Добірка наукової літератури з теми "Electrical-optical modulator"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Electrical-optical modulator".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Electrical-optical modulator"
M. A. Eid, Mahmoud, Ashraf S. Seliem, Ahmed Nabih Zaki Rashed, Abd El-Naser A. Mohammed, Mohamed Yassin Ali, and Shaimaa S. Abaza. "The key management of direct/external modulation semiconductor laser response systems for relative intensity noise control." Indonesian Journal of Electrical Engineering and Computer Science 21, no. 2 (February 1, 2021): 968. http://dx.doi.org/10.11591/ijeecs.v21.i2.pp968-977.
Повний текст джерелаZhou, Zhipeng, Zean Li, Cheng Qiu, Yongyi Chen, Yingshuai Xu, Xunyu Zhang, Yiman Qiao, et al. "A Design of High-Efficiency: Vertical Accumulation Modulators Based on Silicon Photonics." Nanomaterials 13, no. 24 (December 16, 2023): 3157. http://dx.doi.org/10.3390/nano13243157.
Повний текст джерелаSupasai, Wisut, Apirat Siritaratiwat, Chavis Srichan, Suksan Suwanarat, Narong Amorntep, Mongkol Wannaprapa, Nuttachai Jutong, et al. "Enhancing modulation performance by design of hybrid plasmonic optical modulator integrating multi-layer graphene and TiO2 on silicon waveguides." Nanotechnology 35, no. 31 (May 17, 2024): 315201. http://dx.doi.org/10.1088/1361-6528/ad43f2.
Повний текст джерелаThomson, David J., Weiwei Zhang, Ke Li, Kapil Debnath, Shenghao Liu, Bigeng Chen, Muhammad K. Husain, et al. "Silicon photonics for high data rate applications -INVITED." EPJ Web of Conferences 238 (2020): 01005. http://dx.doi.org/10.1051/epjconf/202023801005.
Повний текст джерелаGosciniak, Jacek. "Ultra-compact nonvolatile plasmonic phase change modulators and switches with dual electrical–optical functionality." AIP Advances 12, no. 3 (March 1, 2022): 035321. http://dx.doi.org/10.1063/5.0082094.
Повний текст джерелаTahersima, Mohammad H., Zhizhen Ma, Yaliang Gui, Shuai Sun, Hao Wang, Rubab Amin, Hamed Dalir, Ray Chen, Mario Miscuglio, and Volker J. Sorger. "Coupling-enhanced dual ITO layer electro-absorption modulator in silicon photonics." Nanophotonics 8, no. 9 (August 14, 2019): 1559–66. http://dx.doi.org/10.1515/nanoph-2019-0153.
Повний текст джерелаFeng, Song, and Bin Xue. "Micro-Nano Electro-Optic Modulator Structure Based on the Si/SiGe/Si Material." Journal of Nanoelectronics and Optoelectronics 15, no. 6 (June 1, 2020): 693–99. http://dx.doi.org/10.1166/jno.2020.2796.
Повний текст джерелаWu, Zhaoyang, Shuqing Lin, Siyuan Yu, and Yanfeng Zhang. "Submilliwatt Silicon Nitride Thermo-Optic Modulator Operating at 532 nm." Photonics 11, no. 3 (February 27, 2024): 213. http://dx.doi.org/10.3390/photonics11030213.
Повний текст джерелаOgawa, Kensuke. "Increase in Modulation Speed of Silicon Photonics Modulator with Quantum-Well Slab Wings: New Insights from a Numerical Study." Photonics 11, no. 6 (June 3, 2024): 535. http://dx.doi.org/10.3390/photonics11060535.
Повний текст джерелаHu, Xiao, and Jian Wang. "Design of graphene-based polarization-insensitive optical modulator." Nanophotonics 7, no. 3 (February 23, 2018): 651–58. http://dx.doi.org/10.1515/nanoph-2017-0088.
Повний текст джерелаДисертації з теми "Electrical-optical modulator"
Harston, Geofrey Craig. "Swift Electro-Optic Modulator." BYU ScholarsArchive, 2003. https://scholarsarchive.byu.edu/etd/107.
Повний текст джерелаCarns, Jennifer. "Semiconductor Optical Amplifier as a Phase Modulator for Short-Pulse Synthetic Aperture Ladar and Vibrometry." University of Dayton / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1335278035.
Повний текст джерелаZhou, Sichao. "Complex Optical Fields Generation Using a Vectorial Optical Field Generator." University of Dayton / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1461689435.
Повний текст джерелаAndrikogiannopoulos, Nikolas I. "RF phase modulation of optical signals and optical/electrical signal processing." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/42930.
Повний текст джерелаThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 125-127).
Analog RF phase modulation of optical signals has been a topic of interest for many years, mainly focusing on Intensity Modulation Direct Detection (IMDD). The virtues of coherent detection combined with the advantages of Frequency Modulation, however, have not been explored thoroughly. By employing Frequency Modulation Coherent Detection (FMCD), the wide optical transmission bandwidth of optical fiber can be traded for higher signal-to-noise performance. In this thesis, we derive the FM gain over AM modulation -- the maximum achievable signal-to-noise ratio (by spreading the signal's spectrum) for specific carrier-to-noise ratio. We then employ FMCD for a scheme of remote antennas for which we use optical components and subsystem to perform signal processing such as nulling of interfering signals. The performance of optical processing on different modulation schemes are compared, and some important conclusions are reported relating to the use of conventional FMCD, FMCD with optical discriminator (FMCD O-D), and IMDD. Specifically, the superiority of conventional FMCD is shown; and, on the other hand, the inferiority of FMCD O-D is shown (same performance as IMDD) because of the use of an O-D. Finally, the remote antenna scheme is generalized for N antennas and N users.
by Nikolas I. Andrikogiannopoulos.
S.M.
Whitson, Michael J. (Michael Joshua). "Fourier-based optical analysis of a membrane mirror spatial light modulator." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/113448.
Повний текст джерелаThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 209-214).
This thesis presents the operational theory and engineering numerical models for the operation of a schlieren-like Fourier optical system, used to read out a phase-only spatial light modulator (SLM) for phase to intensity conversion. The computational model, based on discrete cosine transforms, is lightweight enough to be run on standard desktop computers, and flexible enough to allow engineering simulations of arbitrary pixel phase profiles, including empirical datasets. We apply these models to case studies of the design and simulation of pixel geometries and readout system designs for a MEMS-based membrane mirror spatial light modulator (MMSLM), for use as a projection display at a range of visible and infrared wavelengths. Output images, contrast curves and pixel uniformities are simulated for each case study. Simulation results indicate the use of a zero-order blocking spatial filter when high contrast is prioritized, while a zero-order passing spatial filter provides enhanced uniformity of arrays of many pixels. Key engineering rules of thumb and a sample design flow are provided for the design of future phase-contrast projection systems.
by Michael J. Whitson.
M. Eng.
Nguyen, Thi Hao Nhi. "Broadband mid-infrared integrated electro-optical modulators and photodetectors in SiGe photonic circuits." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST108.
Повний текст джерелаSpectroscopy in the mid-infrared wavelength range (2-20 µm) is a crucial technique for detecting and identifying chemical and biological substances. In this context, silicon (Si)-based integrated photonic circuits operating in this spectral range are highly attractive for developing on-chip mid-infrared spectroscopy systems, which have applications in environmental monitoring, medical diagnosis, and free-space communications. Integrating active photonic components, such as electro-optical modulators and photodetectors, is essential for these sensing systems. The first part of this thesis explores the development and characterization of mid-IR electro-optical modulators using SiGe photonic circuits, with a focus on Schottky and PIN diode configurations. The primary goal was to leverage the free-carrier plasma dispersion effect for broadband optical modulation across the mid-infrared spectral range. First, I developed a simulation model considering both optical and electrical properties of the device to optimize modulation efficiency and the design of traveling electrodes for driving RF signals at high speeds. The device was then fabricated at C2N cleanroom facilities, employing SiGe epitaxial growths from L-Ness lab. In the end, I have successfully demonstrated broadband optical modulation from 5 µm to 9 µm wavelengths, with the highest extinction ratio of over 1 dB at 9 µm wavelength and high-speed operation up to 1.5 GHz. In addition, this work presents an experimental demonstration of the first waveguide-integrated SiGe modulator using a PIN diode operating across a wide spectral range of the mid-infrared region (5-10 µm). At a wavelength of 10 µm, an extinction ratio of up to 10 dB is achieved in injection mode, and 3.2 dB in depletion mode. High-speed operation is also obtained, reaching up to 1.5 GHz. Interestingly, I have shown that the Schottky and PIN diodes embedded in SiGe waveguides also act as photodetectors at room temperature. Photodetection in the Schottky device is achieved over a wide spectral range from 5 to 8 µm, with responsivity up to 0.1 mA/W. Photodetection in pulse regime with laser pulse widths between 50 and 200 ns indicates operation beyond 20 MHz. On the other hand, photodetection in the PIN device has been characterized from 5.2 µm to 10 µm wavelengths, showing an internal responsivity around 1.6 mA/W and a 3 dB electro-optical bandwidth of 32 MHz. Various strategies are proposed and investigated to understand the origin of the photocurrent. It is suggested that sub-bandgap absorption mediated by dislocations could be responsible for this photoresponse in SiGe photodetectors. The achieved performances indicate that these devices are already suitable for on-chip signal monitoring. In conclusion, these results represent a significant advancement in integrated photodetectors and electro-optical modulators for mid-infrared spectroscopy, paving the way toward advanced, compact, and fully integrated spectroscopic systems operating in the long-wave infrared regions
Franco, Gabriella. "Optical and electrical frequency-modulated studies of nanocrystalline electrodes." Thesis, University of Bath, 1999. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285274.
Повний текст джерелаVenditti, Michael B. "Temperature dependence of QCSE modulator and detector efficiency for free-space optical interconnect applications." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0016/MQ55032.pdf.
Повний текст джерелаPasquali, González Elisa Co (Elisa Carolina) 1975. "Wideband optical frequency comb generator using a phase velocity-matched lithium tantalate electro-optic modulator." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/47719.
Повний текст джерелаIncludes bibliographical references (leaves 74-75).
A wideband optical frequency comb generator can be built using an electro-optic modulator that is driven at a frequency of several GHz and that is enclosed in an optical cavity. When light is circulated within the optical cavity, multiple passes through the modulator produce a spectrum centered at the carrier frequency with hundreds of sidebands spaced at the modulation frequency, with a comb span limited only by the material dispersion of the modulator. We present the design, construction, and testing of an optical frequency comb generator using lithium tantalate as a modulator substrate.
by Elisa C. Pasquali González.
M.Eng.
Krol, Mark Francis 1966. "High contrast, all-optical gallium aluminum indium arsenide multiple quantum well asymmetric reflection modulator at 1.3 μm". Thesis, The University of Arizona, 1992. http://hdl.handle.net/10150/291348.
Повний текст джерелаКниги з теми "Electrical-optical modulator"
1927-, Tamir Theodor, Griffel Giora, Bertoni Henry L, and Weber Research Institute International Symposium on Guided-Wave Optoelectronics: Device Characterization, Analysis, and Design (4th : 1994 : Brooklyn, N.Y.), eds. Guided-wave optoelectronics: Device characterization, analysis, and design. New York: Plenum Press, 1995.
Знайти повний текст джерела(Editor), Theodor Tamir, Giora Griffel (Editor), and Henry L. Bertoni (Editor), eds. Guided-Wave Optoelectronics: Device Characterization, Analysis, and Design. Springer, 1995.
Знайти повний текст джерелаЧастини книг з теми "Electrical-optical modulator"
Kumar, Sanjay, Ghanshyam Singh, Vijay Janyani, Oleh Buryy, Ubizskii Serhij, Sugak Dmytro, and Manish Tiwari. "MgO Doped Lithium Niobate Waveguides Based All Optical Modulator." In Lecture Notes in Electrical Engineering, 177–81. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7395-3_20.
Повний текст джерелаAgarwal, Saurabh, Jitendra K. Mishra, and Vishnu Priye. "Design and Analysis of Thermo-optic Photonic Crystal Waveguide-Based Optical Modulator." In Lecture Notes in Electrical Engineering, 1001–7. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2761-3_87.
Повний текст джерелаAmiri, Iraj Sadegh, and Masih Ghasemi. "Optical Fibre Dispersions and Future Contributions on Electro-optic Modulator System Optimizations." In SpringerBriefs in Electrical and Computer Engineering, 67–68. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10585-3_6.
Повний текст джерелаGarrett, Steven L. "Radiation and Scattering." In Understanding Acoustics, 543–620. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44787-8_12.
Повний текст джерела"Polymers for Electro-Optic Modulator Waveguides." In Electrical and Optical Polymer Systems, 625–78. CRC Press, 1998. http://dx.doi.org/10.1201/9781482269888-24.
Повний текст джерела"Fabrication and Characterization of Electro-optic Polymer Waveguide Modulator for Photonic Applications." In Electrical and Optical Polymer Systems, 611–24. CRC Press, 1998. http://dx.doi.org/10.1201/9781482269888-23.
Повний текст джерелаJena, Debdeep. "Heavenly Light: Solar Cells and Photodetectors." In Quantum Physics of Semiconductor Materials and Devices, 753–72. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/oso/9780198856849.003.0028.
Повний текст джерелаNadimi Goki, Pantea, Antonio Tufano, Fabio Cavaliere, and Luca Potì. "SOA Model and Design Guidelines in Lossless Photonic Subsystem." In New Advances in Semiconductors [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.103048.
Повний текст джерелаE. Abejide, Adebayo, Madhava R. Kota, Sushma Pandey, Oluyomi Aboderin, Cátia Pinho, Mário Lima, and António Teixeira. "Direct and External Hybrid Modulation Approaches for Access Networks." In Network-on-Chip [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96085.
Повний текст джерелаAkhai, Shalom, Jagdeep Walia, Bhupinder Singh Bhullar, and Amandeep Singh Wadhwa. "Advances in Bandgap and Conductivity Engineering of Graphene-Based Semiconductors." In Advances in Chemical and Materials Engineering, 211–28. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-8257-8.ch007.
Повний текст джерелаТези доповідей конференцій з теми "Electrical-optical modulator"
Maldonado-Castillo, L. E., O. Spitz, S. Koyu, M. Berrill, and Y. Braiman. "Coherent High-power Pulsing in a Gain-switched Array of Laser Diodes with Filtered Feedback." In CLEO: Applications and Technology, JTu2A.38. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jtu2a.38.
Повний текст джерелаKissa, Karl, R. G. Hunsperger, Charles S. Ih, and X. Wang. "Standing-wave SAW modulator for optical communication." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.thy1.
Повний текст джерелаLiu, Yanming, Mike Grove, and Paul R. Prucnal. "Multiple quantum well waveguide modulator for fiber-optic interconnects." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.wd4.
Повний текст джерелаRubio Rivera, Hector A., Matthew van Niekerk, and Stefan F. Preble. "Silicon Photonic Optical-Electrical-Optical Modulator Neuron Verilog-A Model." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/cleo_at.2021.jtu3a.125.
Повний текст джерелаOkhotnikov, O. G., and F. M. Araújo. "Optical pulse generation by manipulations in FM spectra." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/cleo_europe.1996.ctuk50.
Повний текст джерелаFukuda, Hiroshi, Yoshiho Maeda, Toru Miura, Tatsurou Hiraki, and Shinji Matsuo. "Estimation of Optical Modulator Efficiency from Electrical Characteristics." In 2018 IEEE 15th International Conference on Group IV Photonics (GFP). IEEE, 2018. http://dx.doi.org/10.1109/group4.2018.8478692.
Повний текст джерелаAkagawa, T., S. Akiyama, T. Baba, M. Imai, and T. Usuki. "Electrical and Optical Characteristic Modeling of Silicon Modulator." In 2012 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2012. http://dx.doi.org/10.7567/ssdm.2012.a-1-3.
Повний текст джерелаPezzaniti, J. Larry, Elizabeth A. Sornsin, Russell A. Chipman, and B. Mansoorian. "Characterization of the optical quality and modulating properties of a PLZT modulator through Mueller matrix imaging polarimetry." In Spatial Light Modulators and Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/slma.1995.lthb3.
Повний текст джерелаKrol, M. F., R. K. Boncek, T. Ohtsuki, G. Khitrova, B. P. McGinnis, H. M. Gibbs та N. Peyghambarian. "High Contrast, All-Optical GaAlInAs/AlInAs Multiple Quantum Well Reflection Modulator at 1.3 μm". У Quantum Optoelectronics. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/qo.1993.qthb.4.
Повний текст джерелаMoshrefzadeh, R. S., K. M. White, C. V. Francis, M. W. Kleinschmit, S. K. Mohapatra, G. T. Boyd, R. C. Williams, K. H. Hahn, and D. W. Dolfi. "High Speed Optical Intensity modulator in a Novel Polymeric Material." In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/otfa.1993.fd.3.
Повний текст джерела