Добірка наукової літератури з теми "Electronic pressure sensor"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Electronic pressure sensor".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Electronic pressure sensor"

1

Zheng, Anbo, Yuxiang Qin, Xueshuo Zhang, Qing Xia, Xin Xu, and Chenxiang Bai. "Tentacled snakes-inspired flexible pressure sensor for pain sensation monitoring." Smart Materials and Structures 31, no. 4 (February 22, 2022): 045004. http://dx.doi.org/10.1088/1361-665x/ac5454.

Повний текст джерела
Анотація:
Abstract Exploration of flexible tactile sensors with high sensitivity that can imitate the perception functions (tactile sensing and pain sensing) of human skin is the main force in the realization of electronic skin. The research of electronic skin with the function of pain perception is of great significance in the field of biomimetic robot and treatment of patients losing the pain sensation ability of their skin. Herein, to broaden the application field of traditional electronic skin, we demonstrate a biomimetic and highly sensitive tactile sensor for realization of sensory functionalities of human skin. The structure of our sensor mimics the surface of the tentacles of tentacled snakes, which are strikingly sensitive mechanoreceptors. We design a tentacle-inspired flexible sensor by sandwiching the convex dielectric layer of PDMS/MXene microarrays between two flexible electrodes. It is found that the bioinspired sensor exhibits a high sensitivity of 3.61 kPa−1, a fast response time of 29 ms and a satisfactory stability, ensuring the ability in monitoring physiological signals. Finally, we present the application of the sensor for finger bending, international Morse code detection, and artery pulse detection. By presetting the pain thresholds of different areas of skin in a program, the sensor can identify and distinguish pressure data that exceed the pain threshold, realizing the detection of pain. In addition, it can be further applied on robot skins to assess the risk level of the working environment by monitoring its pressure data.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Padron, Ivan, Anthony T. Fiory, and Nuggehalli M. Ravindra. "Integrated Optical and Electronic Pressure Sensor." IEEE Sensors Journal 11, no. 2 (February 2011): 343–50. http://dx.doi.org/10.1109/jsen.2010.2062175.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Xiao, Yongjun, Chao Guo, Qingdong Zeng, Zenggang Xiong, Yunwang Ge, Wenqing Chen, Jun Wan, and Bo Wang. "Electret Nanogenerators for Self-Powered, Flexible Electronic Pianos." Sustainability 13, no. 8 (April 8, 2021): 4142. http://dx.doi.org/10.3390/su13084142.

Повний текст джерела
Анотація:
Traditional electronic pianos mostly adopt a gantry type and a large number of rigid keys, and most keyboard sensors of the electronic piano require additional power supply during playing, which poses certain challenges for portable electronic products. Here, we demonstrated a fluorinated ethylene propylene (FEP)-based electret nanogenerator (ENG), and the output electrical performances of the ENG under different external pressures and frequencies were systematically characterized. At a fixed frequency of 4 Hz and force of 4 N with a matched load resistance of 200 MΩ, an output power density of 20.6 mW/cm2 could be achieved. Though the implementation of a signal processing circuit, ENG-based, self-powered pressure sensors have been demonstrated for self-powered, flexible electronic pianos. This work provides a new strategy for electret nanogenerators for self-powered sensor networks and portable electronics.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Xu, Dandan, Ling Duan, Suyun Yan, Yong Wang, Ke Cao, Weidong Wang, Hongcheng Xu, Yuejiao Wang, Liangwei Hu, and Libo Gao. "Monolayer MoS2-Based Flexible and Highly Sensitive Pressure Sensor with Wide Sensing Range." Micromachines 13, no. 5 (April 22, 2022): 660. http://dx.doi.org/10.3390/mi13050660.

Повний текст джерела
Анотація:
Flexible pressure sensors play an important role in flexible robotics, human-machine interaction (HMI), and human physiological information. However, most of the reported flexible pressure sensors suffer from a highly nonlinear response and a significant decrease in sensitivity at high pressures. Herein, we propose a flexible novel iontronic pressure sensor based on monolayer molybdenum disulfide (MoS2). Based on the unique structure and the excellent mechanical properties as well as the large intercalation capacitance of MoS2, the prepared sensor holds an ultra-high sensitivity (Smax = 89.75 kPa−1) and a wide sensing range (722.2 kPa). Further, the response time and relaxation time of the flexible sensor are only 3 ms, respectively, indicating that the device can respond to external pressure rapidly. In addition, it shows long-term cycling stability (over 5000 cycles with almost no degradation) at a high pressure of 138.9 kPa. Finally, it is demonstrated that the sensor can be used in physiological information monitoring and flexible robotics. It is anticipated that our prepared sensor provide a reliable approach to advance the theory and practicality of the flexible sensor electronics.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lee, Kang-Ho, Yeong-Eun Kwon, Hyukjin Lee, Yongkoo Lee, Joonho Seo, Ohwon Kwon, Shin-Won Kang, and Dongkyu Lee. "Active Body Pressure Relief System with Time-of-Flight Optical Pressure Sensors for Pressure Ulcer Prevention." Sensors 19, no. 18 (September 6, 2019): 3862. http://dx.doi.org/10.3390/s19183862.

Повний текст джерела
Анотація:
A body pressure relief system was newly developed with optical pressure sensors for pressure ulcer prevention. Unlike a conventional alternating pressure air mattress (APAM), this system automatically regulates air flow into a body supporting mattress with adaptive inflation (or deflation) duration in response to the pressure level in order to reduce skin stress due to prolonged high pressures. The system continuously quantifies the body pressure distribution using time-of-flight (ToF) optical sensors. The proposed pressure sensor, a ToF optical sensor in the air-filled cell, measures changes in surface height of mattress when pressed under body weight, thereby indirectly indicating the interface pressure. Non-contact measurement of optical sensor usually improves the durability and repeatability of the system. The pressure sensor was successfully identified the 4 different-predefined postures, and quantitatively measured the body pressure distribution of them. Duty cycle of switches in solenoid valves was adjusted to 0–50% for pressure relief, which shows that the interface pressure was lower than 32 mmHg for pressure ulcer prevention.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pan, Jin, Shiyu Liu, Hongzhou Zhang, and Jiangang Lu. "A Flexible Temperature Sensor Array with Polyaniline/Graphene–Polyvinyl Butyral Thin Film." Sensors 19, no. 19 (September 23, 2019): 4105. http://dx.doi.org/10.3390/s19194105.

Повний текст джерела
Анотація:
Thermal-resistance temperature sensors generally employ temperature-sensitive materials as active layers, which are always deposited on a flexible substrate to improve flexibility. Such a temperature sensor is usually integrated in wearable devices with other sensors, such as pressure sensors and stretchable sensors. In prior works, the temperature and pressure sensors are usually located in different layers in a multifunction sensor, which results in a complicated fabrication process, as well as a large thickness of devices. Meanwhile, many temperature sensors are based on large areas of non-transparent materials, leading to difficulties in integrating display applications. In this paper, we demonstrate a flexible temperature sensor based on polyaniline/graphene (GPANI)–polyvinyl butyral (PVB) thin film and indium tin oxides (ITO)- polyethylene terephthalate (PET) substrates. The GPANI particles embedded in PVB film not only contribute to temperature detection, but also response to external pressures, due to weak deformations. In addition, the thin composite film (2.7 μm) highly improved the transparency. By optimizing the device structure, the sensor integrates temperature and pressure detection into one single layer, which shows a wide temperature range of 25–80 °C, a pressure range of 0–30 kPa, and a high transparency (>80%). The temperature sensor offers great potential for applications in emerging wearable devices and electronic skins.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chen, Wufan, Bingwei Wang, Qianbing Zhu, and Xin Yan. "Flexible Pressure Sensors with a Wide Detection Range Based on Self-Assembled Polystyrene Microspheres." Sensors 19, no. 23 (November 27, 2019): 5194. http://dx.doi.org/10.3390/s19235194.

Повний текст джерела
Анотація:
Flexible pressure sensors are important components of electronic skin and flexible wearable devices. Most existing piezoresistive flexible pressure sensors have obtained high sensitivities, however, they have relatively small pressure detection ranges. Here, we report flexible pressure sensors with a wide detection range using polydimethylsiloxane (PDMS) as the substrate, carbon nanotube films as the electrode material, and self-assembled polystyrene microsphere film as the microstructure layer. The obtained pressure sensor had a sandwich structure, and had a wide pressure detection range (from 4 kPa to 270 kPa), a sensitivity of 2.49 kPa−1, and a response time of tens of milliseconds. Two hundred load–unload cycles indicated that the device had good stability. In addition, the sensor was obtained by large-area fabrication with a low power consumption. This pressure sensor is expected to be widely used in applications such as electronic skin and flexible wearable devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hunter, Gary W., Philip G. Neudeck, Robert S. Okojie, Glenn M. Beheim, J. A. Powell, and Liangyu Chen. "An Overview of High-Temperature Electronics and Sensor Development at NASA Glenn Research Center." Journal of Turbomachinery 125, no. 4 (October 1, 2003): 658–64. http://dx.doi.org/10.1115/1.1579508.

Повний текст джерела
Анотація:
This paper gives a brief overview of the status of high-temperature electronics and sensor development at NASA Glenn Research Center supported in part or in whole by the Ultra Efficient Engine Technology Program. These activities contribute to the long-term development of an intelligent engine by providing information on engine conditions even in high temperature, harsh environments. The technology areas discussed are: 1) high-temperature electronics, 2) sensor technology development (pressure sensor and high-temperature electronic nose), 3) packaging of harsh environment devices and sensors, and 4) improved silicon carbide electronic materials. A description of the state-of-the-art and technology challenges is given for each area. It is concluded that the realization of a future intelligent engine depends on the development of both hardware and software including electronics and sensors to make smart components. When such smart components become available, an intelligent engine composed of smart components may become a reality.title
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chen, YuanYuan, RuiJie Xie, BingHua Zou, YiHan Liu, Kang Zhang, Sheng Li, Bing Zheng, WeiNa Zhang, JianSheng Wu, and FengWei Huo. "CNT@leather-based electronic bidirectional pressure sensor." Science China Technological Sciences 63, no. 10 (August 17, 2020): 2137–46. http://dx.doi.org/10.1007/s11431-019-1502-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Janardhanan, Shankaran, Joan Z. Delalic, Jeffrey Catchmark, and Dharanipal Saini. "Development of Biocompatible MEMS Wireless Capacitive Pressure Sensor." Journal of Microelectronics and Electronic Packaging 2, no. 4 (October 1, 2005): 287–96. http://dx.doi.org/10.4071/1551-4897-2.4.287.

Повний текст джерела
Анотація:
The objective of this research was to develop a wireless pressure sensor useful for monitoring bladder pressure. The wireless sensor consists of an active capacitive element and an inductor coil. The changes in pressure are related to the changes in the resonant frequency of the internal sensor. The existing pressure sensors have inductors formed on both sides of the substrate. The changes in internal capacitance of these sensors are related to the changes in pressure by impedance matching of the internal LC circuit. The deviation in bladder pressure is an important variable in evaluating the diseased state of the bladder. The inductor designed for this application is a spirally wound inductor fabricated adjacent to the capacitor. The external sensing uses equivalent changes in internal LC. The resonant frequency of the internal sensor is defined by the deformation of the plate, causing the plate to touch the dielectric on the fixed capacitive plate, which is reflected as changes in capacitance(C). The deformation of the plate has been modeled using Finite Element Analysis. The finite element analysis optimizes the dimensions of the design. Remote sensing is achieved through inductive coupling and the changes in pressure are determined. The device is tested for pressures ranging from 0–150 mmHg, bladder pressure. The RF Telemetry system has been modeled using Sonnet. The frequency range is between 100–670 MHz which is in compliance to that specified by Federal Communications Commission (FCC) regulations.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Electronic pressure sensor"

1

Van, den Heever Thomas Stanley. "A zinc oxide nanowire pressure sensor." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5369.

Повний текст джерела
Анотація:
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2010.
Thesis presented in partial fulfilment of the requirements for the degree Master of Science in Engineering at the University of Stellenbosch
ENGLISH ABSTRACT: Measurement of pressure with zinc oxide (ZnO) nanowires was investigated. ZnO exhibits the piezoelectric effect, generating a voltage when pressure is applied to the material. This relationship between pressure and output voltage was used to make a pressure sensor. A study of the physical and mathematical working of the piezoelectric effect in ZnO nanowires was done. Simulations were conducted by means of specialised software to test the theory. The simulations gave results as the theory had predicted. ZnO nanowires were grown using various methods. Vapour liquid solid (VLS) was found to be the best method to grow uniform and dense arrays of ZnO nanowires. Statistical methods were employed to obtain the optimal parameters for the growth of ZnO nanowires through the VLS method. After the growth of the ZnO nanowires a pressure sensor was built. The manufacturing of the pressure sensor consisted of different steps. The sensors were tested to verify that they worked as described in theory and as shown in the simulations. The output voltage was lower than the simulated value due to imperfections and losses throughout the system. The output voltage versus applied pressure graphs did coincide with the bulk ZnO materials as well as related products, such as force sensing resistors. The output voltage is too low, but there are various methods by which the output voltage can be increased. These methods are discussed. The finished sensor can be used to continuously monitor pressure on a plane.
AFRIKAANSE OPSOMMING: Die meting van druk deur sink oksied (ZnO) nanodrade was ondersoek. ZnO toon die piëzo-elektriese effek - spanning word gegenereer wanneer druk op die materiaal aangewend word. Hierdie verhouding tussen druk en uitsetspanning is gebruik om ’n druksensor te vervaardig. ’n Studie van die fisiese en wiskundige werking van die piëzo-elektriese effek in ZnO nanodrade is gedoen. Simulasies deur middel van gespesialiseerde sagteware is uitgevoer om die teorie te bevestig. Die simulasies het resultate getoon soos deur die teorie beskryf word. ZnO nanodrade is gegroei deur verskillende metodes. Verdamping vloeistof vastestof (VVV) is as die beste metode gevind om uniforme en digte skikkings van ZnO nanodrade te kry. Statistiese metodes is aangewend om die optimale parameters vir die groei van ZnO nanodrade deur middel van die VVV metode te kry. Na afloop van die groei van die ZnO nanodrade is ’n druksensor vervaardig. Die vervaardigingsproses het uit verskillende stappe bestaan, ten einde die bou van ’n werkende druksensor uit die ZnO nanodrade te realiseer. Die sensors is getoets om te bevestig dat dit werk, soos beskryf deur die teorie en gewys in die simulasies. Die uitsetspanning was laer as wat verwag was as gevolg van onvolmaakthede en verliese in die hele stelsel. Die uitsetspanning teenoor druk grafieke van die sensor het ooreengestem met die van die grootmaat materiale, asook verwante produkte soos druk sensitiewe weerstande. Die uitset spanning is baie laag en daar bestaan verskillende maniere waarop die uitsetspanning verhoog kan word. Hierdie metodes word bespreek.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Medler, Alison Elizabeth. "A thin monocrystalline diaphragm pressure sensor using silicon-on-insulator technology." Thesis, Middlesex University, 1998. http://eprints.mdx.ac.uk/8109/.

Повний текст джерела
Анотація:
The sensors market is huge and growing annually, of this a large sector is pressure sensors. With increasing demands on performance there remains a need for ultraminiature, high performance pressure sensors, particularly for medicai applications. To address this a novel capacitive pressure sensor consisting of an array of parallel connected diaphragms has been designed and fabricated from SIMOX substrates. The benefits of this include single crystal silicon diaphragms, small, well controlled dimensions, single sided processing and the opportunity for electronics integration. Theoretical modelling of this structure predicts a high sensitivity and low stress device with opportunities for scaling to suit alternative applications. A novel, process technology was developed to achieve the required structure with the inclusion of procedures to address the specific issues relating to the SIMOX material. The sensor was fully characterised and the results demonstrated high performance compared with similar reported devices. Alternative structures such as cantilevers, bridges and resonators were fabricated as a demonstrative tool to show the feasibility of this technology in a wider field of applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Booth, M. J. "Design and development of a distributed planar pressure sensor utilising electrical impedance tomography." Thesis, Sheffield Hallam University, 2000. http://shura.shu.ac.uk/19369/.

Повний текст джерела
Анотація:
This thesis describes an investigation into the use of electrical impedance tomography used in conjunction with a flexible conductive sensor for the measurement of distributed pressure. The main application areas are for the constant monitoring of the pressure distribution between a patient and their support surface i.e. beds and wheel chairs, in order to reduce the formation of pressure sores and tactile sensing for robotics. A number of systems have been developed for the monitoring of patients but non-have proved suitable for constant monitoring and these are reviewed. A review of the tactile sensor techniques used in robotic grippers is presented and when the area to be monitored is relatively small (1-2 cm2) the techniques already under development can provide the resolution required. However no technique exists to measure distributed pressure over a large area. A review of both the hardware and reconstruction algorithms used in electrical impedance tomography is presented and the design of the hardware and software developed for the investigation into the sensor design is detailed. As the sensor is such that electrodes are not limited to the periphery both an experimental and computer simulated comparison of three different electrode configurations is described. The three-electrode arrangements investigated are with the electrodes placed at the periphery of both a circular and square boundary, and with electrodes evenly distributed across a square area. The results from the comparisons show that the new distributed electrode arrangement performs significantly better than when the electrodes are confined to the periphery. It also shows that the geometry of the boundary when using peripheral electrodes can also effect the performance of an EIT system. The initially investigated sensor design was based on a conductive polymer sheet and a number of samples were characterised in term of their V/I characteristics and their creep and resistance change due to applied pressure. Only one of the sample tested had a response worth investigating further but the material could not be obtained for larger area tests. Therefore an alternative sensor design was investigated. This novel sensor consisted of a conductive fluid retained beneath a flexible rubber membrane. From electrical impedance tomography images obtained from the experimental evaluation of the new sensor design it is shown that the system can image the pressure distribution across its surface. In addition, the analysis of the unprocessed data from the new sensor shows the system to have a well-defined response with a wide applied pressure range and the construction of the sensor is such that its response could be tailored to the range of pressure to be measured.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bergmark, Giesler Linn. "Investigating construction and design parameters of an embroidered resistive pressure sensor." Thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-26450.

Повний текст джерела
Анотація:
Electronic textiles, or smart textiles, is a field that is growing due to the opportunities it provides. Textile integrated electronics enables soft, flexible, lightweight electronic devices that enable long term monitoring within the medical field. Pressure sensors is one device within this field that has been researched. A textile integrated pressure sensor enables monitoring of heart rate, muscle activity, posture, gait phases and finger movements. In this project a resistive pressure sensor has been produced using embroidery with the purpose of investigating how construction and design parameters influence the resistance-pressure relationship. The study consisted in different phases where in Phase I parameters such as fabric substrate, stitch length and yarn type was examined. Phase II investigated design parameters like electrode pattern design, sensor shape, trace distance and size. In the design phase a new electrode pattern and sensor shape was tested. Finally in Phase III a sensor matix and sensor chain was constructed in order to evaluate the possibility of obtaining touch location. The findings in this study showed that the shape, size and yarn type had the most distinct influence on the sensor performance in regards to the resistance-pressure relationship. In an additional recovery test the results indicated that both textile substrate and stitch length could influence the ability to recover to its original shape after applying cyclic pressure. It was also found that the new pattern design performed equally to the conventional pattern designs and at the same time reduced material consumption as well as the embroidery time. The sensor matrix and sensor chain could display a change in resistance when applying a weight at each sensing element, implying that touch location could be detected, but would need further development in construction before potential implementation.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Veedhi, Carisma Catherin, and Vasantha Sai Darahas Yeedi. "Estimation of Altitude : using ultrasoinc and pressure sensors." Thesis, Blekinge Tekniska Högskola, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-19950.

Повний текст джерела
Анотація:
This paper deals with the estimation of altitude of the drone for which the sensors like ultrasonic, barometric pressure sensors and their characteristics plays a major role. To  estimate the altitude of the drone, we used the matlab software with Simulink. apart from the software and hardware description, we discuss several issues regarding the equipment,abilities and performance of the drone.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Skvorchevsky, A. Y. "ELS capacity control system for axial-piston pumps." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/46920.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cordeiro, Juliana Ribeiro. "Síntese e aplicação de polímeros condutores em sensores olfativos." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/46/46135/tde-08112010-084724/.

Повний текст джерела
Анотація:
Os objetivos do trabalho consistem em síntese e caracterização de três polímeros: poli(2,1,3-benzotiadiazol-4,7-ilenovinileno) (PBTDV), poli(2,1,3-benzotiadiazol-4,7-ilenovinileno-co-2-bromo-5-hexilóxi-p-fenilenovinileno (PBTDV-co-BHPPV) e poli(2-bromo-5-hexilóxi-p-fenilenovinileno) (BHPPV), sendo os dois primeiros inéditos; aplicação de polímeros condutores no desenvolvimento de um nariz eletrônico capaz de identificar madeiras; e aplicação de polímeros condutores em um sensor de pressão. Os polímeros foram preparados de maneira satisfatória via redução catódica de seus precursores tetra-halogenados, que forneceu produtos com rendimentos apreciáveis. Para o projeto do nariz eletrônico que pretende identificar madeiras, dois conjuntos de espécies de madeira foram estudadas: (a) mogno e cedro e (b) imbuia e canela-preta. O nariz eletrônico desenvolvido apresenta um conjunto de quatro sensores de gás, que foram construídos por meio da deposição de finos filmes de polímeros dopados sobre a superfície de eletrodos interdigitados. Esse conjunto de sensores foi desenvolvido com sucesso, sendo capaz de diferenciar as espécies de madeira com taxa de acerto de 100%. Por fim, foi desenvolvido também com sucesso um sensor de gás capaz de atuar como sensor de pressão. Esse dispositivo mostrou-se sensível à variação de pressão, do vácuo a ambiente, e os ensaios apresentaram boa reprodutibilidade. A resposta do sensor, frente à variação de pressão, é produto de interação(ões) entre a camada ativa do polímero utilizado (PHBPE, poli(4\'-hexilóxi-2,5-bifenilenoetileno)) e algum(ns) componente(s) do ar atmosférico ou da atmosfera particular do laboratório. Esse sensor é de fácil fabricação e barato (~ R$ 1,00), sendo possível sua aplicação como sensor para pressões menores do que a ambiente
The syntheses of three polymers via electrochemical reduction of their precursors are described. Two out of the three generated polymers have never been described before. An electronic nose was developed capable of identifying two pairs of wood species: (a) mahogany and cedar and (b) Brazilian walnut and black-cinnamon. The electronic nose consisted of four gas sensors, fabricated by the deposition of thin doped polymer films onto the surface of interdigitated electrodes. The device presented a rate of hits of 100% in 80 assays of identification of the above cited species. Finally, a gas sensor based on a conductive polymer and capable of acting as a pressure sensor was fabricated. The sensor was suitable for measuring air pressures in the range of 100 mmHg to 700 mmHg due to its sensibility to one or more specific compounds present in the air. The device is cheap, easy to fabricate and lasts for several months
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ernmark, Niklas. "Utveckling av en CAN-adapter i ett sensorsystem för övervakning av däcktryck. : Development of a CAN-adapter in a sensor system for tire pressure monitoring." Thesis, KTH, Data- och elektroteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215071.

Повний текст джерела
Анотація:
Den här rapporten beskriver ett examensarbete i elektroteknik på Kungliga tekniska högskolan. Syftet var att skapa en unik systemlösning där ett CAN-adapterkort (Controller Area Network) skulle integreras med ett system för övervakning av däcktryck i tunga fordon. Målet var att presentera mätvärden från ventilsensorer på en persondator. Systemet för övervakning av lufttryck heter J1939 – TPMS och är en färdig produkt. J1939 – TPMS skickar CAN-ramar på en CAN-buss i J1939-format. Dessa ramar ska läsas in av adapterkortet och presenteras på ett terminalprogram på en persondator. Arbetet har bestått av att utreda hur systemet J1939 – TPMS fungerar i detalj. Rollen för protokollet J1939 och dess förhållande till CAN har förklarats. Hur J1939-ramar tolkas och hur mätdata rörande TPMS avkodas har beskrivits i detalj. Principer för hur en CAN-nod fungerar har klargjorts. Baserat på detta har ett CAN-adapterkort konstruerats. Konstruktionen har inneburit komponentval, design av elektronikschema, design av mönsterkort och utveckling av inbyggd programvara. Resultatet blev ett färdigt och fungerande CAN-adapterkort som har testats med J1939 – TPMS. Kraven för projektet uppfylldes. Dock så kommer mer arbete med kortet och systemet behövas för att det ska bli en färdig produkt. Arbetet genomfördes hos Motion Control i Västerås AB i samarbete med Transeco Däckservice.
This report describes a degree project at the Royal Institute of Technology. The purpose was to create a unique system solution in which a CAN adapter card (Controller Area Network) was to be integrated with an air pressure monitoring system for heavy duty vehicles. The goal was to present measurement values ​​from valve sensors on a personal computer. The air pressure monitoring system is called J1939 - TPMS and is a finished product. J1939 - TPMS sends CAN-frames to a CAN-bus in J1939 format. These frames are to be read by the adapter card and presented on a terminal program on a personal computer. The job has been to investigate how the J1939 - TPMS system works in detail. The role of the J1939 protocol and its relationship with CAN has been clarified. Also, a detailed description of how J1939 frames are interpreted and how the measuring data TPMS is decoded is done. Principles for how a CAN node works has been clarified. Based on this, a CAN adapter card has been designed. The design has included component selection, design of electronics schema, design of computer cards and development of embedded software. The result was a ready-to-use CAN adapter card tested with J1939-TPMS. Requirements for the project were met. However, more work with the card will be needed to make it a finished product. The work was carried out at Motion Control in Västerås AB in cooperation with Transeco Däckservice (Transeco Tire Service).
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Скворчевський, Олександр Євгенович. "Нове покоління гідравлічних приводів для мобільних машин на основі принципу e-LOAD SENSING (e-LS)". Thesis, Харківський національний автомобільно-дорожній університет, 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/41789.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ibrahim, Amr. "Remotely interrogated MEMS pressure sensor." Thesis, University of Glasgow, 2012. http://theses.gla.ac.uk/4149/.

Повний текст джерела
Анотація:
This thesis considers the design and implementation of passive wireless microwave readable pressure sensors on a single chip. Two novel-all passive devices are considered for wireless pressure operation. The first device consists of a tuned circuit operating at 10 GHz fabricated on SiO2 membrane, supported on a silicon wafer. A pressure difference across the membrane causes it to deflect so that a passive resonant circuit detunes. The circuit is remotely interrogated to read off the sensor data. The chip area is 20 mm2 and the membrane area is 2mm2 with thickness of 4 µm. Two on chip passive resonant circuits were investigated: a meandered dipole and a zigzag antenna. Both have a physical length of 4.25 mm. the sensors show a shift in their resonant frequency in response to changing pressure of 10.28-10.27 GHz for the meandered dipole, and 9.61-9.58 GHz for the zigzag antenna. The sensitivities of the meandered dipole and zigzag sensors are 12.5 kHz and 16 kHz mbar, respectively. The second device is a pressure sensor on CMOS chip. The sensing element is capacitor array covering an area of 2 mm2 on a membrane. This sensor is coupled with a dipole antenna operating at 8.77 GHz. The post processing of the CMOS chip is carried out only in three steps, and the sensor on its own shows a sensitivity of 0.47fF/mbar and wireless sensitivity of 27 kHz/mbar. The MIM capacitors on membrane can be used to detune the resonant frequency of an antenna.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Electronic pressure sensor"

1

Piezoelectric sensorics: Force, strain, pressure, acceleration and acoustic emission sensors, materials and amplifiers. Berlin: Springer, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Electronic pressure sensor"

1

Gu, Yumao, Yuanzhen Dai, Yang Liu, and Xiaoping Chen. "Electronic Artificial Skin for Application in Pressure Sensor." In Advances in Intelligent Systems and Computing, 433–39. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16841-8_40.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Samridhi and Parvej Ahmad Alvi. "State of Art for Virtual Fabrication of Piezoresistive MEMS Pressure Sensor." In Electrical and Electronic Devices, Circuits and Materials, 329–40. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis: CRC Press, 2021. http://dx.doi.org/10.1201/9781003097723-20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tee, Benjamin C. K., Stefan C. B. Mannsfeld, and Zhenan Bao. "Elastomer-Based Pressure and Strain Sensors." In Stretchable Electronics, 325–53. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527646982.ch14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kandler, M., J. Eichholz, Y. Manoli, and W. Mokwa. "CMOS Compatible Capacitive Pressure Sensor with Read-Out Electronics." In Micro System Technologies 90, 574–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-45678-7_81.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mortier, J., and L. Zichner. "Computer-Assisted Pressure Measurement in the Patellofemoral Joint with Electronic Pressure Sensors." In Navigation and Robotics in Total Joint and Spine Surgery, 204–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-59290-4_29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lakshmi, D. L., Venkateswara Rao Kolli, P. C. Srikanth, D. L. Girijamba, and Indira Bahaddur. "Pressure Sensor Based on Two-Dimensional Photonic-Crystal Ring Resonator." In Advances in VLSI, Signal Processing, Power Electronics, IoT, Communication and Embedded Systems, 85–97. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0443-0_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

SundeepSiddula, K. VenkataRamarao, and S. K. Mohammad Hasheer. "Analysis and Design Approach of Footstep Power Generation Using Pressure Sensors." In Proceedings of Third International Conference on Communication, Computing and Electronics Systems, 519–26. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8862-1_34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

WLODARSKI, Wojciech B., and Robert A. SHANKS. "APPLICATION OF GaAs, GaSb AND InSb FOR PRESSURE SENSOR DESIGN." In Frontiers of Materials Research: Electronic and Optical Materials, 569–74. Elsevier, 1991. http://dx.doi.org/10.1016/b978-0-444-88825-9.50092-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fathi, Amir, Sarkis Azizian, and Nastaran Sharifan. "Sensors and Amplifiers." In Handbook of Research on Nanoelectronic Sensor Modeling and Applications, 423–504. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-0736-9.ch016.

Повний текст джерела
Анотація:
Sensors are electrical-mechanical elements which are the interface between environment and electrical systems. The input of sensors is characteristics of the environment for example temperature, pressure and etc. and their output is a small electric voltage or current. Their job is to convert environment characteristics to an electric voltage or current at their outputs. Since the output current or voltage is very small, it must be amplified in order to be suitable for use in electronic systems. In this chapter we completely explain the design procedure and characteristics of sensor amplifiers. The important parameters of sensor amplifiers are input and output resistance, gain, unity gain bandwidth and etc. One of the most important characteristics of amplifiers is the linearity of amplification in a way that it must have uniformity for all amplitude voltages or currents in all frequencies of the bandwidth. For this purpose, first the operational amplifier is completely discussed, then the linearity of feedback operation will be explained.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mishra, Amitabh. "A Thermal and Energy Aware Framework with Physiological Safety Considerations for Internet of Things in Healthcare and Medical Applications." In Ubiquitous Computing [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99655.

Повний текст джерела
Анотація:
Healthcare, lifestyle, and medical applications of Internet of Things (IoT) involve the use of wearable technology that employs sensors of various kinds to sense human physiological parameters such as steps walked, body temperature, blood pressure, heart rate and other cardiac parameters. Such sensors and associated actuators can be worn as gadgets, embedded in clothing, worn as patches in contact with the body and could even be implanted inside the body. These sensors are electronic, and any electronic activity during their sensing, processing and wireless transmission is associated with the generation of heat. This dissipated heat can cause discomfort to the subject and has the potential of damaging healthy living tissue and cells. In the proposed work, the author does a performance check on the intrinsic safety aspects of an IoT healthcare network with respect to the functioning of the wireless sensors involved and routing of sensor data samples. The author also suggests an optimized thermal and energy aware framework to address the issue of temperature rise due to processing and data transmission from sensors through signal processing approaches that help in reducing thermal hazards and simultaneously enhancing the network lifetime through energy conservation.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Electronic pressure sensor"

1

Karuza, M., D. Bozicevic, G. Cantatore, and M. Vretenar. "Radiation Pressure Sensor." In 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO). IEEE, 2020. http://dx.doi.org/10.23919/mipro48935.2020.9245357.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yang, Shengbing, Jun Wang, and Ying Xu. "Engine Electronic Oil Pressure Sensor Based on MEMS." In 2009 International Conference on Information Engineering and Computer Science. IEEE, 2009. http://dx.doi.org/10.1109/iciecs.2009.5363501.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Juniewicz, Henryk M., and Miroslaw Werszko. "Intracranial pressure monitoring system with pneumatic capsule sensor." In Optoelectronic and Electronic Sensors, edited by Ryszard Jachowicz and Zdzislaw Jankiewicz. SPIE, 1995. http://dx.doi.org/10.1117/12.213152.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wahab, Yufridin, Aladin Zayegh, and Rezaul Begg. "Silicon implementation of micro pressure sensor." In 2010 International Conference on Electronic Devices, Systems and Applications (ICEDSA). IEEE, 2010. http://dx.doi.org/10.1109/icedsa.2010.5503069.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Groepper, Charlie, Tianhong Cui, Perry Li, and Kim Stelson. "Integrated Pressure-Flow-Temperature Sensor for Hydraulic Systems." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82002.

Повний текст джерела
Анотація:
The design of a miniature low-cost MEMS (Micro-Electronic Mechanical Systems) based sensor for sensing pressure, flow and temperature in fluid power systems is presented. The sensor is small enough to be incorporated into hydraulic components such as pumps, motor and cylinders. Considerable literature exists on the development of MEMS-based pressure and temperature sensors; therefore the primary challenge addressed in this paper is a low cost flow sensing method that does not impose extra energy dissipation into the system. The flow sensing principle adopted for use with the sensor utilizes the small pressure differences that develop as fluid flows through any geometry. As an example to prove the validity of this principle, pressure-flow relationships are determined for an elbow geometry. Specifically, the pressure differences arising from the momentum change of the fluid as it passes through the elbow are correlated to the flow rate of the fluid through the bend. The pressure-flow correlations derived from theoretical modeling, computational fluid dynamic (CFD) simulation, and experimental measurement using the flow bend geometry are compared and a calibration scheme determined. The first generation MEMS sensor incorporates pressure, flow and temperature measurement capability on a single sensor die. Pressure sensing is accomplished with piezoresistive strain elements, and temperature sensing is done with a thermister.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hunter, Gary W., Philip G. Neudeck, Robert S. Okojie, Glenn M. Beheim, J. A. Powell, and Liangyu Chen. "An Overview of High Temperature Electronics and Sensor Development at NASA Glenn Research Center." In ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30624.

Повний текст джерела
Анотація:
This paper gives a brief overview of the status of high temperature electronics and sensor development at NASA Glenn Research Center supported in part or in whole by the Ultra Efficient Engine Technology Program. These activities contribute to the long-term development of an intelligent engine by providing information on engine conditions even in high temperature, harsh environments. The technology areas discussed are: 1) High temperature electronics, 2) Sensor technology development (Pressure sensor and High temperature electronic nose), 3) Packaging of harsh environment devices and sensors, and 4) Improved Silicon Carbide electronic materials. A description of the state-of-the-art and technology challenges is given for each area. It is concluded that the realization of a future intelligent engine depends on the development of both hardware and software including electronics and sensors to make smart components. When such smart components become available, an intelligent engine composed of smart components may become a reality.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kaczmarek, Cezary, Waldemar Wojcik, and Muhtar Junisbekov. "Photonic Crystal Fiber Dynamic Pressure Sensor." In 2018 XV International Scientific Conference on Optoelectronic and Electronic Sensors (COE). IEEE, 2018. http://dx.doi.org/10.1109/coe.2018.8435157.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kress, H. J., J. Marek, M. Mast, O. Schatz, and J. Muchow. "Integrated Silicon Pressure Sensor for Automotive Application with Electronic Trimming." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/950533.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Danova, Romana, Venkata Dinesh Avvari, Robert Olejnik, Petr Slobodian, Jiri Matyas, and Dusan Kimmer. "Enhanced PVDF Electrospun Nanofiber Capacitive Pressure Sensor for Wearable Electronic." In 2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS). IEEE, 2020. http://dx.doi.org/10.1109/nems50311.2020.9265563.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lin, Chun-Te, Chih-Tang Peng, Ji-Cheng Lin, and Kuo-Ning Chiang. "Analysis and Validation of Sensing Sensitivity of a Piezoresistive Pressure Sensor." In ASME 2003 International Electronic Packaging Technical Conference and Exhibition. ASMEDC, 2003. http://dx.doi.org/10.1115/ipack2003-35053.

Повний текст джерела
Анотація:
In this study, a packaged silicon based piezoresistive pressure sensor is designed, fabricated, and studied. A finite element method (FEM) is adopted for designing and optimizing the sensor performance. Thermal as well as pressure loading on the sensor is applied to make a comparison between experimental and simulation results. Furthermore, a method that transfers the simulation stress data into output voltage is proposed in this study, and the results indicate that the experimental result coincides with the simulation data. In order to achieve better sensor performance, a parametric analysis is performed to evaluate the system output sensitivity of the pressure sensor. The design parameters of the pressure sensor include membrane size/shape and the location of piezoresistor. The findings depict that proper selection of the membrane geometry and piezoresistor location can enhance the sensor sensitivity.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Electronic pressure sensor"

1

Delwiche, Michael, Boaz Zion, Robert BonDurant, Judith Rishpon, Ephraim Maltz, and Miriam Rosenberg. Biosensors for On-Line Measurement of Reproductive Hormones and Milk Proteins to Improve Dairy Herd Management. United States Department of Agriculture, February 2001. http://dx.doi.org/10.32747/2001.7573998.bard.

Повний текст джерела
Анотація:
The original objectives of this research project were to: (1) develop immunoassays, photometric sensors, and electrochemical sensors for real-time measurement of progesterone and estradiol in milk, (2) develop biosensors for measurement of caseins in milk, and (3) integrate and adapt these sensor technologies to create an automated electronic sensing system for operation in dairy parlors during milking. The overall direction of research was not changed, although the work was expanded to include other milk components such as urea and lactose. A second generation biosensor for on-line measurement of bovine progesterone was designed and tested. Anti-progesterone antibody was coated on small disks of nitrocellulose membrane, which were inserted in the reaction chamber prior to testing, and a real-time assay was developed. The biosensor was designed using micropumps and valves under computer control, and assayed fluid volumes on the order of 1 ml. An automated sampler was designed to draw a test volume of milk from the long milk tube using a 4-way pinch valve. The system could execute a measurement cycle in about 10 min. Progesterone could be measured at concentrations low enough to distinguish luteal-phase from follicular-phase cows. The potential of the sensor to detect actual ovulatory events was compared with standard methods of estrus detection, including human observation and an activity monitor. The biosensor correctly identified all ovulatory events during its testperiod, but the variability at low progesterone concentrations triggered some false positives. Direct on-line measurement and intelligent interpretation of reproductive hormone profiles offers the potential for substantial improvement in reproductive management. A simple potentiometric method for measurement of milk protein was developed and tested. The method was based on the fact that proteins bind iodine. When proteins are added to a solution of the redox couple iodine/iodide (I-I2), the concentration of free iodine is changed and, as a consequence, the potential between two electrodes immersed in the solution is changed. The method worked well with analytical casein solutions and accurately measured concentrations of analytical caseins added to fresh milk. When tested with actual milk samples, the correlation between the sensor readings and the reference lab results (of both total proteins and casein content) was inferior to that of analytical casein. A number of different technologies were explored for the analysis of milk urea, and a manometric technique was selected for the final design. In the new sensor, urea in the sample was hydrolyzed to ammonium and carbonate by the enzyme urease, and subsequent shaking of the sample with citric acid in a sealed cell allowed urea to be estimated as a change in partial pressure of carbon dioxide. The pressure change in the cell was measured with a miniature piezoresistive pressure sensor, and effects of background dissolved gases and vapor pressures were corrected for by repeating the measurement of pressure developed in the sample without the addition of urease. Results were accurate in the physiological range of milk, the assay was faster than the typical milking period, and no toxic reagents were required. A sampling device was designed and built to passively draw milk from the long milk tube in the parlor. An electrochemical sensor for lactose was developed starting with a three-cascaded-enzyme sensor, evolving into two enzymes and CO2[Fe (CN)6] as a mediator, and then into a microflow injection system using poly-osmium modified screen-printed electrodes. The sensor was designed to serve multiple milking positions, using a manifold valve, a sampling valve, and two pumps. Disposable screen-printed electrodes with enzymatic membranes were used. The sensor was optimized for electrode coating components, flow rate, pH, and sample size, and the results correlated well (r2= 0.967) with known lactose concentrations.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Harold Schock, Farhad Jaberi, Ahmed Naguib, Guoming Zhu, and David Hung. High-Compression-Ratio; Atkinson-Cycle Engine Using Low-Pressure Direct Injection and Pneumatic-Electronic Valve Actuation Enabled by Ionization Current and Foward-Backward Mass Air Flow Sensor Feedback. Office of Scientific and Technical Information (OSTI), December 2007. http://dx.doi.org/10.2172/967307.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії