Добірка наукової літератури з теми "Electrodeless sulfur lamp"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Electrodeless sulfur lamp".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Electrodeless sulfur lamp"

1

Frolova, T., and A. Frolov. "ANALYSIS OF A SOLAR SIMULATOR BASED ON THE ELECTRODELESS SULFUR LAMP FOR PHOTOVOLTAIC DEVICES." Telecommunications and Radio Engineering 77, no. 6 (2018): 525–39. http://dx.doi.org/10.1615/telecomradeng.v77.i6.50.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Electrodeless sulfur lamp"

1

Hsu, Ren-Horng, and 徐仁宏. "Study of Fabrication of Microwave Electrodeless Sulfur Lamp and Luminance Characterization." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/17563119330603066505.

Повний текст джерела
Анотація:
碩士
中華大學
機械工程學系碩士在職專班
100
Microwave Sulfur Lamp is known as an electrodeless lamp with full spectrum that is very close to that of the sun light. The Sulfur within the quartz bulb was excited by the microwave emitted from the magnetron. The microwave electrodeless Sulfur lamp features high luminous efficiency, long life time (60000 hours), good color rendering, Mercury pollution free, and good light maintenance factor . With the higher power input, the microwave electrodeless Sulfur lamp is appropriate for open area outdoors lighting, plant factory, and sun lighting simulator. In this study, the major fabricating parameters of the microwave electrodeless Sulfur lamp have been studied and evaluated their effects to the lighting performance. The study consists two parts: the first part is fabricating a microwave electrodeless Sulfur bulb, which is powered by a microwaved power supply. The spectral distribution of the bulb was examined by Spectrometer and compared to that of the sun light. The second part is to the interactions between the brightness, color temperature, and other performance of the bulb and the fabricating parameters such as: the filling volume of Sulfur, the filling volume of Inert gas, the power of the microwaved power supply. The results from first part had shown that the fabricated microwave electrodeless Sulfur lamp has a continuous spectrum between 400 nm to 1100 nm. However, the spectrum of a pure Sulfur lamp has lower intensity between 700 nm to 1100nm, i.e. while increasing the filling volume of Sulfur and trace metal halides during the fabrication, the intensity of the microwave bulb is increased dramatically from red to the infrared region of the spectrum. From the results from the second part, it is found that the filling volume of the Sulfur will give raise to the changes of spectral distribution, brightness, and color temperature of the bulb. Meanwhile, the inert gas also has shown the slight effects on the brightness, and color temperature of the bulb. It is also found that the more rapid change of the brightness of the bulb would be corresponded to the larger input power. With the input power from 800W to 1200W, the brightness of the bulb would increase about 170%. With the obtained results, it is possible to optimize the filling volume of the Sulfur and the input power, the brightness of the microwave electrodeless Sulfur lamp is able to be increased up to 230%, from 1201cd/m2 800W to 2812 cd/m2 1200W. The further studies will be carried on.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Бондаренко, И. Н., and А. В. Галич. "Resonant irregular hybrid structures." Thesis, 2016. http://openarchive.nure.ua/handle/document/6781.

Повний текст джерела
Анотація:
Numerical model simulation and experimental device examination defines the conditions of excitation and types of high-Q oscillations in irregular hybrid structures and the conditions for communication of high-Q oscillations with an aperture of a coaxial probe parts are also identified. Irregular hybrid structure in configurations discussed can be effectively used to create high-Q resonator transducers for contactless microwave diagnostics of different objects. The possibilities of the use of irregular resonator structures for the formation of ionizing microwave fields in the electrodeless sulfur lamps, and as a guide elements of light are also investigated. The analysis of resonator structures of different geometry, configuration of the field strength, which are formed, and magnitude of the field strength, amplitude-frequency characteristics are carried out.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Electrodeless sulfur lamp"

1

Frolova, Tetyana, and Andrii Frolov. "Solar simulator for photovoltaic devices based on the electrodeless sulfur lamp." In 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET). IEEE, 2018. http://dx.doi.org/10.1109/tcset.2018.8336316.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Frolova, Tetyana I. "Effective Application of Plasma Lighting Facility Based on Electrodeless Sulfur Lamp for Electrical Regeneration." In 2018 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2018. http://dx.doi.org/10.1109/icops35962.2018.9575909.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Churyumov, Gennadiy Ivanovich, Oleksandr Grigorovich Denisov, Tetyana Ivanivna Frolova, Nannan Wang, and Jinghui Qiu. "A HIGH-POWER SOURCE OF OPTICAL RADIATION WITH MICROWAVE EXCITATION." In Ampere 2019. Valencia: Universitat Politècnica de València, 2019. http://dx.doi.org/10.4995/ampere2019.2019.9761.

Повний текст джерела
Анотація:
For more than 50 years, interest to the microwave heating technology has not weakened. In addition to the traditional areas of its application, which described in detail in [1], recently there has been an expansion of technological possibilities for the use of microwave energy associated with the impact of electromagnetic waves of the microwave range on various materials (sintering of metal and ceramic powders) and media, including plasma [2]. One such new direction is the creation of high-power and environmentally friendly sources of optical radiation on the basis of an electrodeless sulfur lamp with microwave excitation [2, 3]. The purpose of this paper is to the further development of the theory and practice of microwave excitation by the electrodeless sulfur lamps, improvement the energy efficiency during energy conversion into the optical radiation and widening the application of new light sources in real practice. The results of the computer modeling of conversion process of the microwave energy into optical radiation energy are presented. The simulation results are compared with experimental data. It is shown that additional use of the solar panels for the reverse conversion of the optical radiation into DC energy with follow-up its using in the circuits of secondary power supply allows improving the energy efficiency of the light source. References Microwave Power Engineering. Edited by E.C. Okress. V. 1, 2. Academic Press, New York & London. 1968.A.N. Didenko, SVCh-energetika. Teoriya i praktika. – Moscow: Nauka. 2003.- 445 s.G. Churyumov, T. Frolova, “Microwave Energy and Light Energy Transformation: Methods, Schemes and Designs. Microwave Energy and Light Energy Transformation: Methods, Schemes and Designs” // In book “Emerging Microwave Technologies in Industrial, Agricultural, Medical and Food Processing.” Edited by Kok Yeow You, IntechOpen, 2018. pp. 75-91.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії