Статті в журналах з теми "Electron phases"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Electron phases.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Electron phases".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Fradkin, Eduardo, and Steven A. Kivelson. "Electron Nematic Phases Proliferate." Science 327, no. 5962 (January 7, 2010): 155–56. http://dx.doi.org/10.1126/science.1183464.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lichte, Hannes. "Electron Holography: phases matter." Microscopy 62, suppl 1 (April 25, 2013): S17—S28. http://dx.doi.org/10.1093/jmicro/dft009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pfleiderer, Christian. "Superconducting phases off-electron compounds." Reviews of Modern Physics 81, no. 4 (November 25, 2009): 1551–624. http://dx.doi.org/10.1103/revmodphys.81.1551.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jacak, Janusz. "Topological Classification of Correlations in 2D Electron Systems in Magnetic or Berry Fields." Materials 14, no. 7 (March 27, 2021): 1650. http://dx.doi.org/10.3390/ma14071650.

Повний текст джерела
Анотація:
Recent topology classification of 2D electron states induced by different homotopy classes of mappings of the planar Brillouin zone into Bloch space can be supplemented by a homotopy classification of various phases of multi-electron homotopy patterns induced by Coulomb interaction between electrons. The general classification of such type is presented. It explains the topologically protected correlations responsible for integer and fractional Hall effects in 2D multi-electron systems in the presence of perpendicular quantizing magnetic field or Berry field, the latter in topological Chern insulators. The long-range quantum entanglement is essential for homotopy correlated phases in contrast to local binary entanglement for conventional phases with local order parameters. The classification of homotopy long-range correlated phases induced by the Coulomb interaction of electrons has been derived in terms of homotopy invariants and illustrated by experimental observations in GaAs 2DES, graphene monolayer, and bilayer and in Chern topological insulators. The homotopy phases are demonstrated to be topologically protected and immune to the local crystal field, local disorder, and variation of the electron interaction strength. The nonzero interaction between electrons is shown, however, to be essential for the definition of the homotopy invariants, which disappear in gaseous systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Imada, Masatoshi, Youhei Yamaji, and Moyuru Kurita. "Electron Correlation Effects on Topological Phases." Journal of the Physical Society of Japan 83, no. 6 (June 15, 2014): 061017. http://dx.doi.org/10.7566/jpsj.83.061017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

ENGLMAN, ROBERT, and ASHER YAHALOM. "PARTIAL PHASES IN A CIRCLING ELECTRON." International Journal of Modern Physics B 26, no. 29 (September 27, 2012): 1250145. http://dx.doi.org/10.1142/s0217979212501457.

Повний текст джерела
Анотація:
An extended electronic cloud can acquire different Aharonov–Bohm (AB) phases in its parts when these parts experience different solenoidal fields. This is demonstrated by two models that describe an electron moving within a confining circular tube around a solenoidal vector potential and outside a magnetic field domain (just as in a usual AB set up): one in which the motion of the electron along the tube is restricted and moves adiabatically and another in which it extends freely and without restriction on its speed. When the electron cloud is split into two parts circling in opposite directions, we show that when the two parts of the electronic cloud rejoin, they do so with different phases. This set-up complements (and confirms the finding of) our previous work [Europhys. Lett.93, 20001 (2011)], in which the vector source was moving and the electron position was fixed.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bletskan, D. I. "Electron structure of the equilibrium and metastable phases in superionic Li2SiS3." Semiconductor Physics Quantum Electronics and Optoelectronics 16, no. 1 (February 28, 2013): 48–54. http://dx.doi.org/10.15407/spqeo16.01.048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

RAJESWARA PALANICHAMY, R., M. ANANDAJOTHI, A. JAWAHAR, and K. IYAKUTTI. "INVESTIGATION OF NON-MAGNETIC AND FERROMAGNETIC PHASES OF 3D ELECTRON CRYSTAL WITH NaCl AND CsCl STRUCTURES." International Journal of Modern Physics B 22, no. 21 (August 20, 2008): 3627–40. http://dx.doi.org/10.1142/s0217979208039952.

Повний текст джерела
Анотація:
The non-magnetic and ferromagnetic phases of 3D Wigner electron crystal are investigated using a localized representation of the electrons with NaCl and CsCl structures. The ground state energies of ferromagnetic and non-magnetic phases of Wigner electron crystal are computed in the range 10 ≤ rs ≥ 130. The role of correlation energy is suitably taken into account. The low density region favorable for the ferromagnetic phase is found to be 4.8 × 1020 electrons/cm3 and for the non-magnetic phase, it is 2.03 × 1020 electrons/cm3. It is found that the ground state energy of ferromagnetic phase is less than that of the non-magnetic phase of the Wigner electron crystal. The structure-dependent Wannier functions, which give proper localized representation for Wigner electrons, are employed in the calculation.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ortiz, G., M. Harris, and P. Ballone. "Zero Temperature Phases of the Electron Gas." Physical Review Letters 82, no. 26 (June 28, 1999): 5317–20. http://dx.doi.org/10.1103/physrevlett.82.5317.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gorecka, Ewa, Nataša Vaupotič, and Damian Pociecha. "Electron Density Modulations in Columnar Banana Phases." Chemistry of Materials 19, no. 12 (June 2007): 3027–31. http://dx.doi.org/10.1021/cm0625575.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

CORNIER, M., K. ZHANG, R. PORTIER, and D. GRATIAS. "HIGH RESOLUTION ELECTRON MICROSCOPY OF ICOSAHEDRAL PHASES." Le Journal de Physique Colloques 47, no. C3 (July 1986): C3–447—C3–456. http://dx.doi.org/10.1051/jphyscol:1986345.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

McCall, James L. "Convergent beam electron diffraction of alloy phases." Metallography 18, no. 3 (August 1985): 308–9. http://dx.doi.org/10.1016/0026-0800(85)90052-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Saiz, Fernan, David Cubero, and Nick Quirke. "The excess electron at polyethylene interfaces." Physical Chemistry Chemical Physics 20, no. 39 (2018): 25186–94. http://dx.doi.org/10.1039/c8cp01330f.

Повний текст джерела
Анотація:
This work investigates the energy and spatial properties of excess electrons in polyethylene in bulk phases and, for the first time, at amorphous vacuum interfaces using a pseudopotential single-electron method (Lanczos diagonalisation) and density functional theory (DFT).
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Gauvin, Raynald, Dominique Drouin, and Pierre Hovington. "Energy Filtered Electron Backscattering Images of 10-nm NbC and AIN Precipitates in Steels Computed by Monte Carlo Simulations." Proceedings, annual meeting, Electron Microscopy Society of America 54 (August 11, 1996): 150–51. http://dx.doi.org/10.1017/s0424820100163216.

Повний текст джерела
Анотація:
In modern materials science, it is important to improve the resolution of the Scanning Electron Microscope (SEM) because small phases play a crutial role in the properties of materials. The Transmission Electron Microscope (TEM) is the tool of choice for imaging small phases embedded in a given matrix. However, this technique is expensive and also is slow owing to specimen preparation. In this context, it is important to improve spatial resolution of the SEM.In electron backscattering images, it is well know that the backscattered electrons have an energetic distribution when they escape the specimen.The electrons having loss less energy are those which have travelled less in the specimen and thus escape closer to the electron beam. So, in filtering the energy of the backscattering electron and keeping those which have loss only a small amount of energy to create the image, a significant improvement of the resolution of such images is expected. New detectors are now under development to take advantage of this technique of imaging.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Kumar, Krishan, and R. K. Moudgil. "Spin polarized and density modulated phases in symmetric electron–electron and electron–hole bilayers." Journal of Physics: Condensed Matter 24, no. 41 (September 19, 2012): 415601. http://dx.doi.org/10.1088/0953-8984/24/41/415601.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

SAARELA, MIKKO, and TAUNO TAIPALEENMÄKI. "QUANTUM FLUID MIXTURES IN DIFFERENT PHASES." International Journal of Modern Physics B 17, no. 28 (November 10, 2003): 5227–42. http://dx.doi.org/10.1142/s0217979203020375.

Повний текст джерела
Анотація:
Variational theory of quantum fluid mixtures is presented with the emphasis on the stability and phase transitions. We give results on two systems where new interesting phases are predicted. Dilute mixtures of 3 He impurities in the liquid 4 He in two dimensions form loosely bound pairs, dimers. The binding energy of the dimer ranges from milli- to micro-Kelvins with increasing 4 He density. The dimerised mixture of 3 He atoms is stable up to maximum solubility of ≈3%. Electrons and holes in semiconductors form a homogeneous mixture, electron-hole liquid. We predict that at low densities this system becomes unstable against clustering of charges and a liquid phase with a mixture of bound charged clusters could be formed.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Nagakura, Sigemaro, Yoshihiko Hirotsu, Naoki Yamamoto, Katsumi Miyagawa, Yuji Ikeda, and Yoshio Nakamura. "Modulated structures of Bi-based high-Tc superconducting oxides studied by High Resolution Electron Microscopy and electron diffraction." Proceedings, annual meeting, Electron Microscopy Society of America 48, no. 4 (August 1990): 80–81. http://dx.doi.org/10.1017/s0424820100173534.

Повний текст джерела
Анотація:
In the superconducting Bi-Sr-Ca-Cu-O system, ideal compositions of the low Tc(Tc∼90 K) and the high Tc(Tc∼110K) phases are Bi2Sr2CaCu2Oy(y∼8:2212 phase) and Bi2Sr2Ca2 Cu3Oy (y∼10:2223 phase), respectively. The fundamental structures of these phases are tetragonal with parameters: at=bt=0.54 and ct=3.08 nm for the 2212 phase, and at=bt=0.54 and ct=3.71 nm for the 2223 phase. These phases have incommensurate structures with modulation along their b-axes. In this study, the modulated structures of Pb-doped 2212 and 2223 phases have been investigated by means of high resolution electron microscopy and electron diffraction. Samples Bi2-xPbxSr2CaCu2Oy(x=0-0.4, melt-quenched and annealed) and Bi2−xPbxSr2Ca2Cu3Oy(x=0-0.6, sintered) were observed in high resolution electron microscopes operating at 200 kV and 1 MV.Analysis of the incommensurate modulated structures of the 2212 and 2223 phases was made by using samples Bi2Sr2CaCu2Oy and Bi1.6Pb0.4Sr2Ca2Cu3Oy. The lattice parameters of the incommensurate superstructures are a=at and c=ct for both of these phases, but b∼5bt and b∼bt for the 2212 and 2223 phases, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Chern, Gia-Wei. "Novel Magnetic Orders and Ice Phases in Frustrated Kondo-Lattice Models." SPIN 05, no. 02 (June 2015): 1540006. http://dx.doi.org/10.1142/s2010324715400068.

Повний текст джерела
Анотація:
We review recent theoretical progress in our understanding of electron-driven novel magnetic phases on frustrated lattices. Our specific focus is on Kondo-lattice or double-exchange models assuming finite magnetic moments localized at the lattice sites. A salient feature of systems with SU(2) symmetric local moments is the emergence of noncoplanar magnetic ordering driven by the conduction electrons. The complex spin textures then endow the electrons a nontrivial Berry phase, often giving rise to a topologically nontrivial electronic state. The second part of the review is devoted to the discussion of metallic spin ice systems, which are essentially frustrated Ising magnets with local spin ordering governed by the so-called ice rules. These rules are similar to those that describe proton configurations in solid water ice, hence the name "spin ice". The nontrivial spin correlations in the ice phase give rise to unusual electron transport properties in metallic spin-ice systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Briggeman, Megan, Michelle Tomczyk, Binbin Tian, Hyungwoo Lee, Jung-Woo Lee, Yuchi He, Anthony Tylan-Tyler, et al. "Pascal conductance series in ballistic one-dimensional LaAlO3/SrTiO3 channels." Science 367, no. 6479 (February 13, 2020): 769–72. http://dx.doi.org/10.1126/science.aat6467.

Повний текст джерела
Анотація:
One-dimensional electronic systems can support exotic collective phases because of the enhanced role of electron correlations. We describe the experimental observation of a series of quantized conductance steps within strongly interacting electron waveguides formed at the lanthanum aluminate–strontium titanate (LaAlO3/SrTiO3) interface. The waveguide conductance follows a characteristic sequence within Pascal’s triangle: (1, 3, 6, 10, 15, …) ⋅ e2/h, where e is the electron charge and h is the Planck constant. This behavior is consistent with the existence of a family of degenerate quantum liquids formed from bound states of n = 2, 3, 4, … electrons. Our experimental setup could provide a setting for solid-state analogs of a wide range of composite fermionic phases.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Gauvin, Raynald, and Paula Horny. "The Characterization of Nano Materials in the FE-SEM." Microscopy and Microanalysis 6, S2 (August 2000): 744–45. http://dx.doi.org/10.1017/s1431927600036217.

Повний текст джерела
Анотація:
The observation of nano materials or nano phases is generally performed using Transmission Electron Microscopy (TEM) because conventional Scanning Electron Microscopes (SEM) do not have the resolution to image such small phases. Since the last decade, a new generation of microscopes is available on the market. These are the Field Emission Scanning Electron Microscope (FE-SEM) with a virtual secondary electron detector. The FE-SEM have a higher brightness allowing probe diameter smaller than 2.5 nm with incident electron energy, E0, below 5 keV. Furthermore, what gives FE-SEM outstanding resolution is the virtual secondary electron (SE) detector. The virtual SE detector is located above the objective lens and it is also named a through-the-lens (TTL) detector. Therefore, the SE images are mostly made up of all SE of type I and II, because those of type III, which are generated by the backscattered electrons in the chamber, are not collected.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Nakai, Kiyomichi, and Chiken Kinoshita. "A study on sink strength of dislocations through analyses of loop formation process under defect concentration gradient." Proceedings, annual meeting, Electron Microscopy Society of America 48, no. 4 (August 1990): 528–29. http://dx.doi.org/10.1017/s0424820100175776.

Повний текст джерела
Анотація:
The behavior of point defects around sinks has been greatly investigated for evaluating their bias effects on void formation and swelling. It is, however, laborious to estimate sink strength connected with the bias, because it depends greatly on the sink character. In the present paper the sink strength for interstitials is confirmed through analyses of nucleation and growth process of dislocation loops around characterized dislocations under electron irradiation.A Nb-40.0wt.%Zr alloy having the interface between bcc structures of βNb and βZr phases was irradiated with 1MeV electrons in the JEM-1000 high-voltage electron microscope at the HVEM Laboratory, Kyushu University.The orientation relationship between βNb and βZr phases follows the cube/cube, and the interfaces are. The interface dislocations run parallel to [111] and at a regular interval and respectively have Burgers vectors of b = 1/2 and 1/2[111]. Misfit between the phases as well as distance between interface dislocations are also confirmed by dark-field microscopy, trace analysis and electron diffraction.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

GUI, Jianian, Xiaomei CHEN, Jing LIU, Jianbo WANG, and Renhui WANG. "Orientation Relationships and Constituent Phases." Microscopy and Microanalysis 5, S2 (August 1999): 264–65. http://dx.doi.org/10.1017/s1431927600014641.

Повний текст джерела
Анотація:
We report here our preliminary results on orientation determination and phase identification using the electron backscatter diffraction (EBSD) technique. Using a scanning electron microscope (SEM) equipped with the EBSD attachment. it is now possible to study the correspondence and orientation relationships of parent-phase and martensite variants in shape memory alloys (SMAs). Previously, such an information was obtained from large single crystals studied by micro-beam X-ray Laue diffraction and supplemented by transmission electron microscopy study of thin foils. Figs. 1(a), (b) and (c) are three EBSD patterns taken from neighboring areas in a Cu-12.55Al-4.86Ni (wt%) SMA. Computer simulation reveals that Fig. 1(a) belongs to the parent-phase of D03-structure type, and Figs. 1(b) and (c) belong to variants A and D of 2H martensite, respectively. Corresponding simulated EBSD patterns are shown in Figs. 1(d), (e) and (f). Fig. 1 indicates that the (0 0 2)A basal plane of the martensite variant A is transformed from the (-2-2 0)p plane of the parent-phase and its [0-1 0]A direction from the [0 0 1]P direction. The (0 0 2)D basal plane of the martensite variant D is transformed from the (2-2 0)P plane of the parent-phase and its [0 1 0 ]D direction from the [0 0 1]P direction.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Kim, Ki-Seok, and Rayda Gammag. "Topological Phase Transition betweens+-ands++Superconducting Phases from Competing Electron–Electron and Electron–Phonon Interactions." Journal of the Physical Society of Japan 82, no. 6 (June 15, 2013): 064713. http://dx.doi.org/10.7566/jpsj.82.064713.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Kodjikian, Stéphanie, Holger Klein, Christophe Lepoittevin, Céline Darie, Pierre Bordet, Christophe Payen, and Catherine Deudon. "Identifying almost identical phases by 3D electron diffraction." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C373. http://dx.doi.org/10.1107/s2053273314096260.

Повний текст джерела
Анотація:
Magnetically frustrated materials have been the subject of many studies over the last decades. In search for a 3-dimensional quantum spin liquid, where quantum-mechanical fluctuations prevent magnetic order, different phases of stoichiometry Ba3NiSb2O9 have recently [1] been synthesized some of them at high pressure. Two of these phases are hexagonal. The hexagonal phases (space groups P63/mmc and P63mc, respectively) have different structures but cell parameters that differ by less than 1%. Similar phases have been obtained with Cu [2] or Co [3]. These phases are well distinguished by powder X-ray diffraction when they appear in sufficient quantity in a newly synthesized powder. When these phases are present only in minor quantities, which is a common situation when synthesizing new materials, only transmission electron microscopy can give structural information on a very local scale. However, the accuracy of unit cell parameter determination by electron diffraction (usually 1% or worse) and the identical extinction conditions for the 2 space groups don't permit to distinguish between the two phases. Convergent beam electron diffraction could show the difference between the centrosymmetric and non-centrosymmetric space groups provided a suitably oriented particle can be found. In this work we propose a different method of distinguishing structures in such complicated cases by actually solving the structure. Sufficient in-zone axis precession electron diffraction and/or electron diffraction tomography data can be obtained from any crystal regardless of its orientation. In the subsequent structure solution we have tested both space groups. The quality (or absence thereof) of the structure solutions obtained clearly makes it possible to distinguish between the two hexagonal structures.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Góra, Dariusz, Krzysztof Rościszewski, and Andrzej M. Oleś. "Electron correlations in stripe phases for doped antiferromagnets." Physical Review B 60, no. 10 (September 1, 1999): 7429–39. http://dx.doi.org/10.1103/physrevb.60.7429.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Lozovik, Yu E., and A. A. Sokolik. "Coherent phases and collective electron phenomena in graphene." Journal of Physics: Conference Series 129 (October 1, 2008): 012003. http://dx.doi.org/10.1088/1742-6596/129/1/012003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

El Baggari, Ismail, David J. Baek, Benjamin H. Savitzky, Michael J. Zachman, Robert Hovden, and Lena F. Kourkoutis. "Low Temperature Electron Microscopy of “Charge-Ordered” Phases." Microscopy and Microanalysis 25, S2 (August 2019): 934–35. http://dx.doi.org/10.1017/s1431927619005403.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Cremer, R., Mirjam Witthaut, and Dieter Neuschütz. "Electron spectroscopy applied to metastable ceramic solution phases." Fresenius' Journal of Analytical Chemistry 365, no. 1-3 (September 8, 1999): 28–37. http://dx.doi.org/10.1007/s002160051440.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Hansen, Vidar, Helene Seim, Helmer Fjellvåg, and Arne Olsen. "Electron microscopy study of some Ni-S phases." Micron and Microscopica Acta 23, no. 1-2 (January 1992): 177–78. http://dx.doi.org/10.1016/0739-6260(92)90126-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Hunt, J. A., M. M. Disko, S. K. Behal, and R. D. Leapman. "Electron energy-loss chemical imaging of polymer phases." Ultramicroscopy 58, no. 1 (April 1995): 55–64. http://dx.doi.org/10.1016/0304-3991(94)00178-p.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Pöttgen, Rainer, and Bernard Chevalier. "Equiatomic cerium intermetallics CeXX′ with two p elements." Zeitschrift für Naturforschung B 70, no. 10 (October 1, 2015): 695–704. http://dx.doi.org/10.1515/znb-2015-0109.

Повний текст джерела
Анотація:
AbstractThe equiatomic CeXX′ phases (X and X′ = elements of the 3rd, 4th, or 5th main group) extend the large series of CeTX intermetallics (T = electron-rich transition metal). These phases crystallize with simple structure types, i.e. ZrNiAl, TiNiSi, CeScSi, α-ThSi2, AlB2, and GdSi2. In contrast to the CeTX intermetallics one observes pronounced solid solutions for the CeXX′ phases. The main influence on the magnetic ground states results from the absence of d electrons. All known CeXX′ phases show exclusively trivalent cerium and antiferro- or ferromagnetic ordering at low temperatures. The crystal chemical details and some structure-property relationships are reviewed.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Wen, J. G., and K. K. Fung. "Transmission Electron Microscopy study of Bi-based superconducting phases." Proceedings, annual meeting, Electron Microscopy Society of America 48, no. 4 (August 1990): 50–51. http://dx.doi.org/10.1017/s0424820100173388.

Повний текст джерела
Анотація:
Bi-based superconducting phases have been found to be members of a structural series represented by Bi2Sr2Can−1Cun−1On+4, n=1,2,3, and are referred to as 2201, 2212, 2223 phases. All these phases are incommensurate modulated structures. The super space groups are P2/b, NBbmb 2201, 2212 phases respectively. Pb-doped ceramic samples and single crystals and Y-doped single crystals have been studied by transmission electron microscopy.Modulated structures of all Bi-based superconducting phases are in b-c plane, therefore, it is the best way to determine modulated structure and c parameter in diffraction pattern. FIG. 1,2,3 show diffraction patterns of three kinds of modulations in Pb-doped ceramic samples. Energy dispersive X-ray analysis (EDAX) confirms the presence of Pb in the three modulated structures. Parameters c are 3 0.06, 38.29, 30.24Å, ie 2212, 2223, 2212 phases for FIG. 1,2,3 respectively. Their average space groups are all Bbmb.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Moshnyaga, Vasily, and Konrad Samwer. "Polaronic Emergent Phases in Manganite-based Heterostructures." Crystals 9, no. 10 (September 22, 2019): 489. http://dx.doi.org/10.3390/cryst9100489.

Повний текст джерела
Анотація:
Transition metal functional oxides, e.g., perovskite manganites, with strong electron, spin and lattice correlations, are well-known for different phase transitions and field-induced colossal effects at the phase transition. Recently, the interfaces between dissimilar perovskites were shown to be a promising concept for the search of emerging phases with novel functionalities. We demonstrate that the properties of manganite films are effectively controlled by low dimensional emerging phases at intrinsic and extrinsic interfaces and appeared as a result of symmetry breaking. The examples include correlated Jahn–Teller polarons in the phase-separated (La1−yPry)0.7Ca0.3MnO3, electron-rich Jahn–Teller-distorted surface or “dead” layer in La0.7Sr0.3MnO3, electric-field-induced healing of “dead” layer as an origin of resistance switching effect, and high-TC ferromagnetic emerging phase at the SrMnO3/LaMnO3 interface in superlattices. These 2D polaronic phases with short-range electron, spin, and lattice reconstructions could be extremely sensitive to external fields, thus, providing a rational explanation of colossal effects in perovskite manganites.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Klein, T., H. Rakoto, C. Berger, G. Fourcaudot, and F. Cyrot-Lackmann. "Strong electron-electron interaction effects in highly resistive Al-Cu-Fe icosahedral phases." Physical Review B 45, no. 5 (February 1, 1992): 2046–49. http://dx.doi.org/10.1103/physrevb.45.2046.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Tobola, Janusz, Lucie Jodin, Pierre Pecheur, and Gerard Venturini. "Unusual electron structure and electron transport properties of some disordered half-Heusler phases." Journal of Alloys and Compounds 383, no. 1-2 (November 2004): 328–33. http://dx.doi.org/10.1016/j.jallcom.2004.04.041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

AVANCINI, S. S., J. R. MARINELLI, D. P. MENEZES, M. M. W. MORAES, C. PROVIDÊNCIA, and A. M. SANTOS. "EXOTIC PHASES IN HOT NEUTRON–PROTON–ELECTRON (NPE) MATTER." International Journal of Modern Physics D 19, no. 08n10 (August 2010): 1587–92. http://dx.doi.org/10.1142/s0218271810017779.

Повний текст джерела
Анотація:
In the present paper, we study exotic phases in hot neutron–proton–electron (NPE) matter. It is shown that for densities lower than the normal nuclear matter inhomogeneous (exotic or pasta) phases may be present. This is believed to occur due to the so-called frustration mechanism, i.e., a close competition between the surface and Coulomb energy which, in certain cases, favors exotic phases instead of homogeneous matter. These structures may have important effects in the cooling of neutron stars, for example, affecting the neutrino opacity.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Spivak, B. "Phase separation in the two-dimensional electron liquid in MOSFETs." Journal de Physique IV 12, no. 9 (November 2002): 337–41. http://dx.doi.org/10.1051/jp4:20020432.

Повний текст джерела
Анотація:
We show that the existence of an intermediate phase between the Fermi liquid and the Wigner crystal phases is a generic property of the two-dimensional pure electron liquid in MOSFET's at zero temperature. The physical reason for the existence of the phases is a partial separation of the uniform phases. We discuss properties of these phases and a possible explanation of experimental results on transport properties of low density electron gas in MOSFET's. We also argue that in certain range of parameters the partial phase separation corresponds to a supersolid phase discussed in [25].
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Elser, Veit. "X-ray phase determination by the principle of minimum charge." Acta Crystallographica Section A Foundations of Crystallography 55, no. 3 (May 1, 1999): 489–99. http://dx.doi.org/10.1107/s0108767398013324.

Повний текст джерела
Анотація:
When the electron density in a crystal or a quasicrystal is reconstructed from its Fourier modes, the global minimum value of the density is sensitively dependent on the relative phases of the modes. The set of phases that maximizes the value of the global minimum corresponds, by positivity of the density, to the density having the minimum total charge that is consistent with the measured Fourier amplitudes. Phases that minimize the total electronic charge (i.e. the average electron density) have the additional property that the lowest minima of the electron density become exactly degenerate and proliferate within the unit cell. The large number of degenerate minima have the effect that density maxima are forced to occupy ever smaller regions of the unit cell. Thus, by minimization of the electronic charge, the atomicity of the electron density is enhanced as well. Charge minimization applied to simulated crystalline and quasicrystalline diffraction data successfully reproduces the correct phases starting from random initial phases.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Thomas, Gareth. "Electron Microscopy of Silicon Nitride-Based Ceramics." Proceedings, annual meeting, Electron Microscopy Society of America 49 (August 1991): 926–27. http://dx.doi.org/10.1017/s0424820100088944.

Повний текст джерела
Анотація:
Silicon nitride and silicon nitride based-ceramics are now well known for their potential as hightemperature structural materials, e.g. in engines. However, as is the case for many ceramics, in order to produce a dense product, sintering additives are utilized which allow liquid-phase sintering to occur; but upon cooling from the sintering temperature residual intergranular phases are formed which can be deleterious to high-temperature strength and oxidation resistance, especially if these phases are nonviscous glasses. Many oxide sintering additives have been utilized in processing attempts world-wide to produce dense creep resistant components using Si3N4 but the problem of controlling intergranular phases requires an understanding of the glass forming and subsequent glass-crystalline transformations that can occur at the grain boundaries.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Stern, Michael, Vladimir Umansky, and Israel Bar-Joseph. "Exciton Liquid in Coupled Quantum Wells." Science 343, no. 6166 (January 2, 2014): 55–57. http://dx.doi.org/10.1126/science.1243409.

Повний текст джерела
Анотація:
Excitons in semiconductors may form correlated phases at low temperatures. We report the observation of an exciton liquid in gallium arsenide/aluminum gallium arsenide–coupled quantum wells. Above a critical density and below a critical temperature, the photogenerated electrons and holes separate into two phases: an electron-hole plasma and an exciton liquid, with a clear sharp boundary between them. The two phases are characterized by distinct photoluminescence spectra and by different electrical conductance. The liquid phase is formed by the repulsive interaction between the dipolar excitons and exhibits a short-range order, which is manifested in the photoluminescence line shape.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Hossain, M. S., M. K. Ma, K. A. Villegas Rosales, Y. J. Chung, L. N. Pfeiffer, K. W. West, K. W. Baldwin, and M. Shayegan. "Observation of spontaneous ferromagnetism in a two-dimensional electron system." Proceedings of the National Academy of Sciences 117, no. 51 (December 3, 2020): 32244–50. http://dx.doi.org/10.1073/pnas.2018248117.

Повний текст джерела
Анотація:
What are the ground states of an interacting, low-density electron system? In the absence of disorder, it has long been expected that as the electron density is lowered, the exchange energy gained by aligning the electron spins should exceed the enhancement in the kinetic (Fermi) energy, leading to a (Bloch) ferromagnetic transition. At even lower densities, another transition to a (Wigner) solid, an ordered array of electrons, should occur. Experimental access to these regimes, however, has been limited because of the absence of a material platform that supports an electron system with very high quality (low disorder) and low density simultaneously. Here we explore the ground states of interacting electrons in an exceptionally clean, two-dimensional electron system confined to a modulation-doped AlAs quantum well. The large electron effective mass in this system allows us to reach very large values of the interaction parameterrs, defined as the ratio of the Coulomb to Fermi energies. As we lower the electron density via gate bias, we find a sequence of phases, qualitatively consistent with the above scenario: a paramagnetic phase at large densities, a spontaneous transition to a ferromagnetic state whenrssurpasses 35, and then a phase with strongly nonlinear current-voltage characteristics, suggestive of a pinned Wigner solid, whenrsexceeds≃38. However, our sample makes a transition to an insulating state atrs≃27, preceding the onset of the spontaneous ferromagnetism, implying that besides interaction, the role of disorder must also be taken into account in understanding the different phases of a realistic dilute electron system.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Carpenter, R. W., W. Braue, and Raymond A. Cutler. "Transmission electron microscopy of liquid phase densified SiC." Journal of Materials Research 6, no. 9 (September 1991): 1937–44. http://dx.doi.org/10.1557/jmr.1991.1937.

Повний текст джерела
Анотація:
Transmission electron microscopy was used to characterize microstructures of SiC densified using a transient liquid phase (resulting from the reaction of Al2O3 with Al4C3) by hot pressing at 1875 °C for 10 min in N2. High resolution electron microscopy showed that the SiC grain boundaries were free of glassy phases, suggesting that all liquid phases crystallized upon cooling. Phases that might be expected due to reactive sintering (i.e., AlN, Al2OC, Al2O3, Al4O4C, Al3O3N, or solid solutions of SiC, AlN, and Al2OC) were not observed. However, significant Al, Si, O, and C concentrations were found at all triple junctions of these rapidly densified ceramics.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Mobasher, M., M. Lancry, J. Lu, D. Neuville, L. Bellot Gurlet, and N. Ollier. "Thermal relaxation of silica phases densified under electron irradiation." Journal of Non-Crystalline Solids 597 (December 2022): 121917. http://dx.doi.org/10.1016/j.jnoncrysol.2022.121917.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Dorset, Douglas L. "Binary Phases of C60and C70Buckminsterfullerenes: An Electron Crystallographic Study." Journal of Physical Chemistry 100, no. 41 (January 1996): 16706–10. http://dx.doi.org/10.1021/jp961545b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Ichimaru, Setsuo. "Comment on “Zero Temperature Phases of the Electron Gas”." Physical Review Letters 84, no. 8 (February 21, 2000): 1842. http://dx.doi.org/10.1103/physrevlett.84.1842.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Paxton, A. T., M. Methfessel, and D. G. Pettifor. "A bandstructure view of the Hume‐Rothery electron phases." Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 453, no. 1962 (July 8, 1997): 1493–514. http://dx.doi.org/10.1098/rspa.1997.0080.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Kryukova, O. N., and A. L. Maslov. "Simulation of oxide phases formation under pulsed electron beam." IOP Conference Series: Materials Science and Engineering 124 (April 2016): 012034. http://dx.doi.org/10.1088/1757-899x/124/1/012034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Takatsuka, Kazuo. "Theory of molecular nonadiabatic electron dynamics in condensed phases." Journal of Chemical Physics 147, no. 17 (November 1, 2017): 174102. http://dx.doi.org/10.1063/1.4993240.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Dunaevsky, Sergey M., and Vladimir V. Deriglazov. "Orbital degeneracy and magnetic phases of electron-doped manganites." Journal of Magnetism and Magnetic Materials 258-259 (March 2003): 283–86. http://dx.doi.org/10.1016/s0304-8853(02)01104-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Jackson, Mark D., and Roy G. Gordon. "Electron-gas theory of some phases of magnesium oxide." Physical Review B 38, no. 8 (September 15, 1988): 5654–60. http://dx.doi.org/10.1103/physrevb.38.5654.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії