Статті в журналах з теми "Electromagnetic Periodic Structures"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Electromagnetic Periodic Structures.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Electromagnetic Periodic Structures".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Schmidt, G. "Electromagnetic Scattering by Periodic Structures." Journal of Mathematical Sciences 124, no. 6 (December 2004): 5390–406. http://dx.doi.org/10.1023/b:joth.0000047360.15053.7d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Silin, R. A. "Electromagnetic waves in artificial periodic structures." Uspekhi Fizicheskih Nauk 176, no. 5 (2006): 562. http://dx.doi.org/10.3367/ufnr.0176.200605j.0562.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kriegsmann, G. A. "Electromagnetic propagation in periodic porous structures." Wave Motion 36, no. 4 (October 2002): 457–72. http://dx.doi.org/10.1016/s0165-2125(02)00036-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Guenneau, S., C. Geuzaine, A. Nicolet, A. B. Movchan, and F. Zolla. "Low frequency electromagnetic waves in periodic structures." International Journal of Applied Electromagnetics and Mechanics 19, no. 1-4 (April 24, 2004): 479–83. http://dx.doi.org/10.3233/jae-2004-612.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Salary, Mohammad Mahdi, Samad Jafar-Zanjani, and Hossein Mosallaei. "ELECTROMAGNETIC SCATTERING FROM BI-PERIODIC FABRIC STRUCTURES." Progress In Electromagnetics Research B 72 (2017): 31–47. http://dx.doi.org/10.2528/pierb16103101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Stefanou, N., V. Karathanos, and A. Modinos. "Scattering of electromagnetic waves by periodic structures." Journal of Physics: Condensed Matter 4, no. 36 (September 7, 1992): 7389–400. http://dx.doi.org/10.1088/0953-8984/4/36/013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

CHAN, C. T., K. M. HO, and C. M. SOUKOULIS. "PHOTONIC GAPS IN PERIODIC DIELECTRIC STRUCTURES." Modern Physics Letters B 06, no. 03 (February 10, 1992): 139–44. http://dx.doi.org/10.1142/s021798499200017x.

Повний текст джерела
Анотація:
Using a plane wave expansion method, we solved the Maxwell’s equations for the propagation of electromagnetic waves inside periodic dielectric materials, and found the existence of photonic band gaps in several classes of periodic dielectric structures.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rumpf, Raymond C., Javier J. Pazos, Jennefir L. Digaum, and Stephen M. Kuebler. "Spatially variant periodic structures in electromagnetics." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, no. 2049 (August 28, 2015): 20140359. http://dx.doi.org/10.1098/rsta.2014.0359.

Повний текст джерела
Анотація:
Spatial transforms are a popular technique for designing periodic structures that are macroscopically inhomogeneous. The structures are often required to be anisotropic, provide a magnetic response, and to have extreme values for the constitutive parameters in Maxwell's equations. Metamaterials and photonic crystals are capable of providing these, although sometimes only approximately. The problem still remains about how to generate the geometry of the final lattice when it is functionally graded, or spatially varied. This paper describes a simple numerical technique to spatially vary any periodic structure while minimizing deformations to the unit cells that would weaken or destroy the electromagnetic properties. New developments in this algorithm are disclosed that increase efficiency, improve the quality of the lattices and provide the ability to design aplanatic metasurfaces. The ability to spatially vary a lattice in this manner enables new design paradigms that are not possible using spatial transforms, three of which are discussed here. First, spatially variant self-collimating photonic crystals are shown to flow unguided waves around very tight bends using ordinary materials with low refractive index. Second, multi-mode waveguides in spatially variant band gap materials are shown to guide waves around bends without mixing power between the modes. Third, spatially variant anisotropic materials are shown to sculpt the near-field around electric components. This can be used to improve electromagnetic compatibility between components in close proximity.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lechleiter, Armin, and Ruming Zhang. "Non-periodic acoustic and electromagnetic, scattering from periodic structures in 3D." Computers & Mathematics with Applications 74, no. 11 (December 2017): 2723–38. http://dx.doi.org/10.1016/j.camwa.2017.08.042.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Modinos, A., V. Yannopapas, and N. Stefanou. "Scattering of electromagnetic waves by nearly periodic structures." Physical Review B 61, no. 12 (March 15, 2000): 8099–107. http://dx.doi.org/10.1103/physrevb.61.8099.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Crisostomo, J., W. A. Costa, and A. J. Giarola. "Electromagnetic wave propagation in multilayer dielectric periodic structures." IEEE Transactions on Antennas and Propagation 41, no. 10 (1993): 1432–38. http://dx.doi.org/10.1109/8.247784.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Sibilia, C., I. S. Nefedov, M. Scalora, and M. Bertolotti. "Electromagnetic mode density for finite quasi-periodic structures." Journal of the Optical Society of America B 15, no. 7 (July 1, 1998): 1947. http://dx.doi.org/10.1364/josab.15.001947.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Mesa, F., R. Rodríguez-Berral, and F. Medina. "Physically-insightful equivalent circuit models for electromagnetic periodic structures." Journal of Physics: Conference Series 963 (February 2018): 012010. http://dx.doi.org/10.1088/1742-6596/963/1/012010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Gelmont, Boris, Ramakrishnan Parthasarathy, Tatiana Globus, Alexei Bykhovski, and Nathan Swami. "Terahertz (THz) Electromagnetic Field Enhancement in Periodic Subwavelength Structures." IEEE Sensors Journal 8, no. 6 (June 2008): 791–96. http://dx.doi.org/10.1109/jsen.2008.923222.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Tsukerman, Igor, and Vadim A. Markel. "A non-asymptotic homogenization theory for periodic electromagnetic structures." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, no. 2168 (August 8, 2014): 20140245. http://dx.doi.org/10.1098/rspa.2014.0245.

Повний текст джерела
Анотація:
Homogenization of electromagnetic periodic composites is treated as a two-scale problem and solved by approximating the fields on both scales with eigenmodes that satisfy Maxwell's equations and boundary conditions as accurately as possible. Built into this homogenization methodology is an error indicator whose value characterizes the accuracy of homogenization. The proposed theory allows one to define not only bulk, but also position-dependent material parameters (e.g. in proximity to a physical boundary) and to quantify the trade-off between the accuracy of homogenization and its range of applicability to various illumination conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Zhang, Deyue, and Fuming Ma. "An inverse electromagnetic scattering problem for periodic chiral structures." Journal of Physics: Conference Series 12 (January 1, 2005): 180–87. http://dx.doi.org/10.1088/1742-6596/12/1/018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Liu, Victor, and Shanhui Fan. "S4 : A free electromagnetic solver for layered periodic structures." Computer Physics Communications 183, no. 10 (October 2012): 2233–44. http://dx.doi.org/10.1016/j.cpc.2012.04.026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Nguyen, Dinh-Liem, and Thi-Phong Nguyen. "Electromagnetic scattering by periodic structures with sign-changing coefficients." Comptes Rendus Mathematique 353, no. 10 (October 2015): 893–98. http://dx.doi.org/10.1016/j.crma.2015.07.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Maragkaki, Stella, Panagiotis C. Lingos, George D. Tsibidis, George Deligeorgis, and Emmanuel Stratakis. "Impact of Pre-Patterned Structures on Features of Laser-Induced Periodic Surface Structures." Molecules 26, no. 23 (December 2, 2021): 7330. http://dx.doi.org/10.3390/molecules26237330.

Повний текст джерела
Анотація:
The efficiency of light coupling to surface plasmon polariton (SPP) represents a very important issue in plasmonics and laser fabrication of topographies in various solids. To illustrate the role of pre-patterned surfaces and impact of laser polarisation in the excitation of electromagnetic modes and periodic pattern formation, Nickel surfaces are irradiated with femtosecond laser pulses of polarisation perpendicular or parallel to the orientation of the pre-pattern ridges. Experimental results indicate that for polarisation parallel to the ridges, laser induced periodic surface structures (LIPSS) are formed perpendicularly to the pre-pattern with a frequency that is independent of the distance between the ridges and periodicities close to the wavelength of the excited SPP. By contrast, for polarisation perpendicular to the pre-pattern, the periodicities of the LIPSS are closely correlated to the distance between the ridges for pre-pattern distance larger than the laser wavelength. The experimental observations are interpreted through a multi-scale physical model in which the impact of the interference of the electromagnetic modes is revealed.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Pan’kov, A. A. "ELECTROMAGNETIC COUPLING OF PIEZOELECTRIC/FERRITE COMPOSITE WITH INITIAL STRESS STATE." PNRPU Mechanics Bulletin, no. 4 (December 15, 2022): 180–95. http://dx.doi.org/10.15593/perm.mech/2022.4.16.

Повний текст джерела
Анотація:
A mathematical model of electromagnetic thermoelasticity for an initial-stressed transversal-isotropic composite with piezoelectric magnetostrictive phases has been developed. To solve the related boundary value problem of electromagnetic thermoe-lasticity, the Green function method was used as part of a generalized singular approximation of the statistical mechanics of composites, taking into account the initial stress state of the representative domain of the composite at micro- and macro-levels. The solution of the problem of "effective module" for tensors of effective elastic, piezomechanical, magnetostrictive properties, dielectric permittivity and magnetic permit-tivity, temperature, pyroelectric, pyromagnetic coefficients and (which appeared only at the macro level) electromagnetic and magnetoelectric couplings of a quasi-periodic composite with an initial electromagnetic elastic state was obtained. The solutions for the desired tensors of effective properties of the quasi-periodic composite are presented in the form of analytical formulas of simple linear decompositions by solutions for tensors of effective properties of the periodic structure and statistical mixture, decomposition coefficients are the coefficient of "periodicity" (correlation of quasi-periodic and periodic structures) p and "disordering" 1-p, respectively. Results of calculation of all independent components of tensors of effective coefficients of electromagnetic and magnetoelectric couplings of different structures (periodic, quasi-periodic and statistical mixture) are presented in unidirectional direction of fibrous composite "PZT-4/ferrite" with axisymmet-ric tensor of initial macrostrain of composite. For a quasi-periodic composite (with initial macrostrain), the significantly non-monotonic nature of the dependencies of relative (to values in the absence of an initial stress state) values of effective coefficients of electromagnetic and magnetoelectric couplings from the volume fraction of ferrite fibers was revealed. It was revealed that we have an increase in the absolute values of the electromagnetic and magnetoelectric coupling coefficients of composite at negative values of its initial axisymmetric axial macrostrains. The most significant effect is the initial comprehensive macrostrain in the transversal plane on the coefficients of the transversal magnetoelectric coupling of the composite.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Vanin, Viktor, and Sergiy Prosvirnin. "MATHEMATICAL MODELING OF SCATTERING OF ELECTROMAGNETIC WAVES ON PLANE TWO-PERIODIC STRUCTURES." Bulletin of the National Technical University "KhPI". Series: Mathematical modeling in engineering and technologies, no. 1 (April 13, 2023): 24–35. http://dx.doi.org/10.20998/2222-0631.2022.01.04.

Повний текст джерела
Анотація:
One of the scientific hypotheses for the creation of nonreciprocal optical metasurfaces is based on the use of a wave channel in which rays of the direct and reverse diffraction scenarios are realized on two-periodic flat structures with nonlinear elements. To test this hypothesis, it is necessary to carry out mathematical modeling of the process of scattering of electromagnetic waves by metasurfaces under conditions of excitation of several diffraction orders. It is known that among two-periodic flat lattices of different structures there are five types that fill the plane. These are the Bravais lattices. The problem of scattering of an incident monochromatic TE polarized wave on a metal screen with recesses in two-periodic structures filled with silicon was considered. In this paper, mathematical models are constructed for studying the spatial amplitude spectra of metasurfaces on Bravais lattices and some results of their numerical study are presented. Relationships are obtained for the diffraction orders of scattered electromagnetic waves by a diffraction grating. The existence of wavelengths of incident waves on a two-periodic grating for which there is no reflected wave is shown for different shapes (rectangular, square, hexagonal) of periodic elements in the center of which a recess filled with silicon was made. The distributions of the reflection coefficient are given for various geometric dimensions of periodic elements and recesses.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Walker, Jean Paul, Venkataraman Swaminathan, Aisha S. Haynes, and Haim Grebel. "Periodic Metallo-Dielectric Structures: Electromagnetic Absorption and its Related Developed Temperatures." Materials 12, no. 13 (June 30, 2019): 2108. http://dx.doi.org/10.3390/ma12132108.

Повний текст джерела
Анотація:
Multi-layer, metallo-dielectric structures (screens) have long been employed as electromagnetic band filters, either in transmission or in reflection modes. Here we study the radiation energy not transmitted or reflected by these structures (trapped radiation, which is denoted—absorption). The trapped radiation leads to hot surfaces. In these bi-layer screens, the top (front) screen is made of metallic hole-array and the bottom (back) screen is made of metallic disk-array. The gap between them is filled with an array of dielectric spheres. The spheres are embedded in a dielectric host material, which is made of either a heat-insulating (air, polyimide) or heat-conducting (MgO) layer. Electromagnetic intensity trapping of 97% is obtained when a 0.15 micron gap is filled with MgO and Si spheres, which are treated as pure dielectrics (namely, with no added absorption loss). Envisioned applications are anti-fogging surfaces, electromagnetic shields, and energy harvesting structures.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Kuznetsov, Valery Leonidovich, and Anton Sergeevich Rudkovskiy. "Model of 3D electromagnetic field with 2D periodic structures interaction." Computer Research and Modeling 5, no. 2 (April 2013): 213–24. http://dx.doi.org/10.20537/2076-7633-2013-5-2-213-224.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Morozov, Gregory V., Roman Gr Maev, and G. W. F. Drake. "Switching of electromagnetic waves by two-layered periodic dielectric structures." Physical Review E 60, no. 4 (October 1, 1999): 4860–67. http://dx.doi.org/10.1103/physreve.60.4860.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Lech, R., and J. Mazur. "Electromagnetic Curtain Effect and Tunneling Properties of Multilayered Periodic Structures." IEEE Antennas and Wireless Propagation Letters 7 (2008): 201–5. http://dx.doi.org/10.1109/lawp.2008.919355.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Quevedo-Teruel, Oscar, Guido Valerio, Zvonimir Sipus, and Eva Rajo-Iglesias. "Periodic Structures With Higher Symmetries: Their Applications in Electromagnetic Devices." IEEE Microwave Magazine 21, no. 11 (November 2020): 36–49. http://dx.doi.org/10.1109/mmm.2020.3014987.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Pelosi, G., A. Cocchi, and S. Selleri. "Electromagnetic scattering from infinite periodic structures with a localized impurity." IEEE Transactions on Antennas and Propagation 49, no. 5 (May 2001): 697–702. http://dx.doi.org/10.1109/8.929623.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Bao, Gang, Hai Zhang, and Jun Zou. "Unique determination of periodic polyhedral structures by scattered electromagnetic fields." Transactions of the American Mathematical Society 363, no. 9 (April 19, 2011): 4527–51. http://dx.doi.org/10.1090/s0002-9947-2011-05334-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Serna, Alberto, Mario F. Manzano, Luis Landesa, Diego M. Solis, and Jose M. Taboada. "Fast and accurate electromagnetic solutions of finite periodic optical structures." Optics Express 25, no. 15 (July 18, 2017): 18031. http://dx.doi.org/10.1364/oe.25.018031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Sukov, A., K. Tregubov, and I. Hayrullin. "Mathematical modeling of diffraction electromagnetic waves by curvilinear periodic structures." Physics of Particles and Nuclei Letters 5, no. 3 (May 2008): 168–69. http://dx.doi.org/10.1134/s1547477108030060.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Bossavit, Alain, Georges Griso, and Bernadette Miara. "Modelling of periodic electromagnetic structures bianisotropic materials with memory effects." Journal de Mathématiques Pures et Appliquées 84, no. 7 (July 2005): 819–50. http://dx.doi.org/10.1016/j.matpur.2004.09.015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Miyamoto, Yoshinari, Soshu Kirihara, and Mitsuo Wada Takeda. "Localization of Electromagnetic Wave in 3D Periodic and Fractal Structures." Chemistry Letters 35, no. 4 (April 2006): 342–47. http://dx.doi.org/10.1246/cl.2006.342.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Maldovan, M., and E. L. Thomas. "Simultaneous complete elastic and electromagnetic band gaps in periodic structures." Applied Physics B 83, no. 4 (May 5, 2006): 595–600. http://dx.doi.org/10.1007/s00340-006-2241-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Tsukerman, Igor. "Computational Electromagnetics: A Miscellany." J 4, no. 4 (December 15, 2021): 881–96. http://dx.doi.org/10.3390/j4040060.

Повний текст джерела
Анотація:
The paper presents a miscellany of unorthodox and, in some cases, paradoxical or controversial items related to computational and applied electromagnetics. The topics include a definition of the magnetic source field via a line integral, losses in electric power transmission vs. losses in photonics, homogenization of periodic electromagnetic structures, spurious modes, models of plasmonic media, and more. It is hoped that this assortment of subjects will be of interest to a broad audience of scientists and engineers.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Sibilia, C., M. Scalora, M. Centini, M. Bertolotti, M. J. Bloemer, and C. M. Bowden. "Electromagnetic properties of periodic and quasi-periodic one-dimensional, metallo-dielectric photonic band gap structures." Journal of Optics A: Pure and Applied Optics 1, no. 4 (January 1, 1999): 490–94. http://dx.doi.org/10.1088/1464-4258/1/4/313.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Pokorný, Jan, Jiří Pokorný, and Jan Vrba. "Electromagnetic communication between cells through tunneling nanotubes." International Journal of Microwave and Wireless Technologies 12, no. 9 (May 13, 2020): 831–38. http://dx.doi.org/10.1017/s175907872000046x.

Повний текст джерела
Анотація:
AbstractStructures of tunneling nanotubes (TNTs) of the circular cross-section of 50 and 200 nm and length up to 1 mm form a communication system between cells. While transport of material such as endocytic vesicles, mitochondria, proteins, cytoplasmic molecules, etc., is experimentally proven, a possible transfer of electric and electromagnetic energy across TNTs corresponding to electrotechnical processes of excitation, propagation, and amplification in cavity systems is yet in a beginning stage of research. The ideas presented in this paper are based on technical mechanisms applied to submicroscopic systems. Main features of corrugated periodic structures, electromagnetic circular waveguides, the Manley–Rowe amplification, the Fröhlich non-linear interaction of coherent electric polar vibrations, and description of cut-off frequency propagating limits in the waveguide and cavities and along periodic structures are discussed. We suggest that cell-to-cell connection with TNTs may form a unified coherent cavity system which enables simultaneity and mutual cooperation in multicellular organisms.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Karpov, S. Yu, and S. N. Stolyarov. "Propagation and transformation of electromagnetic waves in one-dimensional periodic structures." Uspekhi Fizicheskih Nauk 163, no. 1 (1993): 63. http://dx.doi.org/10.3367/ufnr.0163.199301b.0063.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Kuznetsov, Sergei, Andrey Arzhannikov, and M. Thumm. "Peculiarities of Electromagnetic Waves Diffraction on Regular-Periodic Inductive Metallic Structures." Siberian Journal of Physics 8, no. 4 (December 1, 2013): 11–24. http://dx.doi.org/10.54362/1818-7919-2013-8-4-11-24.

Повний текст джерела
Анотація:
We consider the key aspects in electrodynamics of planar metallic microstructures with a regular-periodic topological pattern of the inductive type intended for using as frequency-selective filters in the terahertz range. The consideration is carried out by the example of low- and high-aspect structures with the topology of dipole slots. The full-wave electromagnetic simulator ANSYS HFSS™ is employed to accurately model a spectral response of such structures at different slothole sizes and thicknesses of the bearing metallic layer. These simulations allow one to explain the electrodynamic peculiarities of the similar structures fabricated by the LIGA-technology in the Siberian Synchrotron and Terahertz Radiation Centre. The presented results can be further used when developing the microstructured filters with optimized frequency selective characteristics
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Chen, Lei, Zhen-Ya Lei, Rui Yang, Xiao-Wei Shi, and Jiawei Zhang. "DETERMINING THE EFFECTIVE ELECTROMAGNETIC PARAMETERS OF BIANISOTROPIC METAMATERIALS WITH PERIODIC STRUCTURES." Progress In Electromagnetics Research M 29 (2013): 79–93. http://dx.doi.org/10.2528/pierm13010204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Chizhevskaya, Ya I., O. N. Smolnikova, and S. P. Skobelev. "Analysis of Absorbing Periodic Structures Formed by Cylindrical Electromagnetic Black Holes." Technical Physics 66, no. 2 (February 2021): 316–24. http://dx.doi.org/10.1134/s1063784221020079.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Pinello, W. P., R. Lee, and A. C. Cangellaris. "Finite element modeling of electromagnetic wave interactions with periodic dielectric structures." IEEE Transactions on Microwave Theory and Techniques 42, no. 12 (1994): 2294–301. http://dx.doi.org/10.1109/22.339755.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Bulgakov, A. A., and O. V. Shramkova. "Dispersion and instability of electromagnetic waves in layered periodic semiconductor structures." Technical Physics 48, no. 3 (March 2003): 361–69. http://dx.doi.org/10.1134/1.1562266.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Karpov, S. Yu, and S. N. Stolyarov. "Propagation and transformation of electromagnetic waves in one-dimensional periodic structures." Physics-Uspekhi 36, no. 1 (January 31, 1993): 1–22. http://dx.doi.org/10.1070/pu1993v036n01abeh002061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Aynaou, H., E. H. El Boudouti, Y. El Hassouani, A. Akjouj, B. Djafari-Rouhani, J. Vasseur, L. Dobrzynski, and V. R. Velasco. "Propagation of electromagnetic waves in periodic and Fibonacci photonic loop structures." Physica A: Statistical Mechanics and its Applications 358, no. 1 (December 2005): 68–85. http://dx.doi.org/10.1016/j.physa.2005.06.007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Delourme, Bérangère, and David P. Hewett. "Electromagnetic shielding by thin periodic structures and the Faraday cage effect." Comptes Rendus. Mathématique 358, no. 7 (November 16, 2020): 777–84. http://dx.doi.org/10.5802/crmath.59.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Lim, Jaehyuk, Sangyeol Oh, Seungjin Lee, Wonsang Yoon, and Jaehoon Lee. "Enhanced broadband common-mode filter based on periodic electromagnetic bandgap structures." Microwave and Optical Technology Letters 60, no. 12 (October 19, 2018): 2932–37. http://dx.doi.org/10.1002/mop.31453.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Steinbauer, Miloslav, Roman Pernica, Jiri Zukal, Radim Kadlec, Tibor Bachorec, and Pavel Fiala. "MODELING ELECTROMAGNETIC NANOSTRUCTURES AND EXPERIMENTING WITH NANOELECTRIC ELEMENTS TO FORM PERIODIC STRUCTURES." Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 10, no. 4 (December 20, 2020): 4–14. http://dx.doi.org/10.35784/iapgos.2383.

Повний текст джерела
Анотація:
We discuss the numerical modeling of electromagnetic, carbon-based periodic structures, including graphene, graphane, graphite, and graphyne. The materials are suitable for sub-micron sensors, electric lines, and other applications, such as those within biomedicine, photonics, nano- and optoelectronics; in addition to these domains and branches, the applicability extends into, for example, microscopic solutions for modern SMART elements. The proposed classic and hybrid numerical models are based on analyzing a periodic structure with a high repeatability, and they exploit the concept of a carbon structure having its fundamental dimension in nanometers. The models can simulate harmonic and transient processes; are capable of evaluating the actual random motion of an electric charge as a source of spurious signals; and consider the parameters of harmonic signal propagation along the structure. The results obtained from the analysis are utilizable for the design of sensing devices based on carbon periodic structures and were employed in experiments with a plasma generator. The aim is to provide a broader overview of specialized nanostructural modeling, or, more concretely, to outline a model utilizable in evaluating the propagation of a signal along a structure’s surface.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Tsibidis, George D., Panagiotis Lingos, and Emmanuel Stratakis. "Synergy of electromagnetic effects and thermophysical properties of metals in the formation of laser-induced periodic surface structures." Optics Letters 47, no. 16 (August 15, 2022): 4251. http://dx.doi.org/10.1364/ol.466079.

Повний текст джерела
Анотація:
Femtosecond (fs) pulsed lasers have been widely used over the past few decades for precise materials structuring at the micro- and nano-scales. However, in order to realize efficient material processing and account for the formation of laser-induced periodic surface structures (LIPSS), it is very important to understand the fundamental laser–matter interaction processes. A significant contribution to the LIPSS profile appears to originate from the electromagnetic fingerprint of the laser source. In this work, we follow a systematic approach to predict the pulse-by-pulse formation of LIPSS on metals due to the development of a spatially periodic energy deposition that results from the interference of electromagnetic far fields on a non-flat surface profile. On the other hand, we demonstrate that the induced electromagnetic effects alone are not sufficient to allow the formation of LIPSS, therefore we emphasize the crucial role of electron diffusion and electron–phonon coupling on the formation of stable periodic structures. Gold (Au) and stainless steel (SS) are considered as two materials to test the theoretical model while simulation results appear to confirm the experimental results that, unlike with Au, fabrication of pronounced LIPSS on SS is feasible.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Sipe, J. E., H. M. van Driel, and Jeff F. Young. "Surface electrodynamics: radiation fields, surface polaritons, and radiation remnants." Canadian Journal of Physics 63, no. 1 (January 1, 1985): 104–13. http://dx.doi.org/10.1139/p85-017.

Повний текст джерела
Анотація:
We review and discuss the radiation remnant electromagnetic field structures, comparing them in real and Fourier space with radiation fields and surface polaritons. The roles of radiation remnants and surface polaritons in surface processes involving feedback with the electromagnetic field are discussed in a general way, using laser-induced periodic surface structure as an example.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Gribovsky, A. V. "A FABRY-PEROT METARESONATOR SUPPORTING TRAPPED-MODE RESONANCES." Radio physics and radio astronomy 26, no. 4 (November 24, 2021): 344–49. http://dx.doi.org/10.15407/rpra26.04.344.

Повний текст джерела
Анотація:
Purpose: Investigation of the electrodynamic properties of a Fabry-Perot metaresonator formed by two parallel perfectly conducting, two-dimensionally periodic, two-element screens of finite thickness with rectangular holes. The resonator is excited by a plane linearly polarized electromagnetic wave. The basic cell of each of the screens used as the metaresonator mirrors contains two lengths of rectangular waveguides of different transverse sections. Design/methodology/approach: An operator method for solving the 3D problems of electromagnetic wave diffraction by multielement two-dimensionally periodic structures is used in the study. The computation algorithm uses the partial domain technique and the method of generalized scattering matrices. Findings: As follows from the results of the numerical modeling made, the magnitude of the plane wave reflected from the metaresonator turns to zero at fixed frequencies lying below the cutoff frequencies for the rectangular waveguide sections embedded in the resonator mirrors. The effect of the total electromagnetic wave transmission through the metaresonator at the first lower frequency is characterized by a strong localization of the electromagnetic field in the resonator volume. The reason is excitation of the metaresonator by the exponentially descending field penetrating inside the resonator through the evanescent holes at the resonance frequency. The second low-frequency resonance of the total electromagnetic wave transmission through the metaresonator is associated with the trapped-mode resonance, which is observed in multielement two-dimensionally periodic structures. This case is characterized by a strong localization of the electromagnetic field from both sides near the metaresonator mirror surfaces. Conclusions: The unique electrodynamic properties of the metaresonator can find application in the devices for measuring the electrophysical parameters of composite materials with high losses. The effect of strong localization of the electromagnetic field both in the resonator volume and near the mirror surfaces can be used for monitoring the gaseous substances in crowded places. Key words: two-dimensionally periodic screen; rectangular waveguide; Fabry-Perot metaresonator; reflection factor; evanescent waveguide; trapped-mode resonance
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії