Статті в журналах з теми "Electronic spectroscopies"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Electronic spectroscopies.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Electronic spectroscopies".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

KOBAYASHI, NAGAO. "Theoretical interpretation of spectroscopic data." Journal of Porphyrins and Phthalocyanines 04, no. 04 (June 2000): 377–79. http://dx.doi.org/10.1002/(sici)1099-1409(200006/07)4:4<377::aid-jpp236>3.0.co;2-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper provides a short, representative summary of recent progress in the electronic absorption, magnetic and natural circular dichroism, fluorescence and phosphorescence emission, and IR and Raman vibrational spectroscopies of porphyrine and phthalocyanine compounds. These spectroscopies are discussed in the microsymposium entitled ‘Theoretical Interpretation of Spectroscopic Data’.
2

Oliver, Thomas A. A. "Recent advances in multidimensional ultrafast spectroscopy." Royal Society Open Science 5, no. 1 (January 2018): 171425. http://dx.doi.org/10.1098/rsos.171425.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Multidimensional ultrafast spectroscopies are one of the premier tools to investigate condensed phase dynamics of biological, chemical and functional nanomaterial systems. As they reach maturity, the variety of frequency domains that can be explored has vastly increased, with experimental techniques capable of correlating excitation and emission frequencies from the terahertz through to the ultraviolet. Some of the most recent innovations also include extreme cross-peak spectroscopies that directly correlate the dynamics of electronic and vibrational states. This review article summarizes the key technological advances that have permitted these recent advances, and the insights gained from new multidimensional spectroscopic probes.
3

Dessau, Dan, Zahid Hussain, and Z. Q. Qiu. "Workshop on Spectroscopies of Electronic Materials." Synchrotron Radiation News 15, no. 1 (January 2002): 13–14. http://dx.doi.org/10.1080/08940880208602925.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Busca, G., G. Martra, and A. Zecchina. "Characterisation by vibrational and electronic spectroscopies." Catalysis Today 56, no. 4 (March 2000): 361–70. http://dx.doi.org/10.1016/s0920-5861(99)00296-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Biswas, Somnath, JunWoo Kim, Xinzi Zhang, and Gregory D. Scholes. "Coherent Two-Dimensional and Broadband Electronic Spectroscopies." Chemical Reviews 122, no. 3 (January 17, 2022): 4257–321. http://dx.doi.org/10.1021/acs.chemrev.1c00623.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pen, H. F., M. Abbate, A. Fuijmori, Y. Tokura, H. Eisaki, S. Uchida, and G. A. Sawatzky. "Electronic structure ofY1−xCaxVO3studied by high-energy spectroscopies." Physical Review B 59, no. 11 (March 15, 1999): 7422–32. http://dx.doi.org/10.1103/physrevb.59.7422.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fujisawa, M., S. Suga, T. Mizokawa, A. Fujimori, and K. Sato. "Electronic structures ofCuFeS2andCuAl0.9Fe0.1S2studied by electron and optical spectroscopies." Physical Review B 49, no. 11 (March 15, 1994): 7155–64. http://dx.doi.org/10.1103/physrevb.49.7155.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Le F�vre, P., H. Magnan, K. Hricovini, D. Chandesris, J. Vogel, V. Formoso, T. Eickhoff, and W. Drube. "Ce Electronic Structure Studied by Resonant Electron Spectroscopies." physica status solidi (b) 215, no. 1 (September 1999): 617–23. http://dx.doi.org/10.1002/(sici)1521-3951(199909)215:1<617::aid-pssb617>3.0.co;2-c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hawrylak, P., A. Wojs, D. J. Lockwood, P. D. Wang, C. M. Sotomayor Torres, A. Pinczuk, and B. S. Dennis. "Optical spectroscopies of electronic excitations in quantum dots." Surface Science 361-362 (July 1996): 774–77. http://dx.doi.org/10.1016/0039-6028(96)00531-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Khalifi, Mohammed El, Fabien Picaud, and Mohamed Bizi. "Electronic and optical properties of CeO2 from first principles calculations." Analytical Methods 8, no. 25 (2016): 5045–52. http://dx.doi.org/10.1039/c6ay00374e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Görgülü, Güvenç. "Experimental and theoretical study of a novel naphthoquinone Schiff base." Open Chemistry 16, no. 1 (November 5, 2018): 1115–21. http://dx.doi.org/10.1515/chem-2018-0121.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractA novel Schiff base was synthesized and characterized by spectroscopic and theoretical methods. A potentially active agent 4-(2-hydroxy-5-methylphenylimino)naphthalen-1(4H)-one (PINQ) was designed and synthesized. The synthesis was carried out by a condensation reaction of 1-4-naphthoquinone and 2-amino-4-methyl phenol. The spectral and structural properties of the PINQ molecule were investigated by elemental analysis, 1H- and 13C-NMR, FT-IR and Uv-vis spectroscopies. The energetic, atomic, electronic, molecular, vibrational and magnetic data were theoretically obtained using density functional theory (DFT) at B3LYP level with 6-311++G(d,p) basis set. Chemical shifts were calculated using gauge-invariant atomic orbital (GIAO) method. UV-vis spectrum for the title compound was also obtained by time-dependent density functional theory (TD-DFT). The theoretical and experimental results were compared and interpreted. The theoretical data obtained from 1H- and 13C-NMR, FT-IR and Uv-vis spectroscopies were quite compatible with experimental ones.
12

Pankin, Dmitrii, Mikhail Smirnov, Anastasia Povolotckaia, Alexey Povolotskiy, Evgenii Borisov, Maksim Moskovskiy, Anatoly Gulyaev, et al. "DFT Modelling of Molecular Structure, Vibrational and UV-Vis Absorption Spectra of T-2 Toxin and 3-Deacetylcalonectrin." Materials 15, no. 2 (January 15, 2022): 649. http://dx.doi.org/10.3390/ma15020649.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper discusses the applicability of optical and vibrational spectroscopies for the identification and characterization of the T-2 mycotoxin. Vibrational states and electronic structure of the T-2 toxin molecules are simulated using a density-functional quantum-mechanical approach. A numerical experiment aimed at comparing the predicted structural, vibrational and electronic properties of the T-2 toxin with analogous characteristics of the structurally similar 3-deacetylcalonectrin is performed, and the characteristic spectral features that can be used as fingerprints of the T-2 toxin are determined. It is shown that theoretical studies of the structure and spectroscopic features of trichothecene molecules facilitate the development of methods for the detection and characterization of the metabolites.
13

Svirskiy, Gleb I., Alexander V. Generalov, Nikolay A. Vinogradov, Xenia O. Brykalova, Anatoly V. Vereshchagin, Oleg V. Levin, Andrey G. Lyalin, Alexei B. Preobrajenski, and Alexander S. Vinogradov. "Electronic structure of the [Ni(Salen)] complex studied by core-level spectroscopies." Physical Chemistry Chemical Physics 23, no. 18 (2021): 11015–27. http://dx.doi.org/10.1039/d1cp00511a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Alssger, A. K. "SYNTHESIS AND CHARACTERIZATION OF BIS (DITHIOCARBAMATES) WITH NICKEL(II) AND COPER(II) METALS." Journal of the faculty of Education 1, no. 7 (January 21, 2023): 19–28. http://dx.doi.org/10.60037/edu.v1i7.1209.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nickel (II) and Coper (II) dithiocarbamate complexes of general of fomula M (Rdtc) 2. The present paper describes the Synthesis and spectral properties of similar complexes of the following new dithiocarbamate ligands, cyclohexyldithiocarbamate (Chex Dtc), dicyclohexyldithiocarbamate (DchexDtc). The Complexes have been characterized on the basis of analytical data magneto chemical, conductivity measurements, electronic and infrared spectroscopies as square planar Nickel (II), Coper (II) compounds. The Result of the spectroscopic studies indicates that the dithiocarbamate ligand is always bidentate. All the complexes are non-conducting in DMF solution
15

Gawelda, Wojciech, Alexander Britz, Tadesse Assefa, Andreas Galler, György Vanko, Villy Sundström, Kelly Gaffney, Martin Meedom Nielsen, and Christian Bressler. "Tracking chemical reactions with ultrafast X-ray spectroscopies and scattering." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C128. http://dx.doi.org/10.1107/s2053273314098714.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ultrafast structural dynamics is an emerging field aiming to deliver a detailed understanding of the elementary steps in reacting chemical species, which involve changes in their nuclear, electronic and spin states. Such processes are vital ingredients in chemistry and biology, but also in technological applications, including efficient charge transport in solar energy converters and ultrafast switchable molecular magnets. In order to unravel the complex dynamic behavior in photoexcited molecules we have implemented a suite of ultrafast x-ray spectroscopic and scattering tools to zoom into both the electronic and nuclear structures, with the goal to ultimately deliver a molecular movie of ongoing chemical processes. In view of the many potential applications in chemical and biological dynamics it is desirable to increase the signal-to-noise (S/N) level of such experiments as well as to decrease the time resolution into the femtosecond time domain. We present our benchmark results using a versatile setup that permits simultaneous measurements of ultrafast x-ray absorption and emission spectroscopies combined with x-ray diffuse scattering. This combined scattering and spectroscopic approach has recently been established by us at different synchrotron [1-2] and XFEL [3] lightsources. We applied it to study different photochemical systems in liquid media, ranging from nascent radicals in solution to photocatalytic systems, with the goal to deliver a deeper understanding of the elementary steps in chemical reactivity.
16

Sarma, D. D. "Electronic structure of high-Tcsuperconductors from core-level spectroscopies." Physical Review B 37, no. 13 (May 1, 1988): 7948–51. http://dx.doi.org/10.1103/physrevb.37.7948.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Furukawa, Yukio. "Electronic Absorption and Vibrational Spectroscopies of Conjugated Conducting Polymers." Journal of Physical Chemistry 100, no. 39 (January 1996): 15644–53. http://dx.doi.org/10.1021/jp960608n.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Zahn, Dietrich R. T., Gianina N. Gavrila, and Georgeta Salvan. "Electronic and Vibrational Spectroscopies Applied to Organic/Inorganic Interfaces." Chemical Reviews 107, no. 4 (April 2007): 1161–232. http://dx.doi.org/10.1021/cr050141p.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Dalai, M. K., P. Pal, R. Kundu, B. R. Sekhar, S. Banik, A. K. Shukla, S. R. Barman, and C. Martin. "Electronic structure of from photoemission and inverse photoemission spectroscopies." Physica B: Condensed Matter 405, no. 1 (January 2010): 186–91. http://dx.doi.org/10.1016/j.physb.2009.08.053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Zhang, Wei Min, Vladimir Chernyak, and Shaul Mukamel. "Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitons." Journal of Chemical Physics 110, no. 11 (March 15, 1999): 5011–28. http://dx.doi.org/10.1063/1.478400.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Hüfner, S., P. Steiner, and I. Sander. "High energy spectroscopies and the electronic structure of NiO." Solid State Communications 72, no. 4 (October 1989): 359–63. http://dx.doi.org/10.1016/0038-1098(89)90117-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Petit, Tristan, Mika Pflüger, Daniel Tolksdorf, Jie Xiao, and Emad F. Aziz. "Valence holes observed in nanodiamonds dispersed in water." Nanoscale 7, no. 7 (2015): 2987–91. http://dx.doi.org/10.1039/c4nr06639a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Gaynor, James D., and Munira Khalil. "Signatures of vibronic coupling in two-dimensional electronic-vibrational and vibrational-electronic spectroscopies." Journal of Chemical Physics 147, no. 9 (September 7, 2017): 094202. http://dx.doi.org/10.1063/1.4991745.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Boulanger, Sean A., Cheng Chen, Longteng Tang, Liangdong Zhu, Nadezhda S. Baleeva, Ivan N. Myasnyanko, Mikhail S. Baranov, and Chong Fang. "Shedding light on ultrafast ring-twisting pathways of halogenated GFP chromophores from the excited to ground state." Physical Chemistry Chemical Physics 23, no. 27 (2021): 14636–48. http://dx.doi.org/10.1039/d1cp02140k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Wakita, Takanori, Eugenio Paris, Kaya Kobayashi, Kensei Terashima, Muammer Yasin Hacisalihoǧlu, Teppei Ueno, Federica Bondino, et al. "The electronic structure of Ag1−xSn1+xSe2 (x = 0.0, 0.1, 0.2, 0.25 and 1.0)." Phys. Chem. Chem. Phys. 19, no. 39 (2017): 26672–78. http://dx.doi.org/10.1039/c7cp05369j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Yoshida, Takefumi, Manas Kumar Bera, Yemineni S. L. V. Narayana, Sanjoy Mondal, Hitoshi Abe, and Masayoshi Higuchi. "Electrochromic Os-based metallo-supramolecular polymers: electronic state tracking by in situ XAFS, IR, and impedance spectroscopies." RSC Advances 10, no. 41 (2020): 24691–96. http://dx.doi.org/10.1039/d0ra03236k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this study, the electronic states of Os-based metallo-supramolecular polymers (poly(OsL)2+) during electrochromism were tracked by in situ X-ray absorption fine structure (XAFS), infrared (IR), and impedance spectroscopies.
27

Viet, Dung Duong, Masa Johar, Haziq Naseer Khan, and Yutzil Segura-Ramírez. "Synthesis and characterization of europium (III), terbium (III) complexes and their mixture for making white light emission powder." Emergent Scientist 7 (2023): 3. http://dx.doi.org/10.1051/emsci/2023003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The enhanced luminescence of lanthanide complexes coordinated to antenna ligands has potential applications for developing devices like screens and lamps. Herein, three β-diketone antenna ligands were incorporated into Eu(III) and Tb(III) metals to synthesize five complexes. Their luminescence properties in solid state and the energy levels of the electronic states for the ligands and the metals were recorded and probed by UV–vis and fluorescence spectroscopies. Under UV light, a white-light emission powder was observed by mixing red-emission europium and green-emission terbium complexes, with blue-emission laundry powder. The powder composition was tuned by using spectroscopic analysis and CIE 1931 color diagram.
28

Palato, S., H. Seiler, H. Baker, C. Sonnichsen, P. Brosseau, and P. Kambhampati. "Investigating the electronic structure of confined multiexcitons with nonlinear spectroscopies." Journal of Chemical Physics 152, no. 10 (March 14, 2020): 104710. http://dx.doi.org/10.1063/1.5142180.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Schneider, Claus M., and Charles S. Fadley. "Magnetic spectroscopies." Journal of Electron Spectroscopy and Related Phenomena 189 (August 2013): 127–28. http://dx.doi.org/10.1016/j.elspec.2013.05.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Theodorou, Eleni, Heraklidia A. Ioannidou, Theodosia A. Ioannou, Andreas S. Kalogirou, Christos P. Constantinides, Maria Manoli, Panayiotis A. Koutentis, and Sophia C. Hayes. "Spectroscopic characterization of C-4 substituted 3,5-dichloro-4H-1,2,6-thiadiazines." RSC Advances 5, no. 24 (2015): 18471–81. http://dx.doi.org/10.1039/c4ra16144k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The effect of C-4 substitution with electron withdrawing groups on the structure and electronic properties of three 3,5-dichloro-4H-1,2,6-thiadiazines is characterized using resonance Raman, absorption and photoluminescence spectroscopies.
31

Vuilleumier, R., and A. P. Seitsonen. "Vibrational spectroscopies in liquid water: on temperature and coordination effects in Raman and infrared spectroscopies." Condensed Matter Physics 26, no. 3 (2023): 33301. http://dx.doi.org/10.5488/cmp.26.33301.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Water is an ubiquitous liquid that has several exotic and anomalous properties. Despite its apparent simple chemical formula, its capability of forming a dynamic network of hydrogen bonds leads to a rich variety of physics. Here we study the vibrations of water using molecular dynamics simulations, mainly concentrating on the Raman and infrared spectroscopic signatures. We investigate the consequences of the temperature on the vibrational frequencies, and we enter the details of the hydrogen bonding coordination by using restrained simulations in order to gain quantitative insight on the dependence of the frequencies on the neighbouring molecules. Further we consider the differences due to the different methods of solving the electronic structure to evaluate the forces on the ions, and report results on the angular correlations, isotopic mixtures HOD in H2O/D2O and and the dielectric constants in water.
32

SATO, H., F. NAGASAKI, Y. KANI, S. SENBA, Y. UEDA, A. KIMURA, and M. TANIGUCHI. "ELECTRONIC STRUCTURE OF CoSe2." Surface Review and Letters 09, no. 02 (April 2002): 1315–19. http://dx.doi.org/10.1142/s0218625x02003731.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The valence-band and conduction-band electronic structure of pyrite-type CoSe 2 has been investigated by means of ultraviolet-photoemission, synchrotron-radiation-photoemission and inverse-photoemission spectroscopies. The fully occupied Co 3d states with t 2g symmetry are observed as a main peak at -1.0 eV relative to the Fermi level (E F ), and the partially filled Co 3d states with e g symmetry are observed as a shoulder at the E F side of the main peak. On the other hand, the structure due to the unoccupied Co e g states appears at 0.6 eV in the inverse-photoemission spectrum. The electronic structure of CoSe 2 is similar to that of CoS 2. The electron correlation is more important for CoSe 2 than for CoS 2.
33

Guo, J. H., S. M. Butorin, N. Wassdahl, J. Nordgren, P. Berastegut, and L. G. Johansson. "Electronic structure ofYBa2Cu3OxandYBa2Cu4O8studied by soft-x-ray absorption and emission spectroscopies." Physical Review B 61, no. 13 (April 1, 2000): 9140–44. http://dx.doi.org/10.1103/physrevb.61.9140.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Fink, J., N. Nucker, H. A. Romberg, and J. C. Fuggle. "Electronic structure studies of high-Tc superconductors by high-energy spectroscopies." IBM Journal of Research and Development 33, no. 3 (May 1989): 372–81. http://dx.doi.org/10.1147/rd.333.0372.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Nahm, Tschang-Uh, Ranju Jung, Jae-Young Kim, W. G. Park, S. J. Oh, J. H. Park, J. W. Allen, S. M. Chung, Y. S. Lee, and C. N. Whang. "Electronic structure of disordered Au-Pd alloys studied by electron spectroscopies." Physical Review B 58, no. 15 (October 15, 1998): 9817–25. http://dx.doi.org/10.1103/physrevb.58.9817.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Ito, E., H. Oji, M. Furuta, H. Ishii, K. Oichi, Y. Ouchi, and K. Seki. "Electronic structure of p-sexiphenyl — metal interfaces studied by electron spectroscopies." Synthetic Metals 101, no. 1-3 (May 1999): 654–55. http://dx.doi.org/10.1016/s0379-6779(98)01287-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Belin-Ferré, Esther. "Electronic structure of solids using photoemission and x-ray emission spectroscopies." Journal of Physics: Condensed Matter 13, no. 34 (August 9, 2001): 7885–904. http://dx.doi.org/10.1088/0953-8984/13/34/326.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Jentoft, Friederike C. "ChemInform Abstract: Electronic Spectroscopy: Ultra Violet-Visible and Near IR Spectroscopies." ChemInform 44, no. 16 (March 28, 2013): no. http://dx.doi.org/10.1002/chin.201316205.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

FURUKAWA, Y. "ChemInform Abstract: Electronic Absorption and Vibrational Spectroscopies of Conjugated Conducting Polymers." ChemInform 28, no. 2 (August 4, 2010): no. http://dx.doi.org/10.1002/chin.199702034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Adewusi, Olubunmi. "SYNTHESIS, SPECTROSCOPIC, IN-VITRO ANTIBACTERIAL ACTIVITIES OF A 4-NITROPHENOL LIGAND AND ITS METAL (II) COMPLEXES." Caleb International Journal of Development Studies 3, no. 2 (November 30, 2020): 249–56. http://dx.doi.org/10.26772/cijds-2020-03-02-015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Novel Schiff base 2-((E)-(1H-indol-5-ylimino)methyl)-4-nitrophenol ligand and its Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) complexes were synthesized by the stoichiometric reactions between the metal (II) ions and ligand in molar ratio M:L (1:1). The synthesized compounds were characterized using melting point, solubility, molar conductance, room temperature magnetic susceptibility, infra-red and electronic spectroscopies. The assignments of four-coordinate tetrahedral/square planar geometries and the bidentate nature to the complexes was corroborated by IR, electronic spectroscopies, and magnetic moments. The Pd(II) complex however was assigned an octahedral geometry. The in-vitro antimicrobial studies revealed the potential of some of the compounds as antimicrobial agents. The ligand and its metal complexes exhibited good to moderate antimicrobial activity against tested bacteria with selective inactivity against P. mirabilis and P. aureginosa. Keywords: 2-((E)-(1H-indol-5-ylimino)methyl)-4-nitrophenol, magnetic susceptibility, square planar geometry, inhibitory zone.
41

Flesch, Stefan, Luis I. Domenianni, and Peter Vöhringer. "Probing the primary processes of a triazido–cobalt(iii) complex with femtosecond vibrational and electronic spectroscopies. Photochemical selectivity and multi-state reactivity." Physical Chemistry Chemical Physics 22, no. 44 (2020): 25618–30. http://dx.doi.org/10.1039/d0cp04865h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Ray, Sekhar C., and W. F. Pong. "Possible Ferro-electro-magnetic performance of “reduced graphene oxide” deposited on “ZnO-nanorod (NR) decorated with nanocrystalline (nc) Au particles”." AIP Advances 12, no. 5 (May 1, 2022): 055008. http://dx.doi.org/10.1063/5.0091852.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Possible ferro-electromagnetic performance of “ reduced graphene oxide ( r-GO)” deposited on the surface of “ ZnO-nanorod ( NR) decorated with nanocrystalline ( nc) Au particles” is studied using different spectroscopies and magnetic measurements. The presence of carbon/zinc-interstitials (Zn i), nc-Au, and oxygen vacancies are established through electronic property studies using different spectroscopic measurements. The magnetic moment (M) applied magnetic field (H) curve and electrical measurement current (I)–voltage (V) loops show that nc-Au/ZnO-NRs:r-GO is ferromagnetic and partial ferroelectric, respectively. The work functions are obtained from the lower kinetic energy of ultraviolet photoelectron spectroscopy, which is correlated with the enhancement of ferro-electro-magnetic performance. Both ferroelectric and ferromagnetic performance of nc-Au/ZnO-NRs:r-GO nanocomposite material could be useful for ferro-electro-magnetic technological applications.
43

Martinez, Jorge L., Sean A. Lutz, Hao Yang, Jiaze Xie, Joshua Telser, Brian M. Hoffman, Veronica Carta, Maren Pink, Yaroslav Losovyj, and Jeremy M. Smith. "Structural and spectroscopic characterization of an Fe(VI) bis(imido) complex." Science 370, no. 6514 (October 15, 2020): 356–59. http://dx.doi.org/10.1126/science.abd3054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
High-valent iron species are key intermediates in oxidative biological processes, but hexavalent complexes apart from the ferrate ion are exceedingly rare. Here, we report the synthesis and structural and spectroscopic characterization of a stable Fe(VI) complex (3) prepared by facile one-electron oxidation of an Fe(V) bis(imido) (2). Single-crystal x-ray diffraction of 2 and 3 revealed four-coordinate Fe centers with an unusual “seesaw” geometry. 57Fe Mössbauer, x-ray photoelectron, x-ray absorption, and electron-nuclear double resonance (ENDOR) spectroscopies, supported by electronic structure calculations, support a low-spin (S = 1/2) d3 Fe(V) configuration in 2 and a diamagnetic (S = 0) d2 Fe(VI) configuration in 3. Their shared seesaw geometry is electronically dictated by a balance of Fe-imido σ- and π-bonding interactions.
44

Sokaras, Dimosthenis, Tsu-Chien Weng, Dennis Nordlund, and Uwe Bergmann. "High Energy Resolution X-ray Spectroscopy at SSRL and LCLS: Instruments and Applications." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C223. http://dx.doi.org/10.1107/s2053273314097769.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
High-resolution hard x-ray spectroscopies (XES, HERFD, RIXS, XRS) are now well-established characterization tools for providing insights of material's electronic and geometric structure. The high brilliance synchrotron radiation beamlines have made feasible the routine study of the electronic structure and ligand environment of metal coordination compounds and active centers in metalloproteins, electrochemical process under in-situ conditions, as well as studies on catalytic systems under ambient conditions. Moreover, the recent availability of Linac Coherent Light Source (LCLS), provides some unique opportunities for the study of ultrafast electronic structure dynamics in various phenomena such as electron transfer processes, transient molecular states, molecular dissociation, etc. At SLAC National Accelerator Laboratory we have developed recently a set of high-resolution x-ray spectroscopic capabilities based on various multicrystal spectrometers. At SSRL we have built three multicrystal Johann spectrometers enabling XES/RIXS/HERDF techniques as well as X-ray Raman Spectroscopy. For LCLS, we have developed an energy dispersive multicrystal von Hamos spectrometer that records simultaneously the overall emission spectrum, enabling shot-by-shot time-resolved studies. Representative examples of application will be shown and discussed from the ongoing spectroscopy programs of SSRL and LCLS.
45

Fernandez, L., M. Blanco-Rey, R. Castrillo-Bodero, M. Ilyn, K. Ali, E. Turco, M. Corso, et al. "Influence of 4f filling on electronic and magnetic properties of rare earth-Au surface compounds." Nanoscale 12, no. 43 (2020): 22258–67. http://dx.doi.org/10.1039/d0nr04964f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
HoAu2, YbAu2 and GdAu2 surface compounds are investigated by electron spectroscopies, microscopy and theory. Yb in YbAu2 reveals a mixed valence character while Gd and Ho are trivalent. HoAu2 is ferromagnetic with an out-of-plane easy axis and TC = 22 K.
46

Nokelainen, Johannes, Bernardo Barbiellini, Jan Kuriplach, Stephan Eijt, Rafael Ferragut, Xin Li, Veenavee Kothalawala, et al. "Identifying Redox Orbitals and Defects in Lithium-Ion Cathodes with Compton Scattering and Positron Annihilation Spectroscopies: A Review." Condensed Matter 7, no. 3 (July 26, 2022): 47. http://dx.doi.org/10.3390/condmat7030047.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Reduction-oxidation (redox) reactions that transfer conduction electrons from the anode to the cathode are the fundamental processes responsible for generating power in Li-ion batteries. Electronic and microstructural features of the cathode material are controlled by the nature of the redox orbitals and how they respond to Li intercalation. Thus, redox orbitals play a key role in performance of the battery and its degradation with cycling. We unravel spectroscopic descriptors that can be used to gain an atomic-scale handle on the redox mechanisms underlying Li-ion batteries. Our focus is on X-ray Compton Scattering and Positron Annihilation spectroscopies and the related computational approaches for the purpose of identifying orbitals involved in electrochemical transformations in the cathode. This review provides insight into the workings of lithium-ion batteries and opens a pathway for rational design of next-generation battery materials.
47

Sangaletti, L., S. Pagliara, P. Vilmercati, C. Castellarin-Cudia, P. Borghetti, P. Galinetto, R. Gebauer, and A. Goldoni. "Electronic Excitations in Synthetic Eumelanin Aggregates Probed by Soft X-ray Spectroscopies." Journal of Physical Chemistry B 111, no. 19 (May 2007): 5372–76. http://dx.doi.org/10.1021/jp067415c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Tatemizo, N., S. Imada, Y. Miura, H. Yamane, and K. Tanaka. "Electronic structure of AlCrN films investigated using various photoelectron spectroscopies andab initiocalculations." Journal of Physics: Condensed Matter 29, no. 8 (January 12, 2017): 085502. http://dx.doi.org/10.1088/1361-648x/aa5381.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Yasui, Asami, and Shingo Ogawa. "Study on Electronic States of Indium Zinc Oxide Films by Electron Spectroscopies." Journal of Surface Analysis 25, no. 1 (2018): 21–24. http://dx.doi.org/10.1384/jsa.25.21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Rizzi, A., and H. Lüth. "Electronic gap states onGaN(0001)-(l × 1) surfaces studied by electron spectroscopies." Il Nuovo Cimento D 20, no. 7-8 (July 1998): 1039–45. http://dx.doi.org/10.1007/bf03185510.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії