Добірка наукової літератури з теми "Electrolyte hybride"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Electrolyte hybride".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Electrolyte hybride":

1

Kanai, Yamato, Koji Hiraoka, Mutsuhiro Matsuyama, and Shiro Seki. "Chemically and Physically Cross-Linked Inorganic–Polymer Hybrid Solvent-Free Electrolytes." Batteries 9, no. 10 (September 26, 2023): 492. http://dx.doi.org/10.3390/batteries9100492.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Safe, self-standing, all-solid-state batteries with improved solid electrolytes that have adequate mechanical strength, ionic conductivity, and electrochemical stability are strongly desired. Hybrid electrolytes comprising flexible polymers and highly conductive inorganic electrolytes must be compatible with soft thin films with high ionic conductivity. Herein, we propose a new type of solid electrolyte hybrid comprising a glass–ceramic inorganic electrolyte powder (Li1+x+yAlxTi2−xSiyP3−yO12; LICGC) in a poly(ethylene)oxide (PEO)-based polymer electrolyte that prevents decreases in ionic conductivity caused by grain boundary resistance. We investigated the cross-linking processes taking place in hybrid electrolytes. We also prepared chemically cross-linked PEO/LICGC and physically cross-linked poly(norbornene)/LICGC electrolytes, and evaluated them using thermal and electrochemical analyses, respectively. All of the obtained electrolyte systems were provided with homogenous, white, flexible, and self-standing thin films. The main ionic conductive phase changed from the polymer to the inorganic electrolyte at low temperatures (close to the glass transition temperature) as the LICGC concentration increased, and the Li+ ion transport number also improved. Cyclic voltammetry using [Li metal|Ni] cells revealed that Li was reversibly deposited/dissolved in the prepared hybrid electrolytes, which are expected to be used as new Li+-conductive solid electrolyte systems.
2

Byeon, Sang Sik, Kai Wang, Chan Gyu Lee, Yeon Gil Jung, and Bon Heun Koo. "Effect of Phosphate and Nitrate Electrolytes on Growth of Ceramic Coatings on 2021 Al Alloys Prepared by Electrolytic Plasma Processing." Advanced Materials Research 123-125 (August 2010): 1035–38. http://dx.doi.org/10.4028/www.scientific.net/amr.123-125.1035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
2021 series aluminum alloy is used as the matrix material for its wide application in engineering to make AlON coating layers by the electrolytic plasma processing (EPP) method. The experiments were carried out on 2021 Al alloys in alkaline electrolytes which are eco-friendly and low-cost. The experimental electrolyte composition includes: 2g/L NaOH as the electrolytic conductive agent, 6~14g/L Na3PO4 as alumina formative agent, 0.5g/L NaNO3 as a nitrogen inducing agent. The effects of phosphate content variation are evaluated by a combined composition and structure analysis of the coating layer using with Philips-X’Pert X-ray diffractometer, JSM 5610 scanning electron microscopy for the specimens EPP-treated at room temperature in 10 min under a hybrid voltage (260V DC + 200V AC-50Hz). In addition, microhardness of the ceramic coatings was measured to correlate the evolution of microstructure and resulting mechanical properties. The wear tests show that a composite of AlON-Al2O3 high anti-abrasive coating formed as a result of a reactive process between Al in the alloy itself and O-N supplied by the electrolyte.
3

LI, X. D., X. J. YIN, C. F. LIN, D. W. ZHANG, Z. A. WANG, Z. SUN, and S. M. HUANG. "INFLUENCE OF I2 CONCENTRATION AND CATIONS ON THE PERFORMANCE OF QUASI-SOLID-STATE DYE-SENSITIZED SOLAR CELLS WITH THERMOSETTING POLYMER GEL ELECTROLYTE." International Journal of Nanoscience 09, no. 04 (August 2010): 295–99. http://dx.doi.org/10.1142/s0219581x10006831.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thermosetting polymer gel electrolytes (TPGEs) based on poly(acrylic acid)-poly(ethylene glycol) (PAA-PEG) hybrid were prepared and applied to fabricate dye-sensitized solar cells (DSCs). N-methylpyrrolidone (NMP) and γ-butyrolactone (GBL) were used as solvents for liquid electrolytes and LiI and KI as iodide source, separately. The microstructure of PAA-PEG shows a well swelling ability in liquid electrolyte and excellent stability of the swollen hybrid. The TPGE was optimized in terms of the liquid electrolyte absorbency and ionic conductivity photovoltaic performance. Quasi-solid-state DSCs containing TPGE with optimized KI electrolyte show higher efficiency, voltage, fill factor, and lower photocurrent than those with LiI electrolyte. The related mechanism was discussed. A quasi-solid-state DSC fabricated with optimized polymer gel electrolyte obtained an overall energy conversion efficiency of 4.90% under irradiation of 100 mW/cm2 (AM1.5).
4

An, Yongling, Huifang Fei, Jinkui Feng, Lijie Ci, and Shenglin Xiong. "A novel Lithium/Sodium hybrid aqueous electrolyte for hybrid supercapacitors based on LiFePO4 and activated carbon." Functional Materials Letters 09, no. 06 (December 2016): 1642008. http://dx.doi.org/10.1142/s179360471642008x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A novel low cost Na[Formula: see text]/Li[Formula: see text] hybrid electrolyte was proposed for hybrid supercapacitor. By partly substituting Lithium salt with Sodium salt, the Li[Formula: see text]/Na[Formula: see text] hybrid electrolyte exhibits synergic advantages of both Li[Formula: see text] and Na[Formula: see text] electrolytes. Our findings could also be applied to other hybrid power sources.
5

WANG, KAI, SANGSIK BYUN, CHAN GYU LEE, BON HEUN KOO, YI QI WANG, and JUNG IL SONG. "MICROSTRUCTURES AND ABRASIVE PROPERTIES OF THE OXIDE COATINGS ON Al6061 ALLOYS PREPARED BY PLASMA ELECTROLYTIC OXIDATION IN DIFFERENT ELECTROLYTES." Surface Review and Letters 17, no. 03 (June 2010): 271–76. http://dx.doi.org/10.1142/s0218625x1001359x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Al 2 O 3 coatings were prepared on T6-tempered Al6061 alloys substrate under a hybrid voltage (AC 200 V–60 Hz and DC 260 V value) by plasma electrolytic oxidation (PEO) in 30 min. The effects of different electrolytes on the abrasive behaviors of the coatings were studied by conducting dry ball-on-disk wear tests. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate the coating microstructure. XRD analysis results show that the coatings mainly consist of α- and γ- Al 2 O 3, and some mullite and AlPO 4 phase in Na 2 SiO 3 and Na 3 PO 4 containing electrolytes, respectively. The wear test results show that the coatings which were PEO-treated in Na 3 PO 4 containing electrolyte presented the most excellent abrasive resistance property.
6

Choi, Kyoung Hwan, Eunjeong Yi, Kyeong Joon Kim, Seunghwan Lee, Myung-Soo Park, Hansol Lee, and Pilwon Heo. "(Invited) Pragmatic Approach and Challenges of All Solid State Batteries: Hybrid Solid Electrolyte for Technical Innovation." ECS Meeting Abstracts MA2023-01, no. 6 (August 28, 2023): 988. http://dx.doi.org/10.1149/ma2023-016988mtgabs.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
For the growth of electric vehicle market, lithium-ion batteries (LIBS) used in the EVs still requires safety and reliability. Unfortunately, large-scale application of the LIBs is being challenged due to the fact that the use of flammable liquid electrolytes has caused safety issues such as leakage and fire explosion. In this respect, all-solid-state batteries (ASSBs) have been intensively studied to ensure the safety and mileage that are superior to the current LIBs. In terms of solid electrolytes, oxide electrolytes not only shows high ionic conductivity (10-4 ~ 10-3 S/cm) but also high mechanical strength to suppress surface dendrite formation. In addition, the oxide electrolytes possess advantages such as non-flammability, high thermal stability, and excellent electrochemical stability (~ 6 V), enabling high temperature/high voltage operations of oxide-based ASSBs. However, most of oxide materials require a sintering process at high temperatures to form a planar solid electrolyte. And a lack of flexibility results in non-uniform electrolyte/electrode contact in the battery, which makes it difficult to apply the rigid oxide electrolyte directly. On the other hand, solid polymer electrolytes have also been actively investigated due to no leakage, good electrolyte/electrode contact, easy processing, flexibility, and good film formability. However, the solid polymer electrolytes have critical disadvantages such as low ionic conductivity at room temperature and low thermal/mechanical stability, which precludes commercialization of solid polymer-based ASSBs despite their advantages. To overcome each disadvantages of oxide and polymer electrolytes, we developed hybrid electrolytes for improved ionic conductivity, easy processing, and formation of continuous electrolyte/electrode interface. In this presentation, pragmatic approach and current challenges related to solid batteries will be discussed including innovative manufacturing process. Hybrid electrolytes and their synergistic effect on the battery performance as a promissing solution will be presented [Fig. 1]
7

Liao, Cheng Hung, Chia-Chin Chen, Ru-Jong Jeng, and Nae-Lih (Nick) Wu. "Application of Artificial Interphase on Ni-Rich Cathode Materials Via Hybrid Ceramic-Polymer Electrolyte in All Solid State Batteries." ECS Meeting Abstracts MA2023-01, no. 6 (August 28, 2023): 1050. http://dx.doi.org/10.1149/ma2023-0161050mtgabs.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Among many cathode materials, nickel-rich LiNi0.83Co0.12Mn0.05O2 (NCM 831205) has been spotlighted as one of the most feasible candidates for next-generation LIBs because of its high discharge capacity (~200 mAh/g). However, NCM 831205 shows significant performance degradation, which is mostly attributed to cation mixing, surface side reactions, and intrinsic structural instability originating from the large volume changes during repeated cycling. Conventional lithium ion batteries (LIB) normally use flammable nonaqueous liquid electrolytes, resulting in a serious safety issue in use. In this respect, all-solid-state batteries (ASSB) are regarded as a fundamental solution to address the safety issue by using a solid state electrolyte in place of the conventional liquid one. This work employed lithium sulfonate (SO3Li) tethered polymer, obtained from sulfonation of commercial polymer, to serve as the artificial protective coating on the active NCM831205 of the cathode for ASSB based on hybrid PEO-ceramic solid electrolyte. The coating layer should prevent direct contact of electrolyte with the cathode, thus avoid the negative effects such as microcracks of NCM831205 and undesired CEI formation. The preparation of hybrid ceramic-polymer electrolyte through a solvent-free process. The hybrid electrolytes exhibit good flexibility and processability with respect to pure ceramic and pure PEO polymer electrolyte. It is demonstrated that the hybrid electrolytes can penetrate into cathode under 60°C, providing a good Li+ transfer channel inside the battery. Moreover, the sulfone based polymer protective coating could effectively improve the electrochemical stability of the NCM831205 without sacrificing the battery performance. Keywords: NCM831205, Artificial Polymer Coating, All-Solid-State Batteries
8

Villaluenga, Irune, Kevin H. Wujcik, Wei Tong, Didier Devaux, Dominica H. C. Wong, Joseph M. DeSimone, and Nitash P. Balsara. "Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries." Proceedings of the National Academy of Sciences 113, no. 1 (December 22, 2015): 52–57. http://dx.doi.org/10.1073/pnas.1520394112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Despite high ionic conductivities, current inorganic solid electrolytes cannot be used in lithium batteries because of a lack of compliance and adhesion to active particles in battery electrodes as they are discharged and charged. We have successfully developed a compliant, nonflammable, hybrid single ion-conducting electrolyte comprising inorganic sulfide glass particles covalently bonded to a perfluoropolyether polymer. The hybrid with 23 wt% perfluoropolyether exhibits low shear modulus relative to neat glass electrolytes, ionic conductivity of 10−4 S/cm at room temperature, a cation transference number close to unity, and an electrochemical stability window up to 5 V relative to Li+/Li. X-ray absorption spectroscopy indicates that the hybrid electrolyte limits lithium polysulfide dissolution and is, thus, ideally suited for Li-S cells. Our work opens a previously unidentified route for developing compliant solid electrolytes that will address the challenges of lithium batteries.
9

Woolley, Henry Michael, and Nella Vargas-Barbosa. "Electrochemical Characterization of Thiophosphate- Ionic Liquid Hybrid Lithium Electrolytes Against Li Metal." ECS Meeting Abstracts MA2023-01, no. 6 (August 28, 2023): 986. http://dx.doi.org/10.1149/ma2023-016986mtgabs.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
(Almost) solid-state batteries that utilize thiophosphate solid electrolytes (SE) are an exciting technology emerging as a potential alternative to lithium-ion batteries. When used alongside a lithium metal anode they can offer the high energy densities [1] required to meet the increasing demand for energy storage. However, they suffer from numerous issues which predominately occur at the cathode- or anode-SE interface. Issues include dendrite propagation through gaps, pores and grain boundaries of the solid electrolyte which can eventually puncture electrolyte crystallites and lead to cell failure. [2] Thiophosphate electrolytes are also unstable both chemically and electrochemically. As a result of the SEs having a low electrochemical stability window reduction or oxidation can occur at the anode or cathode interface, forming a resistive solid electrolyte interphase (SEI). [3] Finally, the ionic contact between Li metal anode and electrolyte is poor and thus high interfacial impedances can arise. These impedances can be dynamic which increase during stripping of the lithium and decrease during plating. [4] To solve some of the interfacial issues there is the option to add a small of amount of liquid electrolyte at the lithium metal-electrolyte interface. The liquid electrolyte can fill in the gaps and pores at the interface thus improving the ionic contact whilst allowing a more stable interface. Whilst the ionic contact can be improved the inherent instability of thiophosphate electrolytes against the liquid electrolyte means that a new interphase known as the solid-liquid electrolyte interphase (SLEI) can form. The presence of this interphase can therefore lower the energy density and round-trip efficiencies of cells which utilize hybrid electrolytes meaning that minimizing the SLEI resistance and maximizing total ionic conductivities is important in hybrid cells. [5] In this work a hybrid of the thiophosphate argyrodite Li6PS5Cl and the ionic liquid x-LiTFSI-1-butyl 1-methylpiperidinium TFSI (BMPipTFSI) with LiTFSI concentrations of 0.25 M and 0.5 M was studied. The choice of SE and liquid electrolyte boils down to the high ionic conductivity of the SE and the electrochemical and thermal stability of the ionic liquid. Temperature-dependent ionic conductivity measurements showed that hybrid systems exhibit lower in room temperature ionic conductivities and higher total activation energies. This hints at the presence of a SLEI forming between the LE and SE. To study how the SLEI resistances changes over time, ion blocking potential impedance spectroscopy measurements were performed. These measurements were performed at 10 °C to allow for the resistance contributions to be better resolved and showed a SLEI resistance of around 45-50 Ω cm2 for both hybrids. Over the period of 130 hours this resistance changed minimally (around 5 Ω cm2 on average) indicating good stability of the SLEI. To further test the suitability of this hybrid alongside lithium metal anodes impedance measurements in symmetrical lithium cells (Li0|LE|LPCL|LE|Li0) were undertaken. In this case galvanostatic impedance spectroscopy (GEIS) with an applied current density of ±0.4 mA cm-2 was used to probe the changes in resistance contributions in the system over the period of stripping (positive current) and plating (negative current). For cells with just SE a large change in the resistance owing to the electrochemical reaction (ECR) (Li0 ↔ Li+ + e-) occurred during stripping and plating indicating the dynamic nature of the ionic contact at the interface. For the hybrid electrolyte cells, this ECR resistance is decreased and becomes more stable however a larger interphase resistance is present. This resistance is a combination of the resistances of both the SLEI (the interphase between the LE and SE) and the SEI (the interphase between LE and Li anode) and it changes over stripping and plating showing that the S(L)EIs which are present are dynamic. Finally, post-mortem SEM/EDX of the surface of samples show a change in morphology and the presence of decomposition products from both the liquid and solid electrolytes. These studies show that the LPCL-BMPipTFSI hybrid is stable and improve ionic contact at the lithium metal anode interface. Further testing in half Li-S cells will determine the suitability of the use of the ionic liquid at the cathode side of the cell. References [1] J. Janek and W. G. Zeier, Nat Energy, 2016, 1, 16141. [2] M. B. Dixit et al. Matter, 2020, 3, 2138-2159 [3] G. Dewald et al. Chem Mater, 2019, 31, 8328-8337. [4] T. Krauskopf et al. Chem. Rev, 2020, 7745-7794. [5] H. M. Woolley and N. M. Vargas-Barbosa, under review.
10

Zaman, Wahid, Nicholas Hortance, Marm B. Dixit, Vincent De Andrade, and Kelsey B. Hatzell. "Visualizing percolation and ion transport in hybrid solid electrolytes for Li–metal batteries." Journal of Materials Chemistry A 7, no. 41 (2019): 23914–21. http://dx.doi.org/10.1039/c9ta05118j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Electrolyte hybride":

1

Monin, Guillaume. "Stabilisation chimique des électrolytes polymères pour pile à combustible." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00728176.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La dégradation accélérée des membranes conductrices protoniques en pile est en partie due à une oxydation induite par la production d'H2O2. Cette étude présente une stratégie originale de stabilisation chimique d'une matrice de sPEEK par l'inclusion de nano-charges stabilisantes. Quatre nano-charges ont été préparées par fonctionnalisation de nanoparticules de silice avec des fonctions chimiques organosoufrées (disulfure, tétrasulfure et thiourée). Un protocole spécifique de mise en forme des membranes hybrides a permis d'obtenir des composites présentant des propriétés mécaniques et une conductivité protonique compatibles avec l'application pile. Les fonctions polysulfures permettent de ralentir la dégradation de la matrice de sPEEK durant l'étape de mise en œuvre et d'augmenter sa conductivité au cours d'un vieillissement ex-situ (H2O2). En présence de fonctions tétrasulfures, la membrane sPEEK ne se dégrade pas durant un test de 1200h en OCV à 70°C et 100%HR.
2

Chometon, Ronan. "Exploring the role of polymers in scaling up the manufacturing of solid-state batteries." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS046.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dans un contexte de transition vers les énergies renouvelables et d'électrification de la mobilité, les batteries sont un rouage indispensable à cette transformation. Alors que la technologie lithium-ion est aujourd'hui largement établie, la course à la performance en matière de densité d'énergie mise sur les batteries tout-solide, encore à l'état de prototype. Elles sont basées sur le principe du transfert de charge au travers de contacts purement solides, complexes à former et à maintenir, et donc sources de nombreux problèmes associés à leur fonctionnement. La mise à l'échelle des procédés de fabrication des batteries tout-solide est particulièrement critique et nécessite un changement de stratégie d'assemblage, en abandonnant le format en pastille pour tendre vers un montage en feuillets. Dans ce contexte, nos travaux de recherche ont porté sur le rôle des polymères dans l'adaptation du procédé d'assemblage, en tant que liant des particules inorganiques. Nous avons exploré deux stratégies qui se distinguent par rapport à la nature de ce liant, pouvant être conducteur ou non des ions lithium. Dans une première approche, l'électrolyte polymère PEO:LiTFSI a été utilisé pour préparer des films autosupportés d'électrolyte hybride à haut taux de charges inorganiques Li6PS5Cl, suivant un procédé à sec. L'instabilité des deux électrolytes en contact génère cependant une interphase trop résistive pour assurer une conduction ionique conjointe au sein de l'hybride. Dans un souci de simplification du système, une nouvelle approche a été adoptée, se basant sur un liant non conducteur, le PVDF-HFP, pour la préparation et le coulage en bande d'une encre afin d'obtenir des films d'électrodes et de séparateurs. Une optimisation minutieuse des paramètres a permis d'obtenir des résultats encourageants puisque que proches du système de référence ne contenant pas de liant, et ce même à basse pression de cyclage. La fiabilité du procédé développé au cours de cette thèse ouvre maintenant la voie vers l'assemblage de cellules tout-solide complètes, intégrant une anode à haute densité d'énergie telle que le lithium métal
The imperative transition toward renewable energy sources and the ongoing electrification of transportation position battery technologies at the forefront of this transformation. While the lithium-ion technology is already well-established, the quest for higher energy density has drawn significant attention to the emerging solid-state batteries (SSBs). Their working principle is based on ion and electron transfers through solid-solid contacts, which are complex to master and sustain, giving rise to most of the challenges associated with their realisation. Especially, the capability to scale up SSBs' fabrication process is critical for future implementation and calls for a shift from pellet-type to sheet-type assembly. Thus, this doctoral research delved into the role of polymers in facilitating this transition by exploring two strategies differing on the binder's ability to conduct lithium ions. In the first approach, we capitalised on the polymer electrolyte PEO:LiTFSI favourable mechanical properties to prepare self-standing films of hybrid solid electrolyte with a high content of Li6PS5Cl, using a dry process. However, the instability between the organic and inorganic phases resulted in a resistive interphase that prevents a shared conduction mechanism within the hybrid. After that, we pursued a simpler approach to fabricate self-standing SSBs by employing a conventional non-conductive binder, PVDF-HFP, and using a slurry-based tape casting process. The thorough optimisation of the formulation and preparation of the electrodes and solid-state separators gave promising results, closely approaching the electrochemical performance of binder-free reference SSBs, even under low operating pressure. The reliability of our fabrication process thus paves the way for assembling self-standing solid-state full cells, integrating high energy density anodes such as lithium metal
3

Issa, Sébastien. "Synthèse et caractérisation d'électrolytes solides hybrides pour les batteries au lithium métal." Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0046.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les problématiques engendrées par l’extraction et l’utilisation intensives des ressources fossiles ont forcé l’humanité à se tourner vers le développement d’énergies renouvelables et de véhicules électriques. Cependant, ces technologies doivent être couplées à des moyens de stockage de l’énergie efficaces pour exploiter leur potentiel. Les systèmes embarquant une anode de lithium métallique sont particulièrement intéressants car ils présentent une densité d’énergie élevée. Cependant, cette technologie souffre de la formation de dendrites pouvant déclencher des courts-circuits provoquant l’explosion du dispositif. Ainsi, de nombreux efforts ont été consacrés à l’élaboration d’électrolytes solides polymères (SPE) à base de POE permettant de constituer une barrière qui bloque la croissance dendritique tout en préservant les propriétés de conduction ionique. Cependant, la conductivité ionique des SPE à base de POE décroît fortement avec la température. A l’heure actuelle, les meilleurs SPE de la littérature nécessiteraient de fonctionner à 60 °C, ce qui signifie qu’une partie de l’énergie de la batterie sera détournée de son utilisation pour maintenir cette température. Ainsi, l’objectif principal de ce travail de thèse est de concevoir un SPE permettant le fonctionnement de la technologie de batterie au lithium métal à température ambiante. Ces SPE doivent présenter une conductivité ionique élevée à température ambiante (≈ 10-4 S.cm-1) et des propriétés mécaniques permettant l’inhibition du phénomène de croissance dendritique. Pour cela, les objectifs du projet sont focalisés sur le développement de nouveaux SPE nanocomposites et hybrides
The problems caused by the intensive extraction and use of fossil fuels have forced humanity to turn to the development of renewable energies and electric vehicles. However, these technologies need to be coupled with efficient energy storage means to exploit their potential. Lithium metal anode systems are particularly interesting because they have a high energy density. However, this technology suffers from the formation of dendrites that can trigger short circuits causing the device to explode. Thus, many efforts have been devoted to the development of POE-based solid polymer electrolytes (SPEs) that provide a barrier that blocks dendritic growth while preserving ionic conduction properties. However, the ionic conductivity of POE-based SPEs decreases strongly with temperature. Currently, the best SPEs in the literature would require operation at 60 °C, which means that some of the energy in the battery will be diverted from its use to maintain this temperature. Thus, the main objective of this thesis work is to design an SPE that allows the operation of lithium metal battery technology at room temperature. These SPEs must exhibit high ionic conductivity at room temperature (≈ 10-4 S.cm-1) and mechanical properties that allow the inhibition of the dendritic growth phenomenon. For this, the objectives of the project are focused on the development of new nanocomposite and hybrid SPEs
4

Leclercq, Florent. "Étude d'électrolytes hybrides solides destinés aux batteries lithium." Electronic Thesis or Diss., Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLET068.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Au cours de cette thèse, nous avons comparé deux voies d’élaboration d’un électrolyte solide hybride composé d’un mélange de deux polymères (PEO et PVDF-HFP), d’un sel de lithium (LiTFSI), et d’un réseau de silice formé in situ par voie sol-gel et fonctionnalisé par des groupements imidazolium Dans un premier temps, nous avons utilisé le procédé de coulée-évaporation pour étudier l’influence des différents constituants sur les propriétés physico-chimiques et électrochimiques. Des conductivités de 10⁻⁴ S/cm à 80°C ont été atteintes, ce qui permet de faire cycler des batteries LiFePO₄/Li à des régimes de C/10 à la même température. Le procédé d’extrusion électro-assistée a ensuite été utilisé afin de fabriquer un squelette de nanofibres hybrides PVDF-HFP/silice (fonctionnalisée ou non) dont la porosité est remplie par un mélange PEO/LiTFSI. L’architecture particulière de l’électrolyte ainsi fabriqué permet de découpler les propriétés de conduction des propriétés mécaniques. Les conductivités obtenues à 80°C sont de 5.10⁻⁴ S/cm, ce qui permet de faire cycler des batteries LiFePO₄/Li à des régimes de C/2 à la même température. Les mêmes squelettes hybrides « électrospinnés » ont été évalués en tant que séparateur pour des électrolytes aqueux super-concentrés (également appelés water-in-salt). Leurs excellentes propriétés de mouillage et de rétention permettent d’assurer le fonctionnement d’une batterie LiMn₂O₄/TiO₂ à des régimes atteignant 10C tout en diminuant la quantité d’électrolyte nécessaire
This work focuses on the comparison of two processes for the elaboration of a solid hybrid electrolyte made of a mix of two polymers (PEO and PVDF-HFP), a lithium salt (LiTFSI), and of a silica network made in situ via a sol-gel method and functionalized with imidazolium groups. At first, the influence of the different components on the physicochemical and electrochemical properties of electrolytes made by dry casting is studied. Conductivities of 10⁻⁴ S/cm at 80 °C allow us to cycle LiFePO₄/Li batteries at a C/10 rate at the same temperature. A skeleton of hybrid PVDF-HFP/silica (functionalized or not) nanofibers is synthesized by electrospinning and its porosity is filled with a PEO/LiTFSI mix. The particular architecture of this type of electrolyte enables the decoupling of conduction and mechanical properties. Conductivities of 5.10-4 S/cm at 80 °C allow the cycling of LiFePO₄/Li batteries at a C/2 rate at the same temperature. The same electrospun hybrid membranes are evaluated as separators for hybrid water-in-salt electrolytes. Thanks to their excellent wetting and retention properties, LiMn₂O₄/TiO₂ batteries are cycled at a 10C rate with a low quantity of electrolyte
5

Chamaani, Amir. "Hybrid Polymer Electrolyte for Lithium-Oxygen Battery Application." FIU Digital Commons, 2017. https://digitalcommons.fiu.edu/etd/3562.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The transition from fossil fuels to renewable resources has created more demand for energy storage devices. Lithium-oxygen (Li-O2) batteries have attracted much attention due to their high theoretical energy densities. They, however, are still in their infancy and several fundamental challenges remain to be addressed. Advanced analytical techniques have revealed that all components of a Li-O2 battery undergo undesirable degradation during discharge/charge cycling, contributing to reduced cyclability. Despite many attempts to minimize the anode and cathode degradation, the electrolyte remains as the leading cause for rapid capacity fading and poor cyclability in Li-O2 batteries. In this dissertation, composite gel polymer electrolytes (cGPEs) consisting of a UV-curable polymer, tetragylme based electrolyte, and glass microfibers with a diameter of ~1 µm and an aspect ratio of >100 have been developed for their use in Li-O2 battery application. The Li-O2 batteries containing cGPEs showed superior charge/discharge cycling for 500 mAh.g-1 cycle capacity with as high as 400% increase in cycles for cGPE over gel polymer electrolytes (GPEs). Results using in-situ electrochemical impedance spectroscopy (EIS), Raman spectroscopy, and scanning electron microscopy revealed that the source of the improvement was the reduction of the rate of lithium carbonates formation on the surface of the cathode. This decrease in formation rate afforded by cGPE-containing batteries was possible due to the decrease of the rate of electrolyte decomposition. The increase in solvated to the paired Li+ ratio at the cathode, afforded by increased lithium transference number, helped lessen the probability of superoxide radicals reacting with the tetraglyme solvent. This stabilization during cycling helped prolong the cycling life of the batteries. The effect of ion complexes on the stability of liquid glyme based electrolytes with various lithium salt concentrations has also been investigated for Li-O2 batteries. Charge/discharge cycling with a cycle capacity of 500 mAh·g-1 showed an improvement as high as 300% for electrolytes containing higher lithium salt concentrations. Analysis of the Raman spectroscopy data of the electrolytes suggested that the increase in lithium salt concentration afforded the formation of cation-solvent complexes, which in turn, mitigated the tetragylme degradation.
6

Lundgren, Henrik. "Thermal Aspects and Electrolyte Mass Transport in Lithium-ion Batteries." Doctoral thesis, KTH, Tillämpad elektrokemi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-166857.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Temperature is one of the most important parameters for the performance, safety, and aging of lithium-ion batteries and has been linked to all main barriers for widespread commercial success of electric vehicles. The aim of this thesis is to highlight the importance of temperature effects, as well as to provide engineering tools to study these. The mass transport phenomena of the electrolyte with LiPF6  in EC:DEC was fully characterized in between 10 and 40 °C and 0.5 and 1.5 M, and all mass transport properties were found to vary strongly with temperature. A superconcentrated electrolyte with LiTFSI in ACN was also fully characterized at 25 °C, and was found to have very different properties and interactions compared to LiPF6  in EC:DEC. The benefit of using the benchmarking method termed electrolyte masstransport resistivity (EMTR) compared to using only ionic conductivity was illustrated for several systems, including organic liquids, ionic liquids, solid polymers, gelled polymers, and electrolytes containing flame-retardant additives. TPP, a flame-retardant electrolyte additive, was evaluated using a HEV load cycle and was found to be unsuitable for high-power applications such as HEVs. A large-format commercial battery cell with a thermal management system was characterized using both experiments and a coupled electrochemical and thermal model during a PHEV load cycle. Different thermal management strategies were evaluated using the model, but were found to have only minor effects since the limitations lie in the heat transfer of the jellyroll.
Temperatur är en av de viktigaste parametrarna gällande ett litiumjonbatteris prestanda, säkerhet och åldring och har länkats till de främsta barriärerna för en storskalig kommersiell framgång för elbilar. Syftet med den här avhandlingen är att belysa vikten av temperatureffekter, samt att bidra med ingenjörsverktyg att studera dessa. Masstransporten för elektrolyten LiPF6  i EC:DEC karakteriserades fullständigt i temperaturintervallet 10 till 40 °C för LiPF6-koncentrationer på 0.5 till 1.5 M. Alla masstransport-egenskaper fanns variera kraftigt med temperaturen. Den superkoncentrerade elektrolyten med LiTFSI i ACN karakteriserades även den fullständigt vid 25 °C. Dess egenskaper och interaktioner fanns vara väldigt annorlunda jämfört med LiPF6  i EC:DEC. Fördelen med att använda utvärderingsmetoden elektrolytmasstransportresistivitet (EMTR) jämfört med att endast mäta konduktivitet illustrerades för flertalet system, däribland organiska vätskor, jonvätskor, fasta polymerer, gellade polymerer, och elektrolyter med flamskyddsadditiv. Flamskyddsadditivet TPP utvärderades med en hybridbils-lastcykel och fanns vara olämplig för högeffektsapplikationer, som hybridbilar. Ett kommersiellt storformatsbatteri med ett temperatur-kontrollsystem karakteriserades med b.de experiment och en kopplad termisk och elektrokemisk modell under en lastcykel utvecklad för plug-inhybridbilar. Olika strategier för kontroll av temperaturen utvärderades, men fanns bara ha liten inverkan på batteriets temperatur då begränsningarna för värmetransport ligger i elektrodrullen, och inte i batteriets metalliska ytterhölje.

QC 20150522


Swedish Hybrid Vehicle Center
7

Romer, Frederik. "Multinuclear NMR of hybrid proton electrolyte membranes in metal oxide frameworks." Thesis, University of Warwick, 2017. http://wrap.warwick.ac.uk/89874/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Seck, Serigne. "Elaboration de matériaux hybrides organiques / inorganiques par extrusion réactive : Application en pile à combustible." Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A l’heure actuelle, les piles à combustible à membrane échangeuse de protons (PEMFC) les plus avancées, qu’elles soient disponibles commercialement ou intégrées dans des démonstrateurs, sont réalisées avec des électrolytes polymères perfluorosulfonés de types Nafion®. En effet, ce type de polymère est celui qui présente à la fois les meilleures performances et la plus grande durée de vie sans pour autant qu’elles soient suffisantes, et ce, quelles que soient les applications (portable, stationnaire, transport). En effet ce polymère présente toutefois trois inconvénients majeurs : son prix, sa perméation au méthanol et sa perte de performance (et surtout de conductivité) dès 80-85 °C. Selon les projections avec les technologies actuelles (source DOE), le prix de vente du Nafion® serait de 80 $/m2 pour une production de 1 Mm2. Il existe un réel besoin de développer de nouveaux matériaux pour membranes échangeuses de protons présentant d’excellentes performances (propriétés mécaniques, imperméabilité maximale au méthanol et H2, conduction protonique..) sur une large gamme de températures, typiquement entre 25 et 150°C (selon l’application visée), mais présentant également un coût de fabrication réduit. Or aujourd’hui, ces différentes fonctions sont assurées par un seul polymère perfluorosulfoné ce qui est le problème principal. Ainsi, l’intérêt du projet est de combiner les avantages d’un matériau hybride obtenu par génération in situ de la phase inorganique (Sol-Gel) nanométrique avec l’utilisation d’un procédé en continu de mise en œuvre par extrusion (voie fondu), exempt de tout solvant et facilement transférable industriellement. La conduction protonique sera assurée par des fonctions sulfoniques générées grâce à l'oxydation des sites fonctionnels apportés par le précurseur fonctionnel
Fuel cells technologies are electrochemical energy conversion devices and have a real potential to revolutionize the way to produce energy, offering cleaner, more-efficient alternatives to combustion of gasoline and other fossil fuels. In that way, the Proton Exchange Membrane Fuel Cells (PEMFC) are probably the most studied. Those fuel cells are mainly based on perfluorosulfonic acid membranes, such as Nafion®. However, Nafion® membranes, present some limitations such as dehydration at high temperatures or at low relative humidity rate leading to a decrease of proton conductivity and thus poor PEMFC performance. Consequently, PEMFC require significant improvements prior to be largely used in the automobile field. Research efforts have been oriented on the development of new materials for the PEMFC membrane as it is the main limitative component for high temperature fuel cell. In the present contribution, we wish to report the validation of a new concept of hybrid materials for the realization of proton exchange membranes. The originality of this hybrid concept is based on the contribution of both phases’ specific properties. We investigated the preparation of hybrid materials based on an inert polymer matrix (low cost) providing the mechanical stability embedding inorganic phase providing the necessary properties of proton-conduction and water retention. Hybrid nanocomposite membranes were synthesized using evaporation and recasting technique from solution containing dispersion of inorganic particles in the adequate polymer. Scanning electron microscopy (SEM) images for membrane morphology and proton conductivity results using impedance measurements from hybrid membranes will be presented. The performance of the membrane-electrode assembly (MEA) using the hybrid membrane was also evaluated by a fuel cell test. Finally, we wish to present a promising way of research based on Sol-Gel approach to generate a proton-conducting inorganic phase into the polymer matrix
9

Boaretto, Nicola. "Inorganic-organic hybrid polymer electrolytes for secondary lithium metal batteries." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424435.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Polymer electrolytes are an important class of ionic conducting materials, which find application essentially in electrochemical storage devices, such as secondary lithium batteries or fuel cells. Regarding the application in lithium batteries, the interest on polymer electrolytes arises primarily from their inherent safety, at least in comparison with classical liquid electrolytes. Furthermore, polymer electrolytes show higher compatibility with lithium metal. The use of lithium metal as anode material allows a reduction of the total cell mass and thus an increase of its specific energy. This study describes the synthesis and the physical properties of polysiloxane/polyether-based hybrid polymer electrolytes. The structural, thermo-mechanical, electrochemical and transport properties of the hybrid electrolytes are characterized by means of several analytical techniques. Finally, the performances of lithium-metal polymer batteries with the best performing materials are analyzed. An attempt to enhance the cycling life of these cells by passivation of the lithium electrodes is also described. The materials are synthesized by sol-gel reaction of functionalized alkoxysilanes and by polymerization of vinyl or epoxide functionalities. The synthesized hybrid polymer electrolytes show good ionic conductivities (up to 8∙10-5 S•cm-1 at room temperature), and high thermo-mechanical and electrochemical stabilities. Broadband electric spectroscopy analysis (BES) shows that the ionic mobility is maximized if a) short-range ion-ion interactions are negligible and b) ordered stacking of the polyether chains is hindered. If both conditions are satisfied, the charge motion is modulated by the segmental motion of the polyether chains. Full cell tests at 60 °C show that these materials can be used as electrolytes in lithium metal batteries, even though a moderate capacity fade upon cycling is observed. This is attributed, among other factors, to contact and electrochemical stability issues between lithium and electrolyte. Pre-coating of the Lithium surface with cyclic carbonates, or the introduction of a softer electrolyte as buffer, helps preventing electrolyte degradation and improving the performance and cycling life of Li-metal polymer cells.
Gli elettroliti polimerici costituiscono un’importante classe di materiali a conduzione ionica, che trova applicazione essenzialmente in dispositivi di stoccaggio elettrochimici, quali batterie al litio o celle a combustibile. Nel campo delle batterie al litio, l’interesse per questi materiali deriva principalmente dalla loro non infiammabilità, che li distingue dagli elettroliti liquidi attualmente utilizzati. In aggiunta, gli elettroliti polimerici mostrano una maggiore compatibilità nei confronti del litio metallico. L’utilizzo di questo come materiale anodico permette una riduzione della massa della cella e quindi un aumento dell’energia specifica della stessa. Questo studio descrive la sintesi e la caratterizzazione di elettroliti polimerici ibridi a base polisilossanica/polieterea. La sintesi include una reazione d’idrolisi/co-condensazione tra alcossisilani funzionalizzati e la reticolazione di gruppi terminali vinilici o epossidici. La struttura, le proprietà termomeccaniche, elettrochimiche e di trasporto sono caratterizzate tramite varie tecniche analitiche. Infine, i materiali più promettenti sono testati in celle con anodi in litio metallico. Lo studio descrive, infine, un tentativo di migliorare la ciclabilità delle celle litio/polimero tramite pre-passivazione degli elettrodi in litio. I materiali sintetizzati sono caratterizzati da buona conducibilità ionica (fino a 8∙10-5 S•cm-1 a temperatura ambiente) e da buona stabilità termomeccanica ed elettrochimica. L’analisi degli spettri elettrici (BES) rivela che la mobilità ionica è massimizzata a) in assenza di interazioni inter-ioniche a corto raggio e b) in assenza di ordine nei domini polieterei. Se queste due condizioni sono soddisfatte, la migrazione ionica a lungo raggio è modulata dal moto segmentale delle catene polieteree. Test in cella a 60 °C dimostrano che questi materiali possono essere utilizzati come elettroliti polimerici in celle con anodo in litio metallico, seppur con una moderata perdita di capacità. Questa è in parte attribuita a problemi di contatto e di stabilità elettrochimica tra l’elettrolita e l’anodo. La pre-passivazione degli elettrodi in litio metallico protegge l’elettrolita dal deterioramento e permette di migliorare le prestazioni in cella.
10

Meyer, Mathieu. "Membranes électrolytes à porteurs de charge Li+." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20119/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La demande actuelle en batteries lithium-ion « tout solide » adaptées aux applications mobiles asuscité d'importantes recherches sur des membranes électrolytes polymères de plus en plussophistiquées. Cette thèse porte sur la synthèse et la caractérisation mécanique, thermique etstructurale de nouveaux matériaux électrolytes polymères nanocomposites résultant de la réticulationpar procédé sol-gel de chaînes de poly(oxyde d'éthylène) (PEO) fonctionnalisées aux deux extrémitéspar des groupements alkoxysilane. Les nano-domaines polysilsesquioxanes ainsi formés par hydrolysecondensation,génèrent un haut degré de réticulation et jouent le rôle de nanocharges, apportant unerésistance mécanique permettant d'incorporer des quantités élevées de plastifiant. En outre, leprocédé sol-gel permet de fonctionnaliser ces nano-domaines avec des groupements de type sulfonateou perfluorosulfonate de lithium, qui fournissent des porteurs de charge Li+ de façon uniforme au seinde la membrane. De plus, l'immobilisation des anions par liaisons covalentes supprime leurcontribution à la conductivité, ce qui assure au sein de l'électrolyte (alors dit single-ion) une conductionunipolaire cationique, indispensable pour éviter ultérieurement la formation de dendrites de lithium aucours des cycles de charge et décharge. L'étude de la conductivité ionique de ces membranes, à l'étatsec ou après gonflement dans le carbonate de propylène, a conduit à une réflexion sur la dynamique ducation lithium au sein des membranes nanocomposites et sur les différentes voies envisageables pouraméliorer les performances de ces électrolytes
The topical demand in all-solid lithium-ion batteries suitable for portable consumer electronicdevices has triggered extensive research on more and more sophisticated polymer electrolytemembranes (PEM).This PhD work deals with the synthesis and the mechanical, thermal andstructural characterization of new nanocomposite PEM arising from the sol-gel cross-linking ofPEO chains end-capped with alkoxysilane groups. Thus, the polysilsesquioxane nano-domainsformed by hydrolysis-condensation reactions form a high density of cross-links and play the roleof nanocharges, giving rise to mechanical resistance, which allows incorporating high amounts ofplasticizer. Moreover, sol-gel process allows the functionalization of these nanodomains withlithium sulfonate or perfluorosulfonate groups, which supply Li+ charge carriers homogeneouslydispersed throughout the membrane. In addition the immobilization of the anions via covalentbonds prevents them from contributing to the overall conductivity, thus ensuring a single-ionconduction, which is a compulsory condition to prevent the further formation of lithium dendriteson charge-discharge cycles. The ionic conductivity study of the membranes, in the dry state orafter swelling in propylene carbonate, was done. It led to discuss the dynamics of lithium cation inthe nanocomposite membranes and the possible ways to improve their conductionperformances

Книги з теми "Electrolyte hybride":

1

Landgrebe, Albert R. Power sources for transportation applications: Proceedings of the international symposium. Pennington, NJ: Electrochemical Society, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sarkar, B. K., and Reena Singh. Hydrogen Fuel Cell Vehicles Current Status. Namya Press, 2022. http://dx.doi.org/10.56962/9789355451118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract: The hazardous effects of pollutants from conventional fuel vehicles have caused the scientific world to move towards environmentally friendly energy sources. Though we have various renewable energy sources, the perfect one to use as an energy source for vehicles is hydrogen. Like electricity, hydrogen is an energy carrier that has the ability to deliver incredible amounts of energy. On-board hydrogen storage in vehicles is an important factor that should be considered when designing fuel cell vehicles. In this study, a recent development in hydrogen fuel cell engines is reviewed to scrutinize the feasibility of using hydrogen as a major fuel in transportation systems. A fuel cell is an electrochemical device that can produce electricity by allowing chemical gases and oxidants as reactants. With anodes and electrolytes, the fuel cell splits the cation and the anion in the reactant to produce electricity. Fuel cells use reactants, which are not harmful to the environment and produce water as a product of the chemical reaction. As hydrogen is one of the most efficient energy carriers, the fuel cell can produce direct current (DC) power to run the electric car. By integrating a hydrogen fuel cell with batteries and the control system with strategies, one can produce a sustainable hybrid car.

Частини книг з теми "Electrolyte hybride":

1

Maréchal, Manuel, Christel Laberty-Robert, and Sébastien Livi. "Hybrid Electrolytes." In ACS Symposium Series, 73–97. Washington, DC: American Chemical Society, 2015. http://dx.doi.org/10.1021/bk-2015-1213.ch005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wang, Yifei, Xinhai Xu, Mingming Zhang, Meng Ni, and Dennis Y. C. Leung. "Hybrid-Electrolyte Metal-Air Batteries." In Metal-Air Batteries, 291–304. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003295761-20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bai, Ziwei, Jiahua Li, Zhanfeng Deng, Hui Tan, Lu Li, Guizhi Xu, Wei Kang, and Min Liu. "Global Trends in PEM Electrolyzer Research Based on Published Articles." In Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 44–60. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractAs one of the representative new energy, hydrogen has received widely attention in recent years. PEM electrolyzer plays a central role in hydrogen production process. In this paper, 411 publications related to PEM electrolyzer collected from Web of Science released between 2005 and 2022 were analyzed through bibliometric to explore research hot-spots and future trends by analyzing publication and citation, countries and authors, journals and keywords. According to statistics and analysis, (1) Iran and Dincer Ibrahim were the most productive countries and authors, respectively. (2) International Journal of Hydrogen Energy was the mainly journal of PEM electrolyzer related publications. (3) Component and Hybrid System are likely to remain prominent areas of research in the foreseeable future. (4) Current hot-spots, such as Two Phase Flow and Hybrid System, may receive even more attention in the foreseeable future.
4

Zhang, Sheng, Xin Wang, Bo Li, Jianfeng Dai, and Jinyang Zheng. "Capacity Optimization of a Renewable Energy System Coupled with Large-Scale Hydrogen Production and Storage." In Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 412–21. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_40.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractHybrid renewable energy and hydrogen energy systems have been proved to be a reliable and cost competitive option for power generation and hydrogen supply. However, the inappropriate capacity of hydrogen production and storage may result in out-of-balance of the power supply side and the hydrogen consumption side. In this paper, a simplified mathematical modeling of the hybrid energy system, including power generation, hydrogen production and storage has been presented to optimize the capacity of alkaline electrolyzer and hydrogen storage tank. Multi-objective functions are adopted in the capacity optimization model, including abandoned rate of renewable power, hydrogen supply fluctuation, and utilization efficiency of electrolyzer and hydrogen storage tank. A meta-heuristic algorithm (i.e., improved multi-objective particle swarm optimization algorithm) is chosen to solve the model. A hybrid energy system with a distributed photovoltaic power station with the rated power of 7000 kW has been designed to satisfy the hydrogen demand of 720 kg/d of a chemical plant. The results reveal that the optimal capacity configuration of the hybrid energy system is 4971 kW for the alkaline electrolyzer and 937 Nm3 for hydrogen storage tank during a period of 8760 h. Compared with the empirical model and single-objective optimization model, the proposed multi-objective optimization model is found helpful to optimize the capacity of hybrid energy system and gives better results regarding renewable energy utilization rate, equipment usage rate, and hydrogen supply stability.
5

Brousse, Thierry, Daniel Bélanger, and Daniel Guay. "Asymmetric and Hybrid Devices in Aqueous Electrolytes." In Supercapacitors, 257–88. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527646661.ch8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Choudhury, Snehashis. "Hybrid Hairy Nanoparticle Electrolytes Stabilize Lithium Metal Batteries." In Springer Theses, 13–33. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28943-0_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chaurasia, Sujeet Kumar, Kunwar Vikram, Manish Pratap Singh, and Manoj K. Singh. "Hybrid Organic-Inorganic Polymer Composites." In Polymer Electrolytes and their Composites for Energy Storage/Conversion Devices, 43–65. New York: CRC Press, 2022. http://dx.doi.org/10.1201/9781003208662-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gueridi, Amina, Abdallah Khellaf, Djaffar Semmar, and Larbi Loukarfi. "Study of a PV-Electrolyzer-Fuel Cell Hybrid System." In Exergy for A Better Environment and Improved Sustainability 2, 1139–46. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-62575-1_78.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mizuhata, M., T. Ohashi, and S. Deki. "Conductive Property of Molten Carbonate/Ceria-Based Oxide (Ce0.9Gd0.1O1.95) for Hybrid Electrolyte." In Molten Salts Chemistry and Technology, 535–41. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118448847.ch7b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Calderón, Antonio José, Isaías González, and Manuel Calderón. "Management of a PEM Electrolyzer in Hybrid Renewable Energy Systems." In Atlantis Computational Intelligence Systems, 217–34. Paris: Atlantis Press, 2014. http://dx.doi.org/10.2991/978-94-6239-082-9_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Electrolyte hybride":

1

Valencia, Guillermo E., Gabriel Cubas Glen, John C. Turizo, and Ramiro J. Chamorro. "Mimo Generalized Predictive Control for a Small Wind Turbine–Fuel Cell Hybrid Energy System." In ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/es2009-90311.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper presents a comparative performance analysis between the generalized predictive control (GPC) and the traditional proportional integral derivative (PID) under different dynamics cases in hybrid energy systems, which is composed of by a 400 W small wind turbine, a polymer electrolyte membrane (PEM) fuel cells (PEMFC), an electrolyzer, and finally the ultracapacitors and a power converter unit in order to minimize voltage fluctuations in the system and generate AC voltage. In addition, the transient responses of the system to step changes in the load current and wind speed are presented as a result of the manipulation in the flow of reactants to the fuel cell. SIMULINK™ is used for the simulation of this highly nonlinear hybrid energy system.
2

Maroufmashat, Azadeh, Farid Seyyedyn, Ramin Roshandel, and Mehrdad Boroushaki. "Hydrogen Generation Optimization in a Hybrid Photovoltaic-Electrolyzer Using Intelligent Techniques." In ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2012 6th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fuelcell2012-91512.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Hydrogen is a flexible energy carrier and storage medium and can be generated by electrolysis of water. In this research, hydrogen generation is maximized by optimizing the optimal sizing and operating condition of an electrolyzer directly connected to a PV module. The method presented here is based on Particle swarm optimization algorithm (PSO). The hydrogen, in this study, was produced using a proton exchange membrane (PEM) electrolyzer. The required power was supplied by a photovoltaic module rated at 80 watt. In order to optimize Hydrogen generation, the cell number of the electrolyser and its activity must be 9 and 3, respectively. As a result, it is possible to closely match the electrolyzer polarization curve to the curve connecting PV system’s maximum power points at different irradiation levels. PSO is a novel method in optimization inspiring from observation of bird flocking and fish schooling. Comparing to other optimization method, not only PSO is more efficient and require lower functions of evaluations, but it leads to better results, as well.
3

Rühl, Steffen, Max Heyl, Fabian Gärisch, Sylke Blumstengel, Giovanni Ligorio, and Emil J. W. List-Kratochvil. "Benchmarking electrolyte gated monolayer MoS2 field effect transistors in aqueous environments." In Organic and Hybrid Sensors and Bioelectronics XIV, edited by Ruth Shinar, Ioannis Kymissis, and Emil J. List-Kratochvil. SPIE, 2021. http://dx.doi.org/10.1117/12.2597158.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Frisbie, C. Daniel. "Electrolyte gated transistors and inverters operating at 10 MHz (Conference Presentation)." In Organic and Hybrid Field-Effect Transistors XXI, edited by Oana D. Jurchescu and Iain McCulloch. SPIE, 2022. http://dx.doi.org/10.1117/12.2633938.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Giovannitti, Alexander. "Next-generation polymeric organic semiconductors for electrochemical transistors in aqueous electrolytes." In Organic and Hybrid Transistors XXII, edited by Oana D. Jurchescu and Iain McCulloch. SPIE, 2023. http://dx.doi.org/10.1117/12.2676408.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Khan, Ammar, Muhammad Akma Kamarudin, Sehrish Iqbal, Hafiyya Malik, Habib-ur Rehman, and Timothy Wilkinson. "Liquid crystalline physical-gel electrolytes for stable dye sensitized solar cells." In 2nd Asia-Pacific Hybrid and Organic Photovoltaics. Valencia: Fundació Scito, 2017. http://dx.doi.org/10.29363/nanoge.ap-hopv.2018.056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ligorio, Giovanni. "Are electrolyte-gated organic field-effect transistor the transducer of choice for biosensor applications?" In Organic and Hybrid Sensors and Bioelectronics XIII, edited by Ruth Shinar, Ioannis Kymissis, and Emil J. List-Kratochvil. SPIE, 2020. http://dx.doi.org/10.1117/12.2570414.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Marquez Rios, Nestor O., and Arash Takshi. "Stability of fiber-based organic electrochemical transistors with a gel electrolyte for wearable electronics." In Organic and Hybrid Sensors and Bioelectronics XV, edited by Ruth Shinar, Ioannis Kymissis, and Emil J. List-Kratochvil. SPIE, 2022. http://dx.doi.org/10.1117/12.2633175.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Glowacki, Eric. "Light-induced extracellular stimulation using organic electrolytic photocapacitors (Conference Presentation)." In Organic and Hybrid Sensors and Bioelectronics XI, edited by Ruth Shinar, Ioannis Kymissis, Luisa Torsi, and Emil J. List-Kratochvil. SPIE, 2018. http://dx.doi.org/10.1117/12.2322613.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Boldrini, Chiara Liliana, Norberto Manfredi, Filippo Maria Perna, Vito Capriati, and Alessandro Abbotto. "Introducing eco-friendly hydrophilic and hydrophobic deep eutectic solvent electrolyte solutions for dye-sensitized solar cells." In 13th Conference on Hybrid and Organic Photovoltaics. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.hopv.2021.055.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Electrolyte hybride":

1

Cochran, Joe, Jim Lee, Meilin Liu, Dave McDowell, and Tom Sanders. Hybrid Metal/Electrolyte Monolithic Low Temperature SOFCs. Fort Belvoir, VA: Defense Technical Information Center, October 2004. http://dx.doi.org/10.21236/ada427529.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Herman, D., D. David Hobbs, H. Hector Colon-Mercado, T. Timothy Steeper, J. John Steimke, and M. Mark Elvington. HYBRID SULFUR ELECTROLYZER DEVELOPMENT FY09 SECOND QUARTER REPORT. Office of Scientific and Technical Information (OSTI), April 2009. http://dx.doi.org/10.2172/951554.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hobbs, D., H. Hector Colon-Mercado, and M. Mark Elvington. COMPONENT DEVELOPMENT NEEDS FOR THE HYBRID SULFUR ELECTROLYZER. Office of Scientific and Technical Information (OSTI), May 2008. http://dx.doi.org/10.2172/935436.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hobbs, D., H. Hector Colon-Mercado, and M. Mark Elvington. FY08 MEMBRANE CHARACTERIZATION REPORT FOR HYBRID SULFUR ELECTROLYZER. Office of Scientific and Technical Information (OSTI), September 2008. http://dx.doi.org/10.2172/937206.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Oh, Kyeong-Seok, Shuai Yuan, and Sang-Young Lee. Scalable semi-solid batteries based on hybrid polymer-liquid electrolytes. Peeref, June 2023. http://dx.doi.org/10.54985/peeref.2306p1973287.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Noga, Edward J., Ramy R. Avtalion, and Michael Levy. Comparison of the Immune Response of Striped Bass and Hybrid Bass. United States Department of Agriculture, August 1993. http://dx.doi.org/10.32747/1993.7568749.bard.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We developed methods for examining the pathophysical response of striped bass and hybrid bass to various forms of stress. This involved development of techniques for the measurement of lysozyme, mitogen blastogenesis, mixed lymphocyte reaction, and oxidative burst, which are important general indicators of systemic immune function. We also examined local immune defenses (epithelial integrity), as well as homeostatic indicators in blood, including osmotic balance and glucose. Acute stress resulted in significant perturbations in a number of parameters, including glucose, electrolytes, osmolarity, lysozyme, and mixed lymphocyte reaction. Most significantly, acute confinement stress resulted in severe damage to the epidermal epithelium, as indicated by the rapid (within 2 hr) development of erosions and ulcerations on various fins. There were significant differences in the resting levels of some immune functions between striped bass and hybrid bass, including response to mitogens in the leukocyte blastogenesis test. Our studies also revealed that there were significant differences in how striped bass and hybrid bass respond to stress, with striped bass being much more severely affected by stress than the hybrid. This was reflected in more severe changes in glucose, cortisol dynamics, and plasma lysozyme. Most significantly, striped bass developed more severe idiopathic skin ulceration after stress, which may be a major reason why this fish is so prone to develop opportunistic bacterial and fungal infections after stress. Hybrid bass injected with equine serum albumin developed a typical humoral immune response, with peak antibody production 28 days after primary immunization. Fish that were exposed to a chronic stress after a primary immunization showed almost complete inhibition of antibody production.
7

Steeper, T. J., and J. L. Steimke. Design and Experimental Test Plan for Hybrid Sulfur Single Cell Pressurized Electrolyzer. Office of Scientific and Technical Information (OSTI), September 2005. http://dx.doi.org/10.2172/881426.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Summers, W. HYBRID SULFUR ELECTROLYZER DEVELOPMENT, NHI WORK PACKAGE N-SR07TC0301, FY07 FIRST QUARTER REPORT. US: SRS, December 2006. http://dx.doi.org/10.2172/899305.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Colon-Mercado, H., D. David Hobbs, D. Daryl Coleman, and A. Amy Ekechukwu. FISCAL YEAR 2006 REPORT ON ELECTROLYZER COMPONENT DEVELOPMENT FOR THE HYBRID SULFUR PROJECT. Office of Scientific and Technical Information (OSTI), August 2006. http://dx.doi.org/10.2172/891670.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bose, Anima. Multi-Hybrid Power Vehicles with Cost Effective and Durable Polymer Electrolyte Membrane Fuel Cell and Li-ion Battery. Office of Scientific and Technical Information (OSTI), February 2014. http://dx.doi.org/10.2172/1121743.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії