017): 9134–47. http://dx.doi.org/10.1002/2017ja023972.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

GOUGAM, LEILA AIT, MOULOUD TRIBECHE, and FAWZIA MEKIDECHE. "Small-amplitude electrostatic solitary waves in a dusty plasma with variable charge resonant trapped dust particles." Journal of Plasma Physics 73, no. 6 (December 2007): 901–10. http://dx.doi.org/10.1017/s0022377807006368.

Повний текст джерела
Анотація:
AbstractSmall-amplitude electrostatic solitary waves are investigated in unmagnetized dusty plasmas with variable charge resonant trapped dust particles. It is found that under certain conditions spatially localized structures, the height and nature of which depend sensitively on the plasma parameters, can exist. The effects of dust grain temperature, equilibrium dust charge, trapping parameter, and dust size on the properties of these solitary waves are briefly discussed. A neural network with a given architecture and learning process, and which may be useful to interpret experimental data, is outlined. Our investigation may be taken as a prerequisite for the understanding of the solitary dust waves that may occur in space as well as in laboratory plasmas.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Omura, Y., H. Kojima, and H. Matsumoto. "Computer simulation of electrostatic solitary waves: A nonlinear model of broadband electrostatic noise." Geophysical Research Letters 21, no. 25 (December 15, 1994): 2923–26. http://dx.doi.org/10.1029/94gl01605.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Kamaletdinov, S. R., I. Y. Vasko, A. V. Artemyev, R. Wang, and F. S. Mozer. "Quantifying electron scattering by electrostatic solitary waves in the Earth's bow shock." Physics of Plasmas 29, no. 8 (August 2022): 082301. http://dx.doi.org/10.1063/5.0097611.

Повний текст джерела
Анотація:
The electrostatic fluctuations are always present in the Earth's bow shock at frequencies above about 100 Hz, but the effects of this wave activity on electron dynamics have not been quantified yet. In this paper, we quantify electron pitch-angle scattering by electrostatic solitary waves, which make up a substantial part of the electrostatic fluctuations in the Earth's bow shock and were recently shown to be predominantly ion holes. We present analytical estimates and test-particle simulations of electron pitch-angle scattering by ion holes typical of the Earth's bow shock and conclude that this scattering can be rather well quantified within the quasi-linear theory. We use the observed distributions of ion hole parameters to estimate pitch-angle scattering rates by the ensemble of ion holes typical of the Earth's bow shock. We use the recently proposed theory of stochastic shock drift acceleration to show that pitch-angle scattering of electrons by the electrostatic fluctuations can keep electrons in the shock transition region long enough to support acceleration of thermal electrons by a factor of a few tens, that is up to a few hundred eV. Importantly, the electrostatic fluctuations can be more efficient in pitch-angle scattering of [Formula: see text] keV electrons, than typically observed whistler waves.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Buti, B. "Chaos and Turbulence in Solar Wind." International Astronomical Union Colloquium 154 (1996): 33–41. http://dx.doi.org/10.1017/s0252921100029936.

Повний текст джерела
Анотація:
AbstractLarge amplitude waves as well as turbulence has been observed in the interplanetary medium. This turbulence is not understood to the extent that one would like to. By means of techniques of nonlinear dynamical systems, attempts are being made to properly understand the turbulence in the solar wind, which is essentially a nonuniform streaming plasma consisting of hydrogen and a fraction of helium. We demonstrate that the observed large amplitude waves can generate solitary waves, which in turn, because of some propagating solar disturbance, can produce chaos in the medium. The chaotic fields thus generated can lead to anomalously large plasma heating and acceleration.Unlike the solitary waves in uniform plasmas, in nonuniform plasmas we get accelerated solitary waves, which lead to electromagnetic as well as electrostatic (e.g. ion acoustic) radiations. The latter can be a very efficient source of plasma heating.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Mamun, A. A., and R. A. Cairns. "Stability of solitary waves in a magnetized non-thermal plasma." Journal of Plasma Physics 56, no. 1 (August 1996): 175–85. http://dx.doi.org/10.1017/s0022377800019164.

Повний текст джерела
Анотація:
A theoretical investigations is made of the stability of electrostatic waves in a magnetized non-thermal plasma. The Zakharov-Kuznetsov equation (or Korteweg-de Vries equation in three dimensionas) for these solitary waves in this plasma system is derived, and their three-dimensional stability is studied by the small-k (long wavelength plane-wave) perturbation expansion method. The instability criterion and its growth rate depending on the magnetic field and the propagation directions of the solitary wave and its perturbation mode are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Lakhina, G. S., B. T. Tsurutani, S. V. Singh, and R. V. Reddy. "Some theoretical models for solitary structures of boundary layer waves." Nonlinear Processes in Geophysics 10, no. 1/2 (April 30, 2003): 65–73. http://dx.doi.org/10.5194/npg-10-65-2003.

Повний текст джерела
Анотація:
Abstract. Solitary electrostatic structures have been observed in and around auroral zone field lines at various altitudes ranging from close to the ionosphere, to the magnetopause low-latitude boundary layer (LLBL) and cusp on the dayside, and to the plasma sheet boundary layer on the night-side. In this review, various models based on solitons/double layers and BGK modes or phase space holes are discussed in order to explain the characteristics of these solitary structures.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Verheest, Frank. "Comment on ‘Propagation of solitary waves and shock wavelength in the pair plasma (J. Plasma Phys. 78, 525–529, 2012)’." Journal of Plasma Physics 80, no. 3 (March 25, 2014): 513–16. http://dx.doi.org/10.1017/s0022377814000051.

Повний текст джерела
Анотація:
In a recent paper ‘Propagation of solitary waves and shock wavelength in the pair plasma (J. Plasma Phys. 78, 525–529, 2012)’, Malekolkalami and Mohammadi investigate nonlinear electrostatic solitary waves in a plasma comprising adiabatic electrons and positrons, and a stationary ion background. The paper contains two parts: First, the solitary wave properties are discussed through a pseudopotential approach, and then the influence of a small dissipation is intuitively sketched without theoretical underpinning. Small dissipation is claimed to lead to a shock wave whose wavelength is determined by linear oscillator analysis. Unfortunately, there are errors and inconsistencies in both the parts, and their combination is incoherent.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Lakhina, Gurbax Singh, Satyavir Singh, Rajith Rubia, and Selvaraj Devanandhan. "Electrostatic Solitary Structures in Space Plasmas: Soliton Perspective." Plasma 4, no. 4 (October 21, 2021): 681–731. http://dx.doi.org/10.3390/plasma4040035.

Повний текст джерела
Анотація:
Occurrence of electrostatic solitary waves (ESWs) is ubiquitous in space plasmas, e.g., solar wind, Lunar wake and the planetary magnetospheres. Several theoretical models have been proposed to interpret the observed characteristics of the ESWs. These models can broadly be put into two main categories, namely, Bernstein–Green–Kruskal (BGK) modes/phase space holes models, and ion- and electron- acoustic solitons models. There has been a tendency in the space community to favor the models based on BGK modes/phase space holes. Only recently, the potential of soliton models to explain the characteristics of ESWs is being realized. The idea of this review is to present current understanding of the ion- and electron-acoustic solitons and double layers models in multi-component space plasmas. In these models, all the plasma species are considered fluids except the energetic electron component, which is governed by either a kappa distribution or a Maxwellian distribution. Further, these models consider the nonlinear electrostatic waves propagating parallel to the ambient magnetic field. The relationship between the space observations of ESWs and theoretical models is highlighted. Some specific applications of ion- and electron-acoustic solitons/double layers will be discussed by comparing the theoretical predictions with the observations of ESWs in space plasmas. It is shown that the ion- and electron-acoustic solitons/double layers models provide a plausible interpretation for the ESWs observed in space plasmas.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Nuwal, Nakul, Deborah A. Levin, and Igor D. Kaganovich. "Kinetic modeling of solitary wave dynamics in a neutralizing ion beam." Physics of Plasmas 30, no. 1 (January 2023): 012110. http://dx.doi.org/10.1063/5.0131059.

Повний текст джерела
Анотація:
In this work, we characterize the formation and evolution of electrostatic solitary waves (ESWs) in the space-charge neutralization of ion beams using particle-in-cell simulations. These waves become excited when the electrons emitted from an external filament source initiate a two-stream instability in the beam. We show that such electrostatic waves become excited in both two-dimensional (2D) and three-dimensional (3D) beams with different shapes and sizes. Through a 1D Bernstein–Greene–Kruskal (BGK) analysis of the 2D beam, we find that the non-Maxwellian nature of the beam electrons gives rise to large-sized ESWs that are not predicted by BGK theory since it assumes a Maxwellian electron velocity distribution in the beam. Finally, we show that a 1D BGK theory is inadequate to describe ESWs in 3D beams because of complex electron trajectories.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

BENCI, VIERI, and DONATO FORTUNATO FORTUNATO. "SOLITARY WAVES OF THE NONLINEAR KLEIN-GORDON EQUATION COUPLED WITH THE MAXWELL EQUATIONS." Reviews in Mathematical Physics 14, no. 04 (April 2002): 409–20. http://dx.doi.org/10.1142/s0129055x02001168.

Повний текст джерела
Анотація:
This paper is divided in two parts. In the first part we construct a model which describes solitary waves of the nonlinear Klein-Gordon equation interacting with the electromagnetic field. In the second part we study the electrostatic case. We prove the existence of infinitely many pairs (ψ, E), where ψ is a solitary wave for the nonlinear Klein-Gordon equation and E is the electric field related to ψ.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Dubinov, Alexander E., Irina D. Dubinova, and Victor A. Gordienko. "Solitary electrostatic waves are possible in unmagnetized symmetric pair plasmas." Physics of Plasmas 13, no. 8 (August 2006): 082111. http://dx.doi.org/10.1063/1.2335819.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Rubia, R., S. V. Singh, and G. S. Lakhina. "Existence domain of electrostatic solitary waves in the lunar wake." Physics of Plasmas 25, no. 3 (March 2018): 032302. http://dx.doi.org/10.1063/1.5017638.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Ata-ur-Rahman, A. Mushtaq, S. Ali, and A. Qamar. "Nonplanar Electrostatic Solitary Waves in a Relativistic Degenerate Dense Plasma." Communications in Theoretical Physics 59, no. 4 (April 2013): 479–83. http://dx.doi.org/10.1088/0253-6102/59/4/16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Mushtaq, A., M. Ikram, and R. E. H. Clark. "Electrostatic Solitary Waves in Pair-ion Plasmas with Trapped Electrons." Brazilian Journal of Physics 44, no. 6 (September 23, 2014): 614–21. http://dx.doi.org/10.1007/s13538-014-0261-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Miyake, T., Y. Omura, and H. Matsumoto. "Electrostatic particle simulations of solitary waves in the auroral region." Journal of Geophysical Research: Space Physics 105, A10 (October 1, 2000): 23239–49. http://dx.doi.org/10.1029/2000ja000001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Liu, C. M., A. Vaivads, D. B. Graham, Yu V. Khotyaintsev, H. S. Fu, A. Johlander, M. André, and B. L. Giles. "Ion‐Beam‐Driven Intense Electrostatic Solitary Waves in Reconnection Jet." Geophysical Research Letters 46, no. 22 (November 25, 2019): 12702–10. http://dx.doi.org/10.1029/2019gl085419.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Rahman, Ata ur, Ioannis Kourakis, and Anisa Qamar. "Electrostatic Solitary Waves in Relativistic Degenerate Electron–Positron–Ion Plasma." IEEE Transactions on Plasma Science 43, no. 4 (April 2015): 974–84. http://dx.doi.org/10.1109/tps.2015.2404298.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Jehan, Nusrat, M. Salahuddin, S. Mahmood, and Arshad M. Mirza. "Electrostatic solitary ion waves in dense electron-positron-ion magnetoplasma." Physics of Plasmas 16, no. 4 (April 2009): 042313. http://dx.doi.org/10.1063/1.3118590.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Graham, D. B., Yu V. Khotyaintsev, A. Vaivads, and M. André. "Electrostatic solitary waves with distinct speeds associated with asymmetric reconnection." Geophysical Research Letters 42, no. 2 (January 20, 2015): 215–24. http://dx.doi.org/10.1002/2014gl062538.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Kakad, Amar, Bharati Kakad, Chandrasekhar Anekallu, Gurbax Lakhina, Yoshiharu Omura, and Andrew Fazakerley. "Slow electrostatic solitary waves in Earth's plasma sheet boundary layer." Journal of Geophysical Research: Space Physics 121, no. 5 (May 2016): 4452–65. http://dx.doi.org/10.1002/2016ja022365.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Chatterjee, Prasanta, and Bholanath Sen. "Speed and Shape of Electrostatic Waves in Dust-Ion Plasma." Zeitschrift für Naturforschung A 61, no. 12 (December 1, 2006): 661–66. http://dx.doi.org/10.1515/zna-2006-1207.

Повний текст джерела
Анотація:
Nonlinear dust acoustic waves are studied in a magnetized plasma. Quasineutrality is considered. The existence of a soliton solution is determined by a pseudo-potential approach. Sagdeev’s potential is obtained in terms of U(= αudx +γudz), the component of the dust-ion velocity in the direction of the propagation of the wave. It is shown that there exists a critical value of U, beyond which the solitary waves cease to exist.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Khalid, Muhammad, Mohsin Khan, Ata ur-Rahman, and Muhammad Irshad. "Ion acoustic solitary waves in magnetized anisotropic nonextensive plasmas." Zeitschrift für Naturforschung A 77, no. 2 (November 16, 2021): 125–30. http://dx.doi.org/10.1515/zna-2021-0262.

Повний текст джерела
Анотація:
Abstract The nonlinear propagation of ion-acoustic (IA) electrostatic solitary waves (SWs) is studied in a magnetized electron–ion (e–i) plasma in the presence of pressure anisotropy with electrons following Tsallis distribution. The Korteweg–de Vries (KdV) type equation is derived by employing the reductive perturbation method (RPM) and its solitary wave (SW) solution is determined and analyzed. The effect of nonextensive parameter q, parallel component of anisotropic ion pressure p 1, perpendicular component of anisotropic ion pressure p 2, obliqueness angle θ, and magnetic field strength Ω on the characteristics of SW structures is investigated. The present investigation could be useful in space and astrophysical plasma systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Zhao, Jinsong, David M. Malaspina, T. Dudok de Wit, Viviane Pierrard, Yuriy Voitenko, Giovanni Lapenta, Stefaan Poedts, et al. "Broadband Electrostatic Waves near the Lower-hybrid Frequency in the Near-Sun Solar Wind Observed by the Parker Solar Probe." Astrophysical Journal Letters 938, no. 2 (October 1, 2022): L21. http://dx.doi.org/10.3847/2041-8213/ac92e3.

Повний текст джерела
Анотація:
Abstract Using Parker Solar Probe observations, this Letter reports for the first time the existence of broadband electrostatic waves below the electron cyclotron frequency in the near-Sun solar wind and even in the extended solar corona. These waves have enhanced power spectral densities of the electric fields near the lower-hybrid frequency f LH, and their peak frequencies can be below or exceed f LH. The perturbed electric fields are distributed between about 0.1 and 50 mV m−1. Accompanying broadband electrostatic waves, strong electrostatic solitary structures can arise, and their peak amplitudes approach nearly 500 mV m−1. Due to the appearance of considerable electric field fluctuations perpendicular to the background magnetic field, the observed waves would propagate obliquely. Moreover, this Letter conjectures the wavenumber and frequency information for the candidate of the wave mode nature being the oblique slow mode wave, the ion Bernstein wave, or the oblique fast-magnetosonic whistler wave. One important consequence of the observed waves is that they may regulate the electron heat flux in the near-Sun solar wind and in the solar corona.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Hossen, M. R., L. Nahar, and A. A. Mamun. "Planar and Nonplanar Solitary Waves in a Four-Component Relativistic Degenerate Dense Plasma." Journal of Astrophysics 2014 (October 23, 2014): 1–8. http://dx.doi.org/10.1155/2014/653065.

Повний текст джерела
Анотація:
The nonlinear propagation of electrostatic perturbation modes in an unmagnetized, collisionless, relativistic, degenerate plasma (containing both nonrelativistic and ultrarelativistic degenerate electrons, nonrelativistic degenerate ions, and arbitrarily charged static heavy ions) has been investigated theoretically. The Korteweg-de Vries (K-dV) equation has been derived by employing the reductive perturbation method. Their solitary wave solution is obtained and numerically analyzed in case of both planar and nonplanar (cylindrical and spherical) geometry. It has been observed that the ion-acoustic (IA) and modified ion-acoustic (mIA) solitary waves have been significantly changed due to the effects of degenerate plasma pressure and number densities of the arbitrarily charged heavy ions. It has been also found that properties of planar K-dV solitons are quite different from those of nonplanar K-dV solitons. There are numerous variations in case of mIA solitary waves due to the polarity of heavy ions. The basic features and the underlying physics of IA and mIA solitary waves, which are relevant to some astrophysical compact objects, are briefly discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії