Статті в журналах з теми "Electromigration in liquid metals"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Electromigration in liquid metals.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Electromigration in liquid metals".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Belashchenko, David K. "The Relationship between Electrical Conductivity and Electromigration in Liquid Metals." Dynamics 3, no. 3 (July 28, 2023): 405–24. http://dx.doi.org/10.3390/dynamics3030022.

Повний текст джерела
Анотація:
The phenomena of electrical conductivity and electromigration in metallic systems are related, since in both cases the basic physical process is the scattering of conduction electrons by metal ions. Numerous searches have been made for equations connecting the conductivity with electromigration. In the case of a liquid metal, when using the Drude–Sommerfeld (DS) conductivity equation, it was not possible to obtain a quantitative relationship between these phenomena, which would be correct. Attempts to find such a relationship when taking into account the N. Mott correction (g-factor) in the DS equation were unsuccessful. This article proposes a different correction (b-factor) to the DS equation, which takes into account the possibility of varying the momentum transferred by the conduction electron to a metal ion during the scattering. This correction allows to establish a quantitative relationship between conductivity and electromigration as well as between electromigration in various binary systems with common components, in agreement with the experiment. The proposed theory describes well, in particular, two- and multi-component metal systems of any concentration (the consistency rule for triangles A–B, B–C, C–A). The value of the b-factor smoothly changes depending on the heat of vaporization of the metal, per unit volume.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kumar, Sumit, Praveen Kumar, and Rudra Pratap. "A model for electromigration induced flow in liquid metals." Journal of Physics D: Applied Physics 50, no. 39 (September 1, 2017): 39LT02. http://dx.doi.org/10.1088/1361-6463/aa84a2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mao, Xin, Ruhua Zhang, and Xiaowu Hu. "Influence of Ni foam/Sn composite solder foil on IMC growth and mechanical properties of solder joints bonded with solid-liquid electromigration." Intermetallics 131 (April 2021): 107107. http://dx.doi.org/10.1016/j.intermet.2021.107107.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ho, P. S., and T. Kwok. "Electromigration in metals." Reports on Progress in Physics 52, no. 3 (March 1, 1989): 301–48. http://dx.doi.org/10.1088/0034-4885/52/3/002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rous, P. J., T. L. Einstein, and Ellen D. Williams. "Theory of surface electromigration on metals: application to self-electromigration on Cu(111)." Surface Science 315, no. 1-2 (August 1994): L995—L1002. http://dx.doi.org/10.1016/0039-6028(94)90532-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ek, J. van, and A. Lodder. "Electromigration in transition metals. I. Computational method." Journal of Physics: Condensed Matter 3, no. 38 (September 23, 1991): 7307–30. http://dx.doi.org/10.1088/0953-8984/3/38/007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Michaud, Hadrien O., and Stéphanie P. Lacour. "Liquid electromigration in gallium-based biphasic thin films." APL Materials 7, no. 3 (March 2019): 031504. http://dx.doi.org/10.1063/1.5059380.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Li, C. H., Y. C. Chuang, and C. Y. Liu. "Fabrication of Mg-Based Intermetallic Compounds by Liquid Electromigration." Journal of Electronic Materials 36, no. 11 (September 13, 2007): 1489–94. http://dx.doi.org/10.1007/s11664-007-0231-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

van Ek, J., and A. Lodder. "Electromigration of Interstitial and Substitutional Impurities in Transition Metals." Defect and Diffusion Forum 95-98 (January 1993): 265–70. http://dx.doi.org/10.4028/www.scientific.net/ddf.95-98.265.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kuge, Toshihiro, Masataka Yahagi, and Junichi Koike. "Electromigration characteristics of CuAl2." Journal of Alloys and Compounds 918 (October 2022): 165615. http://dx.doi.org/10.1016/j.jallcom.2022.165615.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Wiedmer, Susanne K., Marja-Liisa Riekkola, and Minttu S. Jussila. "Phospholipids and liposomes in liquid chromatographic and capillary electromigration techniques." TrAC Trends in Analytical Chemistry 23, no. 8 (September 2004): 562–82. http://dx.doi.org/10.1016/j.trac.2004.03.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Wang, Fengjiang, Luting Liu, Mingfang Wu, and Dongyang Li. "Interfacial evolution in Sn–58Bi solder joints during liquid electromigration." Journal of Materials Science: Materials in Electronics 29, no. 11 (March 15, 2018): 8895–903. http://dx.doi.org/10.1007/s10854-018-8907-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Mansourian, Ali, Seyed Amir Paknejad, Qiannan Wen, Khalid Khtatba, Anatoly V. Zayats, and Samjid H. Mannan. "Internal Structure Refinement of Porous Sintered Silver via Electromigration." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2016, HiTEC (January 1, 2016): 000190–95. http://dx.doi.org/10.4071/2016-hitec-190.

Повний текст джерела
Анотація:
Abstract Atoms can move under high stress conditions such as temperature, mechanical pressure or electric current. Electromigration provides a driving force to move the atoms in metals conducting current usually resulting in the accumulation of atoms and void formation in anode and cathode respectively. The electromigration effect is normally considered a serious problem for electronic circuits but the recent works1–7 show that it can be used constructively for controlled fabrication of nanostructures2–4.We demonstrate that electromigration can be utilized to refine the porous structure of a sintered silver stripe leading to transformation of the internal pore and grain structure. The results show that pore shape, size and distribution are significantly changed after electromigration. Similarly, we have used the electromigration effect to mass produce nanorods under current densities of the order of 2.4 ×10+8 A/m2. Nanorods were formed across the whole stripe contrasting with studies on non-porous substrates which show nanorod production at the anode only. The results show the internal pore structure can be transformed and refined by electromigration. The results also suggest that by controlling current densities in a porous substrate, complex patterns of porous structures and high-quality single crystal nanorods can be formed in-situ with significant advantages over competing methods of nanorod formation for sensor applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Dekker, J. P., and A. Lodder. "Ab Initio Calculation of the Electromigration Wind Valence in Metals." Defect and Diffusion Forum 143-147 (January 1997): 1645–48. http://dx.doi.org/10.4028/www.scientific.net/ddf.143-147.1645.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Rajan, K. Govinda, and R. Lässer. "Sample cell to measure the electromigration of tritium in metals." Review of Scientific Instruments 58, no. 7 (July 1987): 1279–83. http://dx.doi.org/10.1063/1.1139453.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Kono, S., T. Goto, Y. Ogura, and T. Abukawa. "Surface electromigration of metals on Si(001): In/Si(001)." Surface Science 420, no. 2-3 (January 1999): 200–212. http://dx.doi.org/10.1016/s0039-6028(98)00825-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Lin, E. J., Y. C. Hsu, Y. C. Chuang, and C. Y. Liu. "Effect of interfacial dissolution on electromigration failures at metals interface." Journal of Materials Science: Materials in Electronics 28, no. 20 (July 6, 2017): 15149–53. http://dx.doi.org/10.1007/s10854-017-7391-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Itskovich, I. F., and R. S. Sorbello. "Phonon-assisted diffusion and electromigration of light interstitials in metals." Physical Review B 45, no. 2 (January 1, 1992): 718–27. http://dx.doi.org/10.1103/physrevb.45.718.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Isosaari, Pirjo, and Mika Sillanpää. "Electromigration of arsenic and co-existing metals in mine tailings." Chemosphere 81, no. 9 (November 2010): 1155–58. http://dx.doi.org/10.1016/j.chemosphere.2010.09.019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Quiroz, Croswel Eduardo Aguilar, Rosa Elizabeth Nomberto Torres, Segundo Juan Diaz Camacho, and Eymi Gianella Laiza Escobar. "Influence of Pt, Ag and Au electrodes on Cr (III) electrofiltration with current density." South Florida Journal of Development 2, no. 5 (October 7, 2021): 6329–46. http://dx.doi.org/10.46932/sfjdv2n5-005.

Повний текст джерела
Анотація:
The metals Pt, Au and Ag as electrodes were studied at electrofiltration Cr3+ ion. The system of three half-cells were used. The Cr3+ migration from the central half-cell to the others half-cells where are electrodes was evaluated. Current density and the configurations of metals such as anode - cathode, is determined. The electrodes activity varies with current density as well as cathode or anode. The Cr3+ electromigration to cathodic half-cell increase when anode activity to generate H3O+ ions was higher than cathode (OH- ions). Instead, the migration of Cr3+ to the anode is by electroosmosis. The presence of Au as an electrode generates greater electromigration of the chromium ion to the cathode.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Jones, W. "Linear response theory of the electromigration driving force in liquid alloys." Philosophical Magazine B 58, no. 6 (December 1988): 593–602. http://dx.doi.org/10.1080/13642818808211459.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Ma, Rongchao, Cangran Guo, Yixin Zhou, and Jing Liu. "Electromigration Induced Break-up Phenomena in Liquid Metal Printed Thin Films." Journal of Electronic Materials 43, no. 11 (August 26, 2014): 4255–61. http://dx.doi.org/10.1007/s11664-014-3366-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Huang, M. L., Z. J. Zhang, H. T. Ma, and L. D. Chen. "Different Diffusion Behavior of Cu and Ni Undergoing Liquid–solid Electromigration." Journal of Materials Science & Technology 30, no. 12 (December 2014): 1235–42. http://dx.doi.org/10.1016/j.jmst.2014.11.013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

KADOGUCHI, Takuya. "Electromigration Phenomenon in Solder Joint." JOURNAL OF THE JAPAN WELDING SOCIETY 87, no. 7 (2018): 503–7. http://dx.doi.org/10.2207/jjws.87.503.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Shu, Chih-Chi, Chien-Lung Liang, and Kwang-Lung Lin. "Electro-work hardening of metals induced by the athermal electromigration effect." Materials Science and Engineering: A 772 (January 2020): 138689. http://dx.doi.org/10.1016/j.msea.2019.138689.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Yagi, Katsumichi, Akira Yamanaka, and Hiroi Yamaguchi. "Surface electromigration of metals on Si surfaces studied by UHV-REM." Surface Science Letters 283, no. 1-3 (March 1993): A245. http://dx.doi.org/10.1016/0167-2584(93)90693-d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Yagi, Katsumichi, Akira Yamanaka, and Hiroi Yamaguchi. "Surface electromigration of metals on Si surfaces studied by UHV-REM." Surface Science 283, no. 1-3 (March 1993): 300–308. http://dx.doi.org/10.1016/0039-6028(93)90995-v.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Chen, Sinn-wen, та Shih-kang Lin. "Electric current-induced abnormal Cu/γ-InSn4 interfacial reactions". Journal of Materials Research 21, № 12 (грудень 2006): 3065–71. http://dx.doi.org/10.1557/jmr.2006.0378.

Повний текст джерела
Анотація:
The electromigration effect upon the γ-InSn4/Cu interfacial reactions have been studied by examining the γ-InSn4/Cu/γ-InSn4 couples annealed at 160 °C with and without current stressing. Scallop-type η-Cu6(Sn,In)5 phase layers are formed in the couples without current stressing and at the γ-InSn4/Cu interface where electrons are flowing from the γ-InSn4 to the Cu. The reaction path is Cu/η-Cu6(Sn,In)5/γ-InSn4. However, very large η-Cu6(Sn,In)5 compounds are found at the Cu/γ-InSn4 interface where electrons are from Cu to the γ-InSn4. Although the melting points of both γ-InSn4 and Cu are higher than 160 °C, the liquid phase is formed at 160 °C in the electrified couple at the downstream γ-InSn4 phase near the Cu/γ-InSn4 interface. The reaction path is Cu/η-Cu6(Sn,In)5/liquid/γ-InSn4. The liquid phase propagates along the grain boundaries of the γ-InSn4 matrix. The very large η-Cu6(Sn,In)5 compounds are the coupling results of the liquid phase penetration and the Cu transport enhancement due to electromigration.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Skvortsov, Arkady A., Danila E. Pshonkin, Mikhail N. Luk'yanov, and Margarita R. Rybakova. "On the Effect of Magnetic Fields on Electromigration Processes of Liquid Inclusions in Aluminum and Silicon." Solid State Phenomena 269 (November 2017): 31–36. http://dx.doi.org/10.4028/www.scientific.net/ssp.269.31.

Повний текст джерела
Анотація:
The substances move in conductors owing to drift of ions that occurs due to momentum exchange at collisions between the conductive carriers and atomic lattice. This effect is substantial at high-density direct currents, e.g., in power electronics. Therefore, the assigned subject matter is topical. The aim of this work is investigation of the effect of magnetic fields on electromigration processes of liquid inclusions in aluminum. We performed an analysis of formation and electromigration of molten Al-Si inclusions in silicon and aluminum crystals. It was found that molten inclusions 50-800 μm in size are formed in the studied system by contact melting in the 850-920 K temperature range. The electro-stimulated migration of inclusions along the electric lines of force at current densities j  4106 A/m2 was also established. From the dimensional dependence of specific velocity of travel w/j of molten Al-Si regions in silicon and aluminum, we made a conclusion concerning mechanisms of molten regions travelling. These are melting and crystallization at interphase boundaries due to thermoelectric phenomena and electromigration of atoms in the inclusion bulk. The numerical values of effective charges of Al and Si atoms in Al-Si melts as well as Peltier coefficients of the crystal-melt system were determined experimentally. It was found that preexposure of aluminum alloy (with iron concentration of ~0.6%) in a static magnetic field (В = 0.7 T) leads to changing of dimensional dependence of migration velocity of inclusions (i.e., it is magneto-sensing).
Стилі APA, Harvard, Vancouver, ISO та ін.
30

von Kleist-Retzow, Fabian T., Olaf C. Haenssler, and Sergej Fatikow. "Manipulation of Liquid Metal Inside an SEM by Taking Advantage of Electromigration." Journal of Microelectromechanical Systems 28, no. 1 (February 2019): 88–94. http://dx.doi.org/10.1109/jmems.2018.2878320.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Small, M. B., and D. A. Smith. "Selection of solutes for improving electromigration resistance of metals: A new insight." Applied Physics Letters 60, no. 26 (June 29, 1992): 3235–37. http://dx.doi.org/10.1063/1.106704.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Mitani, Takeshi, Masayuki Okamura, Tetsuo Takahashi, Naoyoshi Komatsu, Tomohisa Kato, and Hajime Okumura. "Growth of 4H-SiC in Current-Controlled Liquid Phase Epitaxy." Materials Science Forum 740-742 (January 2013): 3–6. http://dx.doi.org/10.4028/www.scientific.net/msf.740-742.3.

Повний текст джерела
Анотація:
4H-SiC crystallization from Si-C solution in electric current-controlled liquid phase epitaxy was investigated. The dependence of growth speed on a DC current shows that dissolution/growth is controlled by the electric current without altering temperature gradient in the furnace. Application of an electric current leads to reduction of growth speed with negative polarity and enhancement of growth speed with positive polarity. The variation of the growth speed with a DC current density has been explained by the combination of the effects of electromigration of C solute and Joule heating.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Gao, Yijie, Keke Zhang, Chao Zhang, Yuming Wang, and Weiming Chen. "Microstructure and Properties of Electromigration of Sn58Bi/Cu Solder Joints with Different Joule Thermal Properties." Metals 13, no. 8 (August 16, 2023): 1475. http://dx.doi.org/10.3390/met13081475.

Повний текст джерела
Анотація:
Electromigration is one of the most important research issues affecting the reliability of solder joints. Current-induced Joule heating affects the electromigration behavior of solder joints. Solder joints with different cross-sectional areas were designed to obtain different Joule heating properties. The effects of the interfacial intermetallic compound (IMC) and mechanical properties of Sn58Bi/Cu solder joints were studied for different Joule heating properties. The results showed that as the cross-sectional area of the Sn58Bi/Cu solder joints increased, the Joule heating of the joint increased. The anode IMC thickness of the joint thickened and transformed into a planar shape. The Bi migrated to the anode region to form a Bi-rich layer and gradually increased in thickness. The cathode IMC thickness first increased, then decreased, and gradually dissolved. The Sn-rich layer formed near the solder side and gradually increased in thickness, with microcracks occurring when the cross-sectional area of the joint increased to 0.75 mm2. The joint shear fracture path moved from the soldering zone near the cathode IMC layer to the interfacial IMC layer. The fracture mechanism of the joint changed from a mixed brittle/tough fracture, dominated by deconstruction and secondary cracking, to a brittle fracture dominated by deconstruction. The joint shear strength was reduced by 60.9% compared to that in the absence of electromigration.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Ina, K., and H. Koizumi. "Penetration of liquid metals into solid metals and liquid metal embrittlement." Materials Science and Engineering: A 387-389 (December 2004): 390–94. http://dx.doi.org/10.1016/j.msea.2004.05.042.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Nemoto, Takenao, Tutomu Murakawa, and Toshimitsu A. Yokobori, Jr. "Numerical Analysis for Electromigration of Cu Atom." Journal of the Japan Institute of Metals 70, no. 4 (2006): 374–79. http://dx.doi.org/10.2320/jinstmet.70.374.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Sázelová, Petra, Václav Kašička, Dušan Koval, and Gabriel Peltre. "Analysis of liquid extracts from tree and grass pollens by capillary electromigration methods." Journal of Chromatography B 808, no. 1 (August 2004): 117–23. http://dx.doi.org/10.1016/j.jchromb.2004.03.027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Zhang, Z. J., and M. L. Huang. "Abnormal migration behavior and segregation mechanism of Bi atoms undergoing liquid–solid electromigration." Journal of Materials Science 54, no. 10 (February 22, 2019): 7975–86. http://dx.doi.org/10.1007/s10853-019-03448-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Verbruggen, A. H., R. Griessen, and D. G. de Groot. "Electromigration of hydrogen in vanadium, niobium and tantalum." Journal of Physics F: Metal Physics 16, no. 5 (May 1986): 557–75. http://dx.doi.org/10.1088/0305-4608/16/5/006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Dekker, J. P., and A. Lodder. "Calculated electromigration wind force in face-centered-cubic and body-centered-cubic metals." Journal of Applied Physics 84, no. 4 (August 15, 1998): 1958–62. http://dx.doi.org/10.1063/1.368327.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Verbruggen, A. H., R. Griessen, R. J. van Aalst, and A. P. Kostelijk. "Multidilatometric methods for measurements of the diffusion and electromigration of hydrogen in metals." Journal of Physics E: Scientific Instruments 18, no. 5 (May 1985): 420–24. http://dx.doi.org/10.1088/0022-3735/18/5/013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

van Ek, J., J. P. Dekker, and A. Lodder. "Electromigration of substitutional impurities in metals: Theory and application in Al and Cu." Physical Review B 52, no. 12 (September 15, 1995): 8794–800. http://dx.doi.org/10.1103/physrevb.52.8794.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

van Ek, J., and A. Lodder. "Electromigration and residual resistivity of hydrogen in row 5 and 6 transition metals." Journal of Alloys and Compounds 185, no. 2 (July 1992): 207–19. http://dx.doi.org/10.1016/0925-8388(92)90469-p.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Lou, Liang, William L. Schaich, and James C. Swihart. "Calculations of the driving force of electromigration in hcp metals: Zn, Cd, Mg." Physical Review B 33, no. 4 (February 15, 1986): 2170–78. http://dx.doi.org/10.1103/physrevb.33.2170.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Ek, J. van, and A. Lodder. "Electromigration in transition metals. III. Substitutional impurities in Cu, Ag, Al and Nb." Journal of Physics: Condensed Matter 3, no. 43 (October 28, 1991): 8403–16. http://dx.doi.org/10.1088/0953-8984/3/43/007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Albertus, Paul. "Soft and liquid metals." Nature Energy 6, no. 3 (March 2021): 225–26. http://dx.doi.org/10.1038/s41560-021-00800-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Azez, K. A., P. C. Agarwal, and C. M. Kachhava. "Compressibility of liquid metals." Acta Physica Hungarica 70, no. 1-2 (June 1991): 15–19. http://dx.doi.org/10.1007/bf03054205.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Troia, A., and D. Madonna Ripa. "Sonoluminescence in Liquid Metals." Journal of Physical Chemistry C 117, no. 11 (March 7, 2013): 5578–83. http://dx.doi.org/10.1021/jp311335m.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Ioffe, L. B., and A. J. Millis. "Non-Fermi-liquid metals." Uspekhi Fizicheskih Nauk 168, no. 06 (June 1998): 672–82. http://dx.doi.org/10.3367/ufnr.0168.199806h.0672.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Ioffe, L. B., and A. J. Millis. "Non-Fermi-liquid metals." Physics-Uspekhi 41, no. 6 (June 30, 1998): 595–604. http://dx.doi.org/10.1070/pu1998v041n06abeh000410.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Reddy, M. Rami, Kandadai N. Swamy, and S. F. O'Shea. "Structure of liquid metals." Molecular Physics 62, no. 2 (October 10, 1987): 333–40. http://dx.doi.org/10.1080/00268978700102221.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії