Дисертації з теми "Electric autonomous vehicles"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Electric autonomous vehicles.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 дисертацій для дослідження на тему "Electric autonomous vehicles".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Iacobucci, Riccardo. "Shared Autonomous Electric Vehicles: potential for Power Grid integration." Kyoto University, 2018. http://hdl.handle.net/2433/235105.

Повний текст джерела
Анотація:
Kyoto University (京都大学)
0048
新制・課程博士
博士(エネルギー科学)
甲第21385号
エネ博第373号
新制||エネ||73(附属図書館)
京都大学大学院エネルギー科学研究科エネルギー社会・環境科学専攻
(主査)教授 手塚 哲央, 教授 下田 宏, 准教授 MCLELLAN,Benjamin
学位規則第4条第1項該当
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Riccardo, Iacobucci. "Shared Autonomous Electric Vehicles: potential for Power Grid integration." Doctoral thesis, Kyoto University, 2009. http://hdl.handle.net/2433/235105.

Повний текст джерела
Анотація:
京都大学
0048
新制・課程博士
博士(エネルギー科学)
甲第21385号
エネ博第373号
新制||エネ||73(附属図書館)
京都大学大学院エネルギー科学研究科エネルギー社会・環境科学専攻
(主査)教授 手塚 哲央, 教授 下田 宏, 准教授 MCLELLAN,Benjamin
学位規則第4条第1項該当
Doctor of Energy Science
Kyoto University
DFAM
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Trask, Simon J. "Systems and Safety Engineering in Hybrid-Electric and Semi-Autonomous Vehicles." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1555521147257702.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jonasson, Mats. "Exploiting individual wheel actuators to enhance vehicle dynamics and safety in electric vehicles." Doctoral thesis, KTH, Fordonsdynamik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11005.

Повний текст джерела
Анотація:
This thesis is focused on individual wheel actuators in road vehicles intended for vehicle motion control. Particular attention is paid to electro-mechanical actuators and how they can contribute to improving vehicle dynamics and safety. The employment of individual wheel actuators at the vehicle's four corner results in a large degree of over-actuation. Over-actuation has a potential of exploiting the vehicle's force constraints at a high level and of controlling the vehicle more freely. One important reason for using over-actuated vehicles is their capability to assist the driver to experience the vehicle as desired. This thesis demonstrates that critical situations close to the limits can be handled more efficiently by over-actuation. To maximise the vehicle performance, all the available actuators are systematically exploited within their force constraints.  Therefore, force constraints for the individually controlled wheel are formulated, along with important restrictions that follow as soon as a reduction in the degrees of freedom of the wheel occurs. Particular focus is directed at non-convex force constraints arising from combined tyre slip characteristics. To evaluate the differently actuated vehicles, constrained control allocation is employed to control the vehicle. The allocation problem is formulated as an optimisation problem, which is solved by non-linear programming. To emulate realistic safety critical scenarios, highly over-actuated vehicles are controlled and evaluated by the use of a driver model and a validated complex strongly non-linear vehicle model. it is shown that, owing to the actuator redundancy, over-actuated vehicles possess an inherent capacity to handle actuator faults, with less need for extra hardware or case-specific fault-handling strategies.
QC 20100722
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shaikh, Palwasha Waheed. "Intelligent Infrastructures for Charging Reservation and Trip Planning of Connected Autonomous Electric Vehicles." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42735.

Повний текст джерела
Анотація:
For an environmentally sustainable future, electric vehicle (EV) adoption rates have been growing exponentially around the world. There is a pressing need for constructing smart charging infrastructures that can successfully integrate the large influx of connected and autonomous EVs (CAEVs) into the smart grids. To fulfill the aspiration of massive deployment of autonomous mobility on demand (AMoD) services, the proposed fast and secure framework will need to address the long charging times and long waiting times of static charging. It will also need to consider dynamic wireless charging as a viable solution for the CAEVs on the move. In this thesis, a novel three-layer charging system design of static and dynamic wireless charging that can operate with the existing wired charging infrastructure and standards for Intelligent Transportation System (ITS) is presented. This internet of things (IoT) application is accompanied by a proposed handshake protocol with light-weight request message frames. It employs vehicle to infrastructure (V2I) and vehicle to grid (V2G) communications for fulfilling charging requests of CAEVs with the shortest possible route to the destination. The charging requests of the CAEV users are fulfilled by dynamically distributing the request over the three different types of charging equipment. Further, the requests are serviced and billed privately and securely using two different proposed payment schemes with the encrypted virtual currency. The hardware independent system can detect misalignment of the CAEVs on the wireless charging pads and the speed issue errors in dynamic wireless charging systems as well as avoid free-riders. Additionally, the proposed dynamic wireless charging network (DWCN) design specification tool is analyzed. The suggestions made by the tool for building a DWCN can enable implementers to achieve the desired charging delivery performance at the lowest cost possible. Finally, the presented system is simulated, and this verified and validated simulator is revealed to make reservations and plan trips with minimum waiting times, travel costs, and battery consumption per vehicle trip. The system results proved 90.25% charge delivery efficiency. This system is then compared with alternative system designs to help showcase its ability to aid implementers and analysts in making design choices with the simulation.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Adler, Martin, Stefanie Peer, and Tanja Sinozic. "Autonomous, connected, electric shared vehicles (ACES) and public finance: An explorative analysis." Elsevier, 2019. http://epub.wu.ac.at/7200/1/main.pdf.

Повний текст джерела
Анотація:
This paper discusses the implications of autonomous-connected-electric-shared vehicles (ACES) for public finance, which have so far been widely ignored in the literature. In OECD countries, 5-12% of federal and up to 30% of local tax revenues are currently collected from fuel and vehicle taxation. The diffusion of ACES will significantly reduce these important sources of government revenues and affect transport-related government expenditures, unless additional policies are introduced to align the new technological context with the tax revenue requirements. We argue that the realization of socioeconomic benefits of ACES depends on the implementation of tailored public finance policies, which can take advantage of the increase in data availability from the further digitalization of transportation systems. In particular, the introduction of road tolls in line with "user Pays" and "polluter Pays" principles will become more feasible for policy. Moreover, innovation in taxation schemes to fit the changing technological circumstances may alter the relative importance of levels of governance in transport policy making, likely shifting power towards local, in particular urban, governmental levels. We finally argue that, given the risk of path-dependencies and lock-in to sub-optimal public finance regimes if policies are implemented late, further research and near-term policy actions taken during the diffusion process of ACES are required.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

MADASCHI, Matteo Giacomo. "Design and implementation of guidance control system for autonomous light electric vehicles." Doctoral thesis, Università degli studi di Bergamo, 2013. http://hdl.handle.net/10446/28965.

Повний текст джерела
Анотація:
In this work; a light AGV is presented. Light AGVs are usually designed to move small payloads and their distinctive feature is their high flexibility and re-configurability in the load handling. However; they have usually limited load weight capacity. In fact; large load weight values have a high impact on the guidance performances; even affecting the vehicle mechanical stability and strong speed limitations are usually applied. We will focus our attention to the vehicle guidance control problem and aim to design controllers that guarantees desirable specifications for a wide range of possible load mass values (from 50kg to 1000kg). Hence; we assume that the payload mass is an uncertainty in the model and resort to robust control design methods. Moreover; we'd like not only to find a single suitable controller but to analyze the stability domain in the controller parameter space; so that we can evaluate the effects on the guidance performances produced by changes in the controller parameters; preserving control system stability. In order to obtain such results we will pay special attention to randomized techniques. Randomized techniques are oriented to deal with basic notions for any engineering characteristics – gain or phase margin; overshoot or other time-response characteristics; robustness margin – as well as mathematical objectives such as H2 or Hinf norm. Specifically; randomized method are applied to the tuning of PI controllers; taking into account control action limitations; due to the limited current supply values; system speed specifications; defined by desired values for settling time; Hinf performances.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mathur, Kovid. "Conversion of a Hybrid Electric Vehicle to Drive by Wire Status." University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1291147552.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gangadharan, Athul. "An Evaluation of Automatic Test Case Generation strategy from Requirements for Electric/Autonomous Vehicles." Thesis, Uppsala universitet, Institutionen för informatik och media, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-419583.

Повний текст джерела
Анотація:
Software testing is becoming more prominent within the automotive industry due to more complex systems, and functions are implemented in the vehicles. The vehicles in the future will have the functionality to manage different levels of automation, which also means that vehicles driven by humans will have more supportive functionality to increase safety and avoid accidents. These functionalities result in a massive growth in the number of test scenarios to indicate that the vehicles are safe, and this makes it impossible to continue performing the tests in the same way as it has been done until today. The new conditions require that the test scenarios and Test Cases both be generated and executed automatically. In this thesis, an investigation and evaluation are performed to analyze the Automatic Test Case Generation methods available for inputs from Natural Language Requirements in an automotive industrial context at NEVS AB. This study aims to evaluate the NAT2TEST strategy by replacing the manual method and obtain a similar or better result. A comparative analysis is performed between the manual and automated approaches for various levels of requirements. The results show that utilizing this strategy in an industrial scenario can improve efficiency if the requirements to be tested are for well-documented lower-level requirements.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fishelson, James. "Platooning Safety and Capacity in Automated Electric Transportation." DigitalCommons@USU, 2013. https://digitalcommons.usu.edu/etd/1949.

Повний текст джерела
Анотація:
Automated Electric Transportation (AET) proposes a system of automated platooning vehicles electrically powered by the roadway via wireless inductive power transfer. This has the potential to provide roadway transportation that is less congested, more flexible, cleaner, safer, and faster than the current system. The focus of this research is to show how platooning can be accomplished in a safe manner and what capacities such an automated platooning system can achieve. To accomplish this, first two collision models are developed to show the performance of automated platoons during an emergency braking scenario: a stochastic model coded in Matlab/Simulink and a deterministic model with closed-form solutions. The necessary parameters for safe platooning are then defined: brake variances, communication delays, and maximum acceptable collision speeds. The two collision models are compared using the Student's t-test to show their equivalence. It is shown that while the two do not yield identical results, in most cases the results of the deterministic model are more conservative than and reasonably close to the results of the deterministic model. The deterministic model is then used to develop a capacity model describing automated platooning flow as a function of speed and platoon size. For conditions where platooning is initially unsafe, three amelioration protocols are evaluated: brake derating, collaborative braking, and increasing the maximum acceptable collision speed. Automated platooning flow is evaluated for all of these scenarios, compared both with each other and with traditional roadway flow patterns. The results of these models show that when platooning is initially safe, very high vehicle flows are possible: for example, over 12,000 veh/hr for initial speeds of 30 m/s and 10 vehicle platoons. Varying system paramaters can have large ramifications for overall capacity. For example, autonomous (non-platooning) vehicles do not promise anywhere near this level, and in many cases struggle to approach the capacity of traditional roadways. Additionally, ensuring safety under an emergency braking standard requires very small communication delays and, most importantly, tight braking variances between the vehicles within a platoon. As proposed by AET, a single type of electric vehicle, combined with modern wireless communications, can make platooning safer than was previously possible without requiring amelioration. Both brake derating and collaborative braking can make platooning safer, but they reduce capacity and may not be practical for real-world implementation. Stricter versions of these, cumulative brake derating and exponential collaborative braking, are also evaluated. Both can degrade capacity to near current roadway levels, especially if a large degree of amelioration is required. Increasing maximum acceptable collision speed, such as through designing vehicles to better withstand rear-end collisions, shows more promise in enabling safe intraplatoon interactions, especially for scenarios with small communication delays (i.e. under 50 ms).
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Herrenkind, Bernd, Alfred Benedikt Brendel, Ilja Nastjuk, Maike Greve, and Lutz M. Kolbe. "Investigating end-user acceptance of autonomous electric buses to accelerate diffusion." Elsevier, 2019. https://publish.fid-move.qucosa.de/id/qucosa%3A75922.

Повний текст джерела
Анотація:
To achieve the widespread diffusion of autonomous electric buses (AEBs) and thus harness their environmental potential, a broad acceptance of new technology-based mobility concepts must be fostered. Still, there remains little known about the factors determining their acceptance, especially in the combination of vehicles with alternative fuels and autonomous driving modes, as is the case with AEBs. In this study, we first conducted qualitative research to identify relevant factors influencing individual acceptance of autonomously driven electric buses. We then developed a comprehensive research model that was validated through a survey of 268 passengers of an AEB, operated in regular road traffic in Germany. The results indicate that a mix of individual factors, social impacts, and system characteristics determine an individual’s acceptance of AEBs. Notably, it is important that users perceive AEBs, not only as advantageous, but also trustworthy, enjoyable, and in a positive social light. Our research supplements the existing corpora by demonstrating the importance of individual acceptance and incorporating it to derive policy implications.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Martínez, Arias Ronald Ricardo 1983. "Modelagem de um dirigível robótico com propulsão elétrica de quatro motores." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/265786.

Повний текст джерела
Анотація:
Orientador: Ely Carneiro de Paiva
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-27T21:55:57Z (GMT). No. of bitstreams: 1 MartinezArias_RonaldRicardo_M.pdf: 6818308 bytes, checksum: d91e74cb8827b9ee03bcb0e84ccc9bd0 (MD5) Previous issue date: 2014
Resumo: No presente trabalho, o modelo dinâmico do dirigível do Projeto AURORA (Gomes e Ramos, 1998), (Azinheira et al., 2001) e (Azinheira et al., 2008) é adaptado para considerar 4 motores ao invés de 2 apenas. Além disso, esses motores possuem acionamento elétrico (DC-Brushless) ao invés de propulsão por motor de combustão. Esses motores poderão trabalhar em acionamento diferencial, ou seja, motores frente-trás ou esquerda-direita com forças de propulsão diferentes, com a finalidade de gerar momentos e forças que complementem os demais atuadores do dirigível, como as superfícies de cauda ou leme. Duas inovações principais caracterizam esse novo sistema. O primeiro ponto é a utilização de quatro propulsores vetorizáveis ao invés de apenas dois como o usual. O segundo ponto é a angulação de 20 [graus] presente na fixação dos propulsores. Essa angulação faz com que, ao ser vetorizado para cima, cada propulsor gere uma componente de força lateral, além das componentes longitudinal e vertical. Se a intensidade da força gerada em cada propulsor for a mesma, obviamente as forças laterais geradas num par de propulsores se cancelam, e temos uma situação parecida com a atuação clássica de dirigíveis, gerando forças apenas para frente e para cima. Mas se, por outro lado, as intensidades de força nos propulsores de um dado par (dianteiro ou traseiro) forem diferentes, então forças resultantes laterais (bem como momentos) podem ser obtidos no CV (Centro de Volume) do dirigível. Assim, se o par de propulsores dianteiros gera uma componente lateral de forças para a direita, por exemplo, e o par traseiro gera uma componente lateral para a esquerda, então temos a geração de um momento de guinada positivo (horário), supondo obviamente que os motores encontram-se vetorizados. Essa é a chamada propulsão diferencial esquerda-direita que permite a geração de momentos de guinada em baixas velocidades, de tal forma compensar a baixa eficiência aerodinâmica da cauda com pouca incidência de ar (vento relativo). Outra possibilidade é a geração da propulsão diferencial dianteira-traseira, onde ambos propulsores dianteiros fornecem força de igual intensidade, mas de amplitude diferente daquela gerada pelos propulsores traseiros. As forças laterais são canceladas, mas um novo momento de arfagem pode ser gerado, e com um grau de liberdade a mais do que na situação onde se usava apenas dois propulsores vetorizáveis. Podemos obter inclusive um momento de arfagem no dirigível e ainda mantê-lo na posição "nivelada" de ângulo de arfagem (pitch) nulo. O uso da propulsão diferencial dianteira-traseira permite também obter uma mudança contínua e suave nas forças e momentos ao se variar a velocidade de operação do dirigível (airspeed). Evita-se assim a transição brusca de atuação que é observada quando o dirigível, na configuração clássica de apenas dois motores, passa das baixas velocidades (usando vetorização) para as altas velocidades (dispensando vetorização). Dessa forma, tanto a propulsão diferencial lateral (esquerda-direita), como a longitudinal (traseira-dianteira) obtida com essa configuração inédita, permite gerar momentos e forças que complementam os demais atuadores do dirigível, como as superfícies de cauda ou leme. Ressalta-se que as diferentes configurações de propulsão motora como essa proposta aqui considerada (de domínio do Projeto DRONI) poderão aumentar a eficiência e desempenho das abordagens de controle linear e não linear já desenvolvidas previamente no âmbito do Projeto AURORA
Abstract: In this paper masters, the dynamic model of AURORA Project airship (Gomes e Ramos, 1998), (Azinheira et al., 2001) and (Azinheira et al., 2008) is adapted to consider 4 engines instead of 2. Furthermore, those engines as electric start (DC-Brushless) instead of propulsion combustion engine. Engines can work with differential start, that is, front-back or left-right engines with different thrust forces. It has the purpose of generating forces and torques which complement other airship actuators, such as the tail and rudder surfaces. Two main innovations characterize this new system. First, it uses four thrusters with thrust vector control instead of just two as usual. Second, it is the 20 [degrees] angulation that is present in the thrusters setting. This angulation allows each thruster generates a lateral force component besides the longitudinal and vertical components when thrusters are vectorized upward. If the amount of force generated in each thruster is the same, obviously, the addition of lateral forces generated in a pair of thrusters will be zero, and we will have a similar situation with the classic airship performance, generating forces only forward and up. But if the amount of force on thrusters on a given pair (front or back) are different, then resulting lateral force (and torques) can be obtained on airship CV (Volume Center). Thus, if the front pair of thrusters generates a lateral force component to the right, for example, and the rear pair generates a lateral component to the left, we have a generation of yaw torque positive (clockwise), obviously assuming that the engines are vectorized. This is called the differential thrust left-right which allows the generation of yaw torques on low speeds, in order to compensate a low aerodynamic efficiency of tail with little air effect (relative wind). Another possibility is the generation of the differential thrust front-back, where both front thrusters provide equal amount of force, but with a different amplitude than the force generated by the rear thrusters. The lateral forces are canceled, but a new pitch torque can be generated, and with a degree of freedom more than in the situation where it was used only two thrusters with thrust vector control. We can get even a pitch torque on the airship and still keeping it on null pitch angle position. The use of diferential thrust front-back allows also getting a slight and continuous change on the forces and torques when is varied the airship operation speed (airspeed). It avoids the abrupt transition of performance that is observed when the airship, on classic configuration of only two engines, goes through from low speeds (using vectoring) to high speeds (dispensing vectorization). Thus, both the differential thrust lateral (left-right) as the longitudinal (front-back) obtained with this configuration unprecedented, it allows to generate torques and forces that complementing the other airship actuators, such as tail surfaces or rudder. It should be noted that different confiurations of thrust (Project DRONI) may increase the efficiency and performance of linear control approaches and nonlinear previously carried out under the AURORA Project
Mestrado
Mecanica dos Sólidos e Projeto Mecanico
Mestre em Engenharia Mecânica
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Gupta, Shobhit. "Look-Ahead Optimization of a Connected and Automated 48V Mild-Hybrid Electric Vehicle." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1554478434629481.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Sovacool, Benjamin K., and Jonn Axsen. "Functional, symbolic and societal frames for automobility: Implications for sustainability transitions." Elsevier, 2018. https://publish.fid-move.qucosa.de/id/qucosa%3A72765.

Повний текст джерела
Анотація:
Automobility refers to the continued, self-perpetuating dominance of privately-owned, gasoline-powered vehicles used primarily by single occupants—a system which clearly has broad environmental and societal impacts. Despite increasing societal interest in transitions to more sustainable transportation technologies, there has been little consideration of how such innovations might challenge, maintain or support different aspects of automobility, and what that means for technology deployment, transport policy, and user practices. To bring attention to the complexity and apparent durability of the automobility system, in this paper we develop a conceptual framework that explores automobility through a categorization of frames, or shared cultural meanings. This framework moves beyond the typical focus on private, functional considerations of user choice, financial costs and time use to also consider symbolic and societal frames of automobility that exist among users, non-users, industry, policymakers and other relevant social groups. We illustrate this framework with eight particular frames of automobility that fall into four broad categories: private-functional frames such as (1) cocooning and fortressing and (2) mobile digital offices; private-symbolic frames such as (3) gender identity and (4) social status; societal-functional frames such as (5) environmental stewardship and (6) suburbanization; and societal-symbolic frames such as (7) self-sufficiency and (8) innovativeness. Finally, we start the process of discussing several transportation innovations in light of these automobility frames, namely electrified, autonomous and shared mobility—examining early evidence for which frames would be challenged or supported by such transitions. We believe that appreciation of the complex and varied frames of automobility can enrich discussion of transitions and policy relating to sustainable transportation.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Cordeiro, Rafael de Angelis 1986. "Modelagem e controle de trajetória de um veículo robótico terrestre de exterior." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263856.

Повний текст джерела
Анотація:
Orientador: Ely Carneiro de Paiva
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-22T23:12:16Z (GMT). No. of bitstreams: 1 Cordeiro_RafaeldeAngelis_M.pdf: 9321021 bytes, checksum: ff7bb113095dc020ed982e7d7c28311a (MD5) Previous issue date: 2013
Resumo: Veículos terrestres autônomos tem recebido uma atenção especial dos estudos de robótica nos últimos anos. Suas aplicações incluem segurança na condução, exploração de locais inóspitos e automatização agrícola. O enfoque deste trabalho situa-se no projeto VERO, em parceria com o CTI, e tem por objetivo o desenvolvimento de aplicações de controle de trajetória para um veículo do tipo todo-terreno. Para tal, um modelo completo (dinâmico e tridimensional) é desenvolvido, com uma atenção especial para os modelos de interação entre solo e pneu, responsáveis pelas forças não lineares atuantes sobre o veículo. Em seguida, dois modelos reduzidos e linearizados são obtidos e estes são utilizados para a síntese de controladores LQR. Uma comparação entre os controladores é realizada e a resposta de um deles é detalhada para uma análise sobre a influência das características do modelo veicular sobre o controle do veículo. Por fim, três abordagens são propostas para melhorar a resposta obtida pelos controladores
Abstract: Autonomous ground vehicles have received special attention from robotics studies in past years. Their applications include advanced driver assistance systems (ADAS), exploration of inhospitable environments and harvest autonomous machines. In partnership with CTI, this master's thesis focuses in the development of path tracking controllers applied to off-road vehicles. In order to simulate vehicle characteristics, a complete three-dimensional nonlinear dynamic model was proposed with emphasis on tire-road interaction models, which are responsible for most of the vehicle's nonlinearities. In sequence, two vehicle reduced linear models are presented and applied to synthesize LQR controllers, whose results are compared. One of them was chosen to analyze the effect of vehicles's three-dimensional dynamics on path tracking control. Finally, three different approaches are proposed to enhance controllers performance
Mestrado
Planejamento de Sistemas Energeticos
Mestre em Engenharia Mecânica
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Valenti, Giammarco. "Cooperative ADAS and driving, bio-inspired and optimal solutions." Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/336890.

Повний текст джерела
Анотація:
Mobility is a topic of great interest in research and engineering since critical aspects such as safety, traffic efficiency, and environmental sustainability still represent wide open challenges for researchers and engineers. In this thesis, at first, we address the cooperative driving safety problem both from a centralized and decentralized perspective. Then we address the problem of optimal energy management of hybrid vehicles to improve environmental sustainability, and finally, we develop an intersection management systems for Connected Autonomous Vehicle to maximize the traffic efficiency at an intersection. To address the first two topics, we define a common framework. Both the cooperative safety and the energy management for Hybrid Electric Vehicle requires to model the driver behavior. In the first case, we are interested in evaluating the safety of the driver’s intentions, while in the second case, we are interested in predicting the future velocity profile to optimize energy management in a fixed time horizon. The framework is the Co-Driver, which is, in short, a bio-inspired agent able both to model and to imitate a human driver. It is based on a layered control structure based on the generation of atomic human-like longitudinal maneuvers that compete with each other like affordances. To address driving safety, the Co-Driver behaves like a safe driver, and its behavior is compared to the actual driver to understand if he/she is acting safely and providing warnings if not. In the energy management problem, the Co-Driver aims at imitating the driver to predict the future velocity. The Co-Driver generates a set of possible maneuvers and selects one of them, imitating the action selection process of the driver. At first, we address the problem of safety by developing and investigating a framework for Advanced Driving Assistance Systems (ADAS) built on the Co-Driver. We developed and investigated this framework in an innovative context of new intelligent road infrastructure, where vehicles and roads communicate. The infrastructure that allows the roads to interact with vehicles and the environment is the topic of a research project called SAFESTRIP. This project is about deploying innovative sensors and communication devices on the road that communicate with all vehicles. Including vehicles that are equipped with Vehicle-To-Everything (V2X) technology and vehicles that are not, using an interface (HMI) on smart-phones. Co-Driver-based ADAS systems exploit connections between vehicles and (smart) roads provided by SAFESTRIP to cover several safety-critical use cases: pedestrian protection, wrong-way vehicles on-ramps, work-zones on roads and intersections. The ADAS provide personalized warning messages that account for the adaptive driver behavior to maximize the acceptance of the system. The ability of the framework to predict human drivers’ intention is exploited in a second application to improve environmental sustainability. We employ it to feed with the estimated speed profile a novel online Model Predictive Control (MPC) approach for Hybrid Electric Vehicles, introducing a state-of-the-art electrochemical model of the battery. Such control aims at preserving battery life and fuel consumption through equivalent costs. We validated the approach with actual driving data used to simulate vehicles and the power-train dynamics. At last, we address the traffic efficiency problem in the context of autonomous vehicles crossing an intersection. We propose an intersection management system for Connected Autonomous Vehicles based on a bi-level optimization framework. The motion planning of the vehicle is provided by a simplified optimal control problem, while we formulate the intersection management problem (in terms of order and timing) as a Mixed Integer Non-Linear Programming. The latter approximates a linear problem with a powerful piecewise linearization technique. Therefore, thanks to this technique, we can bound the error and employ commercial solvers to solve the problem (fast enough). Finally, this framework is validated in simulation and compared with the "Fist-Arrived First-Served" approach to show the impact of the proposed algorithm.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Nicolaides, Doros. "Power infrastructure requirements for road transport electrification." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/280689.

Повний текст джерела
Анотація:
Deep decarbonisation of road transportation is challenging. One of the most potentially beneficial approaches is electrification which is the subject of this PhD thesis. A widespread penetration of electric vehicles (EVs) across a large proportion of road transport demand is needed to realise the benefits of an electrified transport sector. However, this is dependent on overcoming significant barriers. This study performs a systematic analysis of how proven power charging technologies could be used to unlock the barriers to widespread electrification of road transportation. Various road transport sectors and type of journeys are explored including aspects of autonomous operations and novel wireless power transfer technologies. For each operation, a framework is proposed that allows the exploitation of current and potential future electrification technologies to enable shifting towards EVs. Based on that, simulation tools and methods are developed to calculate the power requirements of EVs and determine a suitable charging infrastructure. The additional power demand, electric load and the implications for the electricity supply network are explored. The total expenditure needed and the CO2 emission savings are also calculated for each investigated operation. Transitional strategies include the electrification of bus routes, refuse collection functions, home deliveries and aspects of autonomous operations for public transportation within the boundaries of the cities. In the long-term, focus is given on passenger cars and freight vehicles for both urban and inter-urban journeys. A nationwide adoption of all electrification strategies proposed in this thesis would increase the peak power demand of Great Britain by approximately 38 GW (72% of the current peak) and the electricity consumption by 180 TWh per year (45% of current consumption). The total capital cost required is calculated at £225 billion which is similar to the cost of other large infrastructure projects of the country. The impact would be a significant aggregate saving of approximately 2,000 MtCO2 between the numbers calculated for today's norms (2018) and those calculated for 2050.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Hultgren, Andree, and Muhammed Memedi. "Autonomous Vehicles With Obstacle Avoidance." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254202.

Повний текст джерела
Анотація:
Autonomous ground vehicles are becoming prevalent in this modern society due to economical and environmental benefits. This paper investigates trajectory tracking control for a two-wheel autonomous vehicle first, and then a decentralised control approach is implemented where each vehicle can maintain a formation with other vehicles. Collision avoidance is also taken into account, where both moving and stationary obstacles are considered. This enables arbitrary fleets of vehicles to manoeuvre in a set formation without colliding with each other or other obstacles. The proposed controllers are presented theoretically and verified using simulation examples.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Silva, José João Prata Oliveira Laranjeira da. "Tendências no uso de soluções disruptivas de transporte urbano de passageiros." Master's thesis, Instituto Superior de Economia e Gestão, 2018. http://hdl.handle.net/10400.5/16569.

Повний текст джерела
Анотація:
Mestrado em Gestão de Projetos
A disrupção ao nível da mobilidade está associada a potenciais benefícios socioeconomicos e ambientais. Dentro das tecnologias emergentes, destacam-se os veículos elétricos, veículos autónomos e as plataformas tecnológicas de mobilidade que interligam potenciais utilizadores e modos de transporte (passageiros e condutores) num contexto de maior eficiência, menores externalidades ambientais e partilha de recursos (e.g. serviços de car sharing elétrico) (Sprei, 2017). Este estudo tem como objetivo dar um contributo académico para o grande desafio da mobilidade sustentável nas cidades (onde se concentra mais de 70% da população europeia). Como forma de antecipar as mudanças e benefícios esperados face às profundas alterações que o transporte urbano de passageiros tem sido alvo, bem como aquelas que terá de realizar a curto-prazo é utilizada a Gestão de Benefícios (GB). Esta ferramenta de gestão integra a metodologia do estudo na medida em que apresenta uma aplicabilidade reconhecida em projetos tecnológicos, permitindo mapear as mudanças derivadas da introdução dos processos tecnológicos, monitorizando os benefícios préviamente identificados (e.g. mobilidade sustentável; descarbonização da mobilidade urbana). Por forma a validar este mapeamento, desenvolveu-se um inquérito, específicamente, desenhado para os stakeholders no âmbito da Mobilidade Sustentável no Área Metropolitana de Lisboa. O resultado deste estudo traduz-se num Roadmap para a descarbonização do transporte urbano de passageiros até 2030, que os vários stakeholders podem prosseguir para atingir a descabornização da mobilidade.
The mobility disruption comprises technological and concept issues. Emerging technologies such as electric-autonomous vehicles and mobility platforms (that connect potential user's passengers and drivers) aim to increase efficiency, reduce pollution and, simultaneously, increase the sharing trips. This study aims to pursuit the sustainable mobility in cities (where is located 70% of European population) and use the benefit management tool in order to consider social aspects in face of deep changes that passenger transport sector has been dealing. Benefit management is frequently used in technological projects since has the predictive ability for changes, allowing to develop a benefits dependence network. The results of this work is a roadmap, which as the potential to define a path/strategy for stakeholders achieve the mobility descarbonization. Additionally, this study consider a 2030 horizon and the benefits management results are not possible to achieve.
info:eu-repo/semantics/publishedVersion
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Solano, Araque Edwin. "De l’ergonomie automobile à l’optimisation de la conduite automatisée. Application à l’écoconduite des véhicules électriques." Thesis, Orléans, 2020. http://www.theses.fr/2020ORLE3059.

Повний текст джерела
Анотація:
Cette thèse se focalise sur l'étude de l’écoconduite (pratique de conduite visant à réduire l’impact environnemental de l’utilisation du véhicule) et, en particulier, des éco-manœuvres de conduite, avec prise en compte des contraintes d'infrastructure et de trafic, ainsi que des contraintes d'agrément de conduite. De plus, nous considérons, lors de la conception de l'algorithme, des principes inspirés de la cognition humaine, afin de renforcer l'efficacité et la bonne modularité. La facilité de calibration de l'algorithme est un autre aspect pris en considération. L'ensemble de l'exposé se focalise sur les véhicules électriques à batterie. Cependant, les principes proposés peuvent être adaptés pour leur application sur d'autres types de groupe motopropulseur.Ces travaux s’orientent sur trois grandes lignes. La première, l'Ergonomie de conduite, a permis de déterminer des critères d'agrément de conduite ; une modélisation du conducteur permettant de tenir compte des aspects ergonomiques est proposée. De même, nos hypothèses sont confrontées au comportement d’un conducteur en situation réelle, en appliquant une méthodologie innovante pour l'analyse d'enregistrements de roulages réels. Ensuite, une Modélisation énergétique du véhicule et des manœuvres de conduite est présentée, ainsi qu'une analyse du potentiel et l’origine du gain associé à différentes stratégies d'éco-conduite. Finalement un Algorithme de commande est proposé pour la réalisation d'éco-manœuvres de conduite, avec prise en compte des critères d'agrément. La structure globale de l'algorithme, basée sur les principes cognitifs, est constitué de plusieurs sous-systèmes le rendant modulaire et capable de répondre aux contraintes de calcul en temps réel et de mise au point, propres au milieu industriel
In the framework of this dissertation, we will focus on Eco-driving and, particularly on eco-maneuvers, taking into account constraints associated to infrastructure and traffic, as well as with drivability. Additionally, we will take inspiration on Cognitive Principles for the algorithm design; it will allow to reinforce algorithm’s effectiveness and modularity. Easiness of calibration will also be an important concern for our work. Our whole discussion focuses on Battery Electric Vehicles. However, the proposed principles may be adapted for their application for other types of powertrain.Our work treats three main topics: on one side, Driving Ergonomics, allowing to determine some criteria on drivability ; we will also propose a modelling of the driver allowing to take into account ergonomics considerations. Finally, we will assess our hypothesis with respect with driver behavior on real situations, by applying an innovative methodology for the analysis of actual driving records. Next we will focus on Energy Model of the vehicle and of driving maneuvers, as well as to the assessment of energy gain potential associated to several Eco-driving strategies; the origin of these gains is also studied. Finally, we propose a Control Algorithm allowing to execute driving eco-maneuvers, while taking into account drivability criteria. The global algorithm structure is based on cognitive principles presented earlier. These function consists of several subsystems, which improves its modularity, and enforces its potential to operate within real-time constraints, and simplifies calibrations ; these both are major advantages for an industrial application
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Anderson, Jonathan D. "Semi Autonomous Vehicle Intelligence: Real Time Target Tracking For Vision Guided Autonomous Vehicles." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1750.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Dowd, Garrett E. "Improving Autonomous Vehicle Safety using Communicationsand Unmanned Aerial Vehicles." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1574861007798385.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Biondani, Luca. "Control system for agricultural autonomous electric vehicle." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.

Знайти повний текст джерела
Анотація:
The subject of this thesis is the realization of the control system of an autonomous electric vehicle for agricultural applications. The robot will be used for field experimentation of innovative agricultural techniques. The software is developed in LabVIEW programming language, and is employed on an embedded system manufactured by National Instruments that is used as Platform Control Unit. MATLAB and Simulink software are used for simulations and processing of the collected experimental data. As a secondary activity, the electrical circuit was realized including both high-power and signal control wiring harness. The result of the thesis is a working prototype that will be used in a first section of the experimental plant, located at the DISTAL Experimental Center in Cadriano.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Gambhira, Ullekh Raghunatha. "Powertrain Optimization of an Autonomous Electric Vehicle." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1532039436244217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Pinnecke, Leif, Arne Brix, and Wilfried Hofmann. "Prädiktive Betriebsstrategie eines hybriden Energiespeichersystems in autonomen Elektrofahrzeugen." TU Bergakademie Freiberg, 2019. https://tubaf.qucosa.de/id/qucosa%3A38462.

Повний текст джерела
Анотація:
In diesem Beitrag wird eine Betriebsstrategie für einen hybriden Energiespeicher vorgestellt, die sich der Vorhersage zukünftiger Fahrzustände durch ein autonomes Fahrzeug bedient. Dies ermöglicht ein zusätzliches Verringern der Verluste im Vergleich zu herkömmlichen Strategien, die keine Vorhersagen verwenden. Um diese Funktionen umzusetzen, wurden drei Hierarchieebenen definiert. Die oberste enthält die Energiestrategie und bestimmt den langfristigen Ladestandverlauf des Kondensators mit Hilfe der Vorhersagen. Sie gibt der Leistungsstrategie in der mittleren Ebene einen Sollladestand und eine Zielzeit vor, zu der dieser Ladestand erreicht werden soll. Die Leistungsstrategie ist als modellprädiktive Regelung ausgeführt, die den Zielladegrad in einem Toleranzband führt und die Verluste des Energiespeichersystems minimiert. Die unterste Hierarchieebene enthält die Leistungsregelung des verwendeten DC/DC-Wandlers. Diese stellt die Kondensatorleistung nach der Vorgabe durch die Leistungsstrategie ein. Mit Hilfe dieses Ansatzes und einer Vorausschau von maximal 12 s konnten die Verluste im Vergleich zu einer regelbasierten Strategie ohne Vorausschau um 12 % verringert werden. Im Vergleich zu einer global optimierten Lösung, die mittels einer Dynamischen Programmierung erreicht wurde, erzeugt sie 8 % mehr Verluste.
This paper presents an operating strategy for a hybrid energy storage system using the prediction of future driving conditions by an autonomous vehicle. This allows to reduce the losses compared to conventional strategies that do not use predictions. To implement these functions, three hierarchy levels have been defined. The top level is the energy strategy and determines the long-term state of charge of the capacitor using the predictions. It gives the power strategy, the middle level, a target charge level and a target time at which this state of charge should be reached. The power strategy determines the current power distribution using a model predictive approach and stationary loss optimization. The lowest hierarchical level is the power control of the DC/DC converter used. This adjusts the capacitor power according to the specification of the power strategy. With the help of this approach and a forecast of maximum 12 s, the losses could be reduced by12 % compared to a rule-based strategy without a forecast. In comparison to a globally optimized solution achieved by dynamic programming, the new strategy generates 8 % more losses.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Busch, Regardt. "Modelling and simulation of an autonomous underwater vehicle." Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/2429.

Повний текст джерела
Анотація:
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2009.
In this thesis the mathematical modelling and simulation of an autonomous underwater vehicle is presented. A generic six degree of freedom model suitable for AUV control applications is presented. This model is then tailored to the AUV testbed developed by IMT. The model parameters are determined from vehicle geometry alone. In addition to this, a linear model is presented and analysed in order to determine the modes of motion for AUV. The development of a generic visualisation system suitable for underwater vehicle simulations is also presented. A generic MATLAB based AUV simulation system is developed, and used to supply the visualisation system with the necessary simulation data. Lastly, two example simulations are shown
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Norrsjö, Viktor, and Viktor Stenberg. "PID Controllers for Autonomous Vehicle Path Following." Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-214711.

Повний текст джерела
Анотація:
Autonomous vehicles are set to create a paradigmshift. Everyone could relax on their way to work and no accidentsdue to falling asleep behind the wheel would occur. For this tohappen the autonomous vehicle requires among many differentcomponents, a lane following system. In this paper such asystem is developed. First a mathematical model that describea vehicles behaviour is derived. Then a regulator structure withcontrollers and other components is developed. Finally the systemis implemented as a complete simulator that simulates the movingvehicle. Several different scenarios are tested and the performanceof the system is evaluated. A working simulator is achieved witha vehicle following the predefined path with little deviation, thesystems behaviour is also smooth. It is concluded that the proposedsolution is sufficient for moderates vehicle speeds, but at higherspeeds the mathematical model will not be accurate and theperformance of the system will be insufficient.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Glamheden, Mikael, and Simon Eriksson. "Autonomous Trajectory Tracking for a Differential Drive Vehicle." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-239351.

Повний текст джерела
Анотація:
This paper explores controlling a two-wheeled differential drive vehicle using path planning algorithms and potential fields in order to track a target area while avoiding obstacles. Additionally, formation control was investigated using potential fields and a virtual structure approach separately. Finally, analysis of communication constraints in the form of sampling, disturbances and quantization are taken into account and theoretical or analysis results are given. It was concluded that the potential fields method result in an intuitive and dynamic controller that can be used to navigate within a large-scale and dynamic environment, as well as be used for formation control. The virtual structure approach is more robust when dealing with formation control, but it does not consider obstacle avoidance on its own.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Tuul, Viktor, and John Dahlberg. "Intelligent Traffic Intersection Management Using Motion Planning for Autonomous Vehicles." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-214714.

Повний текст джерела
Анотація:
With the increasing advances in the field of autonomousvehicles it is alluring to ask if a possible vehicularparadigm shift is in the near future. Maximizing road capacitywith Intelligent Traffic Intersections that communicate withautonomous vehicles could become a reality, where the needfor traffic lights and stop signs is excluded. In this paper, anAutonomous Intersection Management system is introduced thatutilizes trajectory-based prioritization and motion planning techniquesto manage traffic in an orthogonal single lane four-wayintersection. The developed system reduces the need for vehiclesto slow down or even stop before intersections, contrariwise, itlets all vehicles enter the intersection at the highest allowed speed.The proposed solution is shown to increase the capacity of intersectionscompared with contemporary intersections managedwith traffic lights.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Vengerov, David 1976. "Context-sensitive planning for autonomous vehicles." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/47510.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Pennycooke, Nicholas (Nicholas D. ). "AEVITA : designing biomimetic vehicle-to-pedestrian communication protocols for autonomously operating & parking on-road electric vehicles." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/77810.

Повний текст джерела
Анотація:
Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2012.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 125-127).
With research institutions from various private, government and academic sectors performing research into autonomous vehicle deployment strategies, the way we think about vehicles must adapt. But what happens when the driver, the main conduit of information transaction between the vehicle and its surroundings, is removed? The EVITA system aims to fill this communication void by giving the autonomous vehicle the means to sense others around it, and react to various stimuli in as intuitive ways as possible by taking design cues from the living world. The system is comprised of various types of sensors (computer vision, UWB beacon tracking, sonar) and actuators (light, sound, mechanical) in order to express recognition of others, announcement of intentions, and portraying the vehicle's general state. All systems are built on the 2 nd version of the 1/2 -scale CityCar concept vehicle, featuring advanced mixed-materials (CFRP + Aluminum) and a significantly more modularized architecture.
by Nicholas Pennycooke.
S.M.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Ni, Houbo. "Realistic Modelling of Ultrasound Sensing for Autonomous Vehicles." Thesis, Linköpings universitet, Elektroniska Kretsar och System, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-162002.

Повний текст джерела
Анотація:
Ultrasonic sensors are popular in parking functions in automotive. They are used to measure distances between a car and obstacles near the car. Car companies need to prove that sensors are reliable before using them on vehicles since these sensors are safety-critical. Therefore, it has great practical value to research on the measurement and verification of ultrasonic sensors. The purpose of this thesis work is to analyse analog parts of some ultrasonic sensors. Measurement methods and three experimental setups are designed to get analog data. Ice, soil, stones or some other things on the road might cover the sensor, which limits the movement of horn and causes measurement errors. Sensor impedance is measured to check the possibility of blockage situation detection in a simulation of a real environment. The work also includes analysing the ultrasonic sensor beam pattern, the sound reflection from the environment, noise reduction, the relationship between the signal voltage amplitude and different positions of sensors, influences on different input signal lengths, and bandwidth investigation of the ultrasonic sensor. MATLAB compares measurement results with theory or simulation, All methods and setups are validated by getting measurement results successfully and correctly. Sensor blockage situation is recognized clearly by different impedance magnitudes. Sensors types under study are different from sensors installed on cars. However, other ultrasonic sensor measurements can utilize the same measurement methods and experimental setups. This thesis has been performed in collaboration with the company Volvo Car Corporation active safety department.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Adolfsson, Alexander, and Daniel Arrhenius. "Overseeing Intersection System for Autonomous Vehicle Guidance." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254219.

Повний текст джерела
Анотація:
Intersections represents one of the most common accident sites in traffic today. The biggest cause of accidents is obstructed view and subpar communication between vehicles. Since autonomous vehicles rely on sensors that require a direct view intersections are some of the most complex situations. Where the potential for inter vehicular communication exists between modern vehicles, it is absent in the older generation. An overseeing intersection system can fill this function during the transition period to fully autonomous traffic. This project aimed to implement an intersection system to assist autonomous vehicles through a crossroad. The assist system’s objective was to collect and transmit data from cars close to the junction to the autonomous vehicles nearby. The concept was tested in simulations by having models traverse a crossroad to evaluate how it utilised the external information. No persistent conclusion could be made due to insufficient simulation environment and vehicle model control.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Mienie, Dewald. "Autonomous docking for a satellite pair using monocular vision." Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/2382.

Повний текст джерела
Анотація:
Thesis (MEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2009.
Autonomous rendezvouz and docking is seen as an enabling technology. It allows, among others, the construction of larger space platforms in-orbit and also provides a means for the in-orbit servicing of space vehicles. In this thesis a docking sequence is proposed and tested in both simulation and practice. This therefore also requires the design and construction of a test platform. A model hovercraft is used to emulate the chaser satellite in a 2-dimensional plane as it moves relatively frictionlessly. The hovercraft is also equipped with a single camera (monocular vision) that is used as the main sensor to estimate the target’s pose (relative position and orientation). An imitation of a target satellite was made and equipped with light markers that are used by the chaser’s camera sensor. The position of the target’s lights in the image is used to determine the target’s pose using a modified version ofMalan’s Extended Kalman Filter [20]. This information is then used during the docking sequence. This thesis successfully demonstrated the autonomous and reliable identification of the target’s lights in the image, and the autonomous docking of a satellite pair using monocular camera vision in both simulation and emulation.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Tomasi, Alessandro. "Reliable communication in mine environments for autonomous vehicles." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-202734.

Повний текст джерела
Анотація:
Automation in the mining industry has the potential to increase safety and productivity while improving working conditions. Ore transportation within the mine is a repetitive task which is well suited to be replaced by an autonomous mining vehicle operating around the clock. Scania, a world leader in sustainable transport solutions is investigating this new concept of vehicle. The autonomous operation is enabled by several technologies installed on the vehicle, including a communication system object of this thesis. Connectivity among vehicles is required in order to coordinate paths and exchange mission critical information. In this thesis, after identifying the challenges of wireless propagations in mines, the communication technology is chosen and possible antenna configurations and communication ranges are found. Through numerical link-budget simulations and subsequent range measurements, the potential communication range of this vehicle has been quantified. The results show the effectiveness of height diversity in extending the communication range. Lastly, the performance degradation caused by dust accumulated on the antennas is discussed.
Automatiseringen i gruvindustrin har potentialen att öka säkerheten och produktiviteten samtidigt som den förbättrar arbetsvillkoren. Malmtransporten inne i gruvan är en repetitiv uppgift som passar bra att bli utbytt av en autonom gruvtransport som är i drift dygnet runt. Scania, en av de världsledande inom hållbara tranportlösningar, undersöker just nu denna typ av fordon. Den självstyrande driften aktiveras genom att ett flertal teknologier installeras på fordonet, inklusive ett kommunikationssystem som är ämne för denna avhandling. Anslutningen mellan fordonen är nödvändig för att kunna samordna banor och ge information i för uppdraget kritiska lägen. I denna avhandling, efter att ha identifierat svårigheterna med en trådlös utbredning i gruvor, är kommunikationsteknologin vald och möjliga antennkonfigurationer och kommunikationsräckvidder funna. Genom numeriska länkbudgetsimuleringar och efterföljande räckviddsmätningar, har det potentiella kommunikationsområdet för detta fordon kvantifierats. Resultaten visar effektiviteten av mångfald när det gäller höjd när man utvidgar kommunikationsområdet. Slutligen diskuteras prestandaförsämringen orsakad av damm som ackumulerats på antennerna.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Kaba, Mohamed. "Controlled Autonomous Vehicle Drift Maneuvering." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1557195355216909.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Cao, Yongcan. "Decentralized Coordination of Multiple Autonomous Vehicles." DigitalCommons@USU, 2010. https://digitalcommons.usu.edu/etd/652.

Повний текст джерела
Анотація:
This dissertation focuses on the study of decentralized coordination algorithms of multiple autonomous vehicles. Here, the term decentralized coordination is used to refer to the behavior that a group of vehicles reaches the desired group behavior via local interaction. Research is conducted towards designing and analyzing distributed coordination algorithms to achieve desired group behavior in the presence of none, one, and multiple group reference states. Decentralized coordination in the absence of any group reference state is a very active research topic in the systems and controls society. We first focus on studying decentralized coordination problems for both single-integrator kinematics and double-integrator dynamics in a sampled-data setting because real systems are more appropriate to be modeled in a sampled-data setting rather than a continuous setting. Two sampled-data consensus algorithms are proposed and the conditions to guarantee consensus are presented for both fixed and switching network topologies. Because a number of coordination algorithms can be employed to guarantee coordination, it is important to study the optimal coordination problems. We further study the optimal consensus problems in both continuous-time and discrete-time settings via an linear-quadratic regulator (LQR)-based approach. Noting that fractional-order dynamics can better represent the dynamics of certain systems, especially when the systems evolve under complicated environment, the existing integer-order coordination algorithms are extended to the fractional-order case. Decentralized coordination in the presence of one group reference state is also called coordinated tracking, including both consensus tracking and swarm tracking. Consensus tracking refers to the behavior that the followers track the group reference state. Swarm tracking refers to the behavior that the followers move cohesively with the external leader while avoiding inter-vehicle collisions. In this part, consensus tracking is studied in both discrete-time setting and continuous-time settings while swarm tracking is studied in a continuous-time setting. Decentralized coordination in the presence of multiple group reference states is also called containment control, where the followers will converge to the convex hull, i.e., the minimal geometric space, formed by the group references states via local interaction. In this part, the containment control problem is studied for both single-integrator kinematics and double-integrator dynamics. In addition, experimental results are provided to validate some theoretical results.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Hough, Willem J. "Autonomous aerobatic flight of a fixed wing unmanned aerial vehicle." Thesis, Link to online version, 2007. http://hdl.handle.net/10019/428.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Hebib, Jasmina, and Sofie Dam. "Vehicle Dynamic Models for Virtual Testing of Autonomous Trucks." Thesis, Linköpings universitet, Fordonssystem, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-155513.

Повний текст джерела
Анотація:
The simulator in a testing environment for trucks is dependent on accurate vehicle dynamic models. There are multiple models at Volvo, all developed to support the objectives of individual research. A selection of four, named Single Track model (STM), Global Simulation Platform (GSP), One-Track Model with linear slip (OTM) and Volvo Transport Model (VTM), are evaluated to examine the usage of them. Four different scenarios are therefore generated to emulate common situations in traffic. Depending on the results, the models and their corresponding limitsforusagearedescribed. Theevaluationismadebycomparingallmodelsto the best model for each scenario by measuring the normalized error distribution. It is shown that at certain thresholds, other models can perform close enough to the best model. In the end of the report, future improvements for the evaluated models and external models are suggested.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Van, Daalen Corne Edwin. "Conflict detection and resolution for autonomous vehicles." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/3994.

Повний текст джерела
Анотація:
Thesis (PhD (Electrical and Electronic Engineering))--University of Stellenbosch, 2010.
ENGLISH ABSTRACT: Autonomous vehicles have recently received much attention from researchers. The prospect of safe and reliable autonomous vehicles for general, unregulated environments promises several advantages over human-controlled vehicles, including increased efficiency, reliability and capability with the associated decrease in danger to humans and reduction in operating costs. A critical requirement for the safe operation of fully autonomous vehicles is their ability to avoid collisions with obstacles and other vehicles. In addition, they are often required to maintain a minimum separation from obstacles and other vehicles, which is called conflict avoidance. The research presented in thesis focuses on methods for effective conflict avoidance. Existing conflict avoidance methods either make limiting assumptions or cannot execute in real-time due to computational complexity. This thesis proposes methods for real-time conflict avoidance in uncertain, cluttered and dynamic environments. These methods fall into the category of non-cooperative conflict avoidance. They allow very general vehicle and environment models, with the only notable assumption being that the position and velocity states of the vehicle and obstacles have a jointly Gaussian probability distribution. Conflict avoidance for fully autonomous vehicles consists of three functions, namely modelling and identification of the environment, conflict detection and conflict resolution. We present an architecture for such a system that ensures stable operation. The first part of this thesis comprises the development of a novel and efficient probabilistic conflict detection method. This method processes the predicted vehicle and environment states to compute the probability of conflict for the prediction period. During the method derivation, we introduce the concept of the flow of probability through the boundary of the conflict region, which enables us to significantly reduce the complexity of the problem. The method also assumes Gaussian distributed states and defines a tight upper bound to the conflict probability, both of which further reduce the problem complexity, and then uses adaptive numerical integration for efficient evaluation. We present the results of two simulation examples which show that the proposed method can calculate in real-time the probability of conflict for complex and cluttered environments and complex vehicle maneuvers, offering a significant improvement over existing methods. The second part of this thesis adapts existing kinodynamic motion planning algorithms for conflict resolution in uncertain, dynamic and cluttered environments. We use probabilistic roadmap methods and suggest three changes to them, namely using probabilistic conflict detection methods, sampling the state-time space instead of the state space and batch generation of samples. In addition, we propose a robust and adaptive way to choose the size of the sampling space using a maximum least connection cost bound. We then put all these changes together in a proposed motion planner for conflict resolution. We present the results of two simulation examples which show that the proposed motion planner can only find a feasible path in real-time for simple and uncluttered environments. However, the manner in which we handle uncertainty and the sampling space bounds offer significant contributions to the conflict resolution field
AFRIKAANSE OPSOMMING: Outonome voertuie het die afgelope tyd heelwat aandag van navorsers geniet. Die vooruitsig van veilige en betroubare outonome voertuie vir algemene en ongereguleerde omgewings beloof verskeie voordele bo menslik-beheerde voertuie en sluit hoër effektiwiteit, betroubaarheid en vermoëns asook die gepaardgaande veiligheid vir mense en laer bedryfskoste in. ’n Belangrike vereiste vir die veilige bedryf van volledig outonome voertuie is hul vermoë om botsings met hindernisse en ander voertuie te vermy. Daar word ook dikwels van hulle vereis om ’n minimum skeidingsafstand tussen hulle en die hindernisse of ander voertuie te handhaaf – dit word konflikvermyding genoem. Die navorsing in hierdie tesis fokus op metodes vir effektiewe konflikvermyding. Bestaande konflikvermydingsmetodes maak óf beperkende aannames óf voer te stadig uit as gevolg van bewerkingskompleksiteit. Hierdie tesis stel metodes voor vir intydse konflikvermyding in onsekere en dinamiese omgewings wat ook baie hindernisse bevat. Die voorgestelde metodes val in die klas van nie-samewerkende konflikvermydingsmetodes. Hulle kan algemene voertuig- en omgewingsmodelle hanteer en hul enigste noemenswaardige aanname is dat die posisie- en snelheidstoestande van die voertuig en hindernisse Gaussiese waarskynliksheidverspreidings toon. Konflikvermyding vir volledig outonome voertuie bestaan uit drie stappe, naamlik modellering en identifikasie van die omgewing, konflikdeteksie en konflikresolusie. Ons bied ’n argitektuur vir so ’n stelsel aan wat stabiele werking verseker. Die eerste deel van die tesis beskryf die ontwikkeling van ’n oorspronklike en doeltreffende metode vir waarskynliksheid-konflikdeteksie. Die metode gebruik die voorspelde toestande van die voertuig en omgewing en bereken die waarskynlikheid van konflik vir die betrokke voorspellingsperiode. In die afleiding van die metode definiëer ons die konsep van waarskynliksheidvloei oor die grens van die konflikdomein. Dit stel ons in staat om die kompleksiteit van die probleem beduidend te verminder. Die metode aanvaar ook Gaussiese waarskynlikheidsverspreiding van toestande en definiëer ’n nou bogrens tot die waarskynlikheid van konflik om die kompleksiteit van die probleem verder te verminder. Laastens gebruik die metode aanpasbare integrasiemetodes vir vinnige berekening van die waarskynlikheid van konflik. Die eerste deel van die tesis sluit af met twee simulasies wat aantoon dat die voorgestelde konflikdeteksiemetode in staat is om die waarskynlikheid van konflik intyds te bereken, selfs vir komplekse omgewings en voertuigbewegings. Die metode lewer dus ’n beduidende bydrae tot die veld van konflikdeteksie. Die tweede deel van die tesis pas bestaande kinodinamiese beplanningsalgoritmes aan vir konflikresolusie in komplekse omgewings. Ons stel drie veranderings voor, naamlik die gebruik van waarskynliksheid-konflikdeteksiemetodes, die byvoeg van ’n tyd-dimensie in die monsterruimte en die generasie van meervoudige monsters. Ons stel ook ’n robuuste en aanpasbare manier voor om die grootte van die monsterruimte te kies. Al die voorafgaande voorstelle word saamgevoeg in ’n beplanner vir konflikresolusie. Die tweede deel van die tesis sluit af met twee simulasies wat aantoon dat die voorgestelde beplanner slegs intyds ’n oplossing kan vind vir eenvoudige omgewings. Die manier hoe die beplanner onsekerheid hanteer en die begrensing van die monsterruimte lewer egter waardevolle bydraes tot die veld van konflikresolusie
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Amini, Alexander Andre. "Robust end-to-end learning for autonomous vehicles." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/118031.

Повний текст джерела
Анотація:
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 59-64).
Deep learning has been successfully applied to "end-to-end" learning of the autonomous driving task, where a deep neural network learns to predict steering control commands from camera data input. While these works support reactionary control, the representation learned is not usable for higher-level decision making required for autonomous navigation. This thesis tackles the problem of learning a representation to predict a continuous control probability distribution, and thus steering control options and bounds for those options, which can be used for autonomous navigation. Each mode in the learned distribution encodes a possible macro-action that the system could execute at that instant, and the covariances of the modes place bounds on safe steering control values. Our approach has the added advantage of being trained solely on unlabeled data collected from inexpensive cameras. In addition to uncertainty estimates computed directly by our model, we add robustness by developing a novel stochastic dropout sampling technique for estimating the inherent confidence of the model's output. We install the relevant processing hardware pipeline on-board a full-scale autonomous vehicle and integrate our learning algorithms for real-time control inference. Finally, we evaluate our models on a challenging dataset containing a wide variety of driving conditions, and show that the algorithms developed as part of this thesis are capable of successfully controlling the vehicle on real roads and even under a parallel autonomy paradigm wherein control is shared between human and robot.
by Alexander Andre Amini.
S.M.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Leavitt, Joseph William. "Intent-aware collision avoidance for autonomous marine vehicles." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/111893.

Повний текст джерела
Анотація:
Thesis: Nav. E., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2017.
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 259-278).
Applications of autonomous marine vehicles in dynamic and uncertain environments continuously grow as research unveils new enabling technology and academic, commercial, and government entities pursue new marine autonomy concepts. The safe operation of these vehicles in the marine domain, which is currently dominated by human-operated vehicles, demands compliance with collision avoidance protocol, namely the International Regulations for Preventing Collisions at Sea (COLREGS). Strict application of this protocol can lead to a highly constrained motion planning problem, in which it is difficult for a vehicle to identify a safe and efficient motion plan. This thesis proposes a multi-objective optimization-based method for COLREGS-compliant autonomous surface vehicle collision avoidance in which vehicles use shared intent information, in addition to vehicle state information, to identify safe and efficient collision avoidance maneuvers. The proposed method uses intent information to relax certain COLREGS-specified constraints with the goal of providing sufficient maneuvering flexibility to enable improvements in safety and efficiency over a non-intent-aware system. In order to arrive at an intent-aware solution, this thesis explores the concept of intent, including intent formulations for the marine domain, intent communications, and the application of intent to the COLREGS-compliant motion planning problem. Two types of intent information are specifically evaluated: COLREGS mode intent, in which the give-way vessel in an overtaking or crossing scenario communicates its intent to maneuver in a certain direction with respect the stand-on vessel, and discrete trajectory intent in which vehicles communicate projected future positions. Simulations and on-water experiments demonstrate the feasibility of the proposed intent-aware method, as well as improvements in performance, in terms of both vehicle safety and mission efficiency, over a non-intent-aware, COLREGS-compliant collision avoidance method.
by Joseph William Leavitt.
Nav. E.
S.M.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Leavitt, Joseph William. "Intent-aware collision avoidance for autonomous marine vehicles." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111893.

Повний текст джерела
Анотація:
Thesis: Nav. E., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2017.
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 259-278).
Applications of autonomous marine vehicles in dynamic and uncertain environments continuously grow as research unveils new enabling technology and academic, commercial, and government entities pursue new marine autonomy concepts. The safe operation of these vehicles in the marine domain, which is currently dominated by human-operated vehicles, demands compliance with collision avoidance protocol, namely the International Regulations for Preventing Collisions at Sea (COLREGS). Strict application of this protocol can lead to a highly constrained motion planning problem, in which it is difficult for a vehicle to identify a safe and efficient motion plan. This thesis proposes a multi-objective optimization-based method for COLREGS-compliant autonomous surface vehicle collision avoidance in which vehicles use shared intent information, in addition to vehicle state information, to identify safe and efficient collision avoidance maneuvers. The proposed method uses intent information to relax certain COLREGS-specified constraints with the goal of providing sufficient maneuvering flexibility to enable improvements in safety and efficiency over a non-intent-aware system. In order to arrive at an intent-aware solution, this thesis explores the concept of intent, including intent formulations for the marine domain, intent communications, and the application of intent to the COLREGS-compliant motion planning problem. Two types of intent information are specifically evaluated: COLREGS mode intent, in which the give-way vessel in an overtaking or crossing scenario communicates its intent to maneuver in a certain direction with respect the stand-on vessel, and discrete trajectory intent in which vehicles communicate projected future positions. Simulations and on-water experiments demonstrate the feasibility of the proposed intent-aware method, as well as improvements in performance, in terms of both vehicle safety and mission efficiency, over a non-intent-aware, COLREGS-compliant collision avoidance method.
by Joseph William Leavitt.
Nav. E.
S.M.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Manara, Luca. "Investigating Antenna Placement on Autonomous Mining Vehicle." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-204908.

Повний текст джерела
Анотація:
Future mines will benefit from connected intelligent transport system technologies. Autonomous mining vehicles will improve safety and productivity while decreasing the fuel consumption. Hence, it is necessary for Scania to increase the know-how regarding the design of vehicular communication systems for the harsh mine environment. The scope of this work is to examine the requirements for the antenna placement of a future autonomous mining truck and propose suitable antenna types and positions. By using the electromagnetic simulator suite CST Microwave Studio, the research estimates the impact of a simplified autonomous mining vehicle geometry on basic antenna radiation patterns. Some simulated antenna configurations are assessed with radiation pattern measurements. In order to radiate enough power towards the area surrounding the vehicle and guarantee reliable communications, the truck requires omnidirectional antennas in centered locations, or alternatively one patch antenna for each side. The method used to solve the problem is also assessed: flexibility provided by the simulation method is emphasized, whereas some relevant limitations are discussed. Hardware requirements, availability of the models and limited results provided by the software can make the simulation phase not suitable to evaluate the antenna placement.
Framtidens gruvor kommer att gynnas av sammankopplade, intelligenta transportsystem. Autonoma gruvfordon kommer att förbättra säkerhet och produktivitet, och samtidigt minska bränslekonsumtion. Därför är det nödvändigt för Scania att öka kunskapen om design av kommunikationssystem för fordon i hård gruvmiljö. Målet för detta projekt är att undersöka kraven för antennplacering hos ett framtida autonomt gruvfordon och att ge förslag på passande antenntyper och -positioner. Det elektromagnetiska simuleringsverktyget CST Microwave Studio används för att uppskatta påverkan från en förenklad fordonsgeometri på grundläggande antennstrålningsmönster. Utvalda antennkonfigurationer utvärderas genom undersökningar av dess strålningsmönster. För att kunna stråla ut tillräcklig effekt i området kring fordonet och garantera tillförlitlig kommunikation krävs centralt placerade runtstrålande antenner, eller alternativt en patchantenn till varje sida. Problemlösningsmetoden utvärderas också: Flexibiliteten simuleringsmetoden ger betonas, medan några relevanta begränsningar diskuteras. Hårdvarukrav, tillgängligheten av modeller och begränsade resultat från mjukvaran kan bidra till att göra simuleringen olämplig för att utvärdera antennplaceringen.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Huang, Albert Shuyu. "Lane estimation for autonomous vehicles using vision and LIDAR." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/57535.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references (p. 109-114).
Autonomous ground vehicles, or self-driving cars, require a high level of situational awareness in order to operate safely and eciently in real-world conditions. A system able to quickly and reliably estimate the location of the roadway and its lanes based upon local sensor data would be a valuable asset both to fully autonomous vehicles as well as driver assistance technologies. To be most useful, the system must accommodate a variety of roadways, a range of weather and lighting conditions, and highly dynamic scenes with other vehicles and moving objects. Lane estimation can be modeled as a curve estimation problem, where sensor data provides partial and noisy observations of curves. The number of curves to estimate may be initially unknown and many of the observations may be outliers and false detections (e.g., due to tree shadows or lens are). The challenge is to detect lanes when and where they exist, and to update the lane estimates as new observations are received. This thesis describes algorithms for feature detection and curve estimation, as well as a novel curve representation that permits fast and ecient estimation while rejecting outliers. Locally observed road paint and curb features are fused together in a lane estimation framework that detects and estimates all nearby travel lanes.
(cont.) The system handles roads with complex geometries and makes no assumptions about the position and orientation of the vehicle with respect to the roadway. Early versions of these algorithms successfully guided a fully autonomous Land Rover LR3 through the 2007 DARPA Urban Challenge, a 90km urban race course, at speeds up to 40 km/h amidst moving traffic. We evaluate these and subsequent versions with a ground truth dataset containing manually labeled lane geometries for every moment of vehicle travel in two large and diverse datasets that include more than 300,000 images and 44km of roadway. The results illustrate the capabilities of our algorithms for robust lane estimation in the face of challenging conditions and unknown roadways.
by Albert S. Huang.
Ph.D.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Gheneti, Banti Henricus. "Reconfigurable Autonomous Surface Vehicles : perception and trajectory optimization algorithms." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/121672.

Повний текст джерела
Анотація:
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 105-110).
Autonomous Surface Vehicles (ASV) are a highly active area of robotics with many ongoing projects in search and rescue, environmental surveying, monitoring, and beyond. There have been significant studies on ASVs in riverine, coastal, and sea environments, yet only limited research on urban waterways, one of the most busy and important water environments. This thesis presents an Urban Autonomy System that is able to meet the critical precision, real-time and other requirements that are unique to ASVs in urban waterways. LiDAR-based perception algorithms are presented to enable robust and precise obstacle avoidance and object pose estimation on the water. Additionally, operating ASVs in well-networked urban waterways creates many potential use cases for ASVs to serve as re-configurable urban infrastructure, but this necessitates developing novel multi-robot planners for urban ASV operations. Efficient sequential quadratic programming and real-time B-spline parameterized mixed-integer quadratic programming multi-ASV motion planners are presented respectively for formation changing and shapeshifting operations, enabling use cases such as ASV docking and bridge-building on water. These methods increase the potential of urban and non-urban ASVs in the field. The underlying planners in turn contribute to the motion planning and trajectory optimization toolbox for unmanned aerial vehicles (UAVs), self-driving cars, and other autonomous systems.
by Banti Henricus Gheneti.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Chen, Tianye M. EngMassachusetts Institute of Technology. "Augmenting anomaly detection for autonomous vehicles with symbolic rules." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/123013.

Повний текст джерела
Анотація:
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 53-54).
My research investigates the issues in anomaly detection as applied to autonomous driving created by the incompleteness of training data. I address these issues through the use of a commonsense knowledge base, a predefined set of rules regarding driving behavior, and a means of updating the base set of rules as anomalies are detected. In order to explore this problem I have built a hardware platform that was used to evaluate existing anomaly detection developed within the lab and that will serve as an evaluation platform for future work in this area. The platform is based on the open-source MIT RACECAR project that integrates the most basic aspect of an driving autonomous vehicle - lidar, camera, accelerometer, and computer - onto the frame of an RC car. We created a set of rules regarding traffic light color transitions to test the car's ability to navigate cones (which represent traffic light colors) and detect anomalies in the traffic light transition order. Anomalies regularly occurred in the car's driving environment and its driving rules were updated as a consequence of the logged anomalies. The car was able to successfully navigate the course and the rules (plausible traffic light color transitions) were updated when repeated anomalies were seen.
by Tianye Chen.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Lazarov, Kristiyan, and Badi Mirzai. "Behaviour-Aware Motion Planning for Autonomous Vehicles Incorporating Human Driving Style." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254224.

Повний текст джерела
Анотація:
This paper proposes a model to ensure safe and realistic human-robot interaction for an autonomous vehicle interacting with a human-driven vehicle, by incorporating the driving style of the human driver. The interaction is modeled as a game, where both agents try to maximize future rewards. The driving style of the human is captured via the role of the human driver in the game, capturing the fact that humans with different driving styles reason differently. The solution of the game is obtained using an numerical approximation and used by the autonomous vehicle to plan optimally ahead. The model is validated via simulations on a safety-critical scenario, where realistic driving style-dependent behaviour emerges naturally.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Jie, Lu Billy, and Michael Bettar. "Trajectory Tracking, Formation Control and Obstacle Avoidance for Autonomous Ground Vehicles." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-293838.

Повний текст джерела
Анотація:
The usage of autonomous ground vehicles is growingextensively. Therefore, it is important to gain a better understand-ing for the fundamentals of their communication network. Inthis paper, three important areas will be considered: Trajectorytracking, formation control and collision avoidance. Firstly,trajectory tracking is implemented for unicycles to direct them toa reference path. Secondly, formation control is examined for twoapproaches: A method based on virtual structure with a presettrajectory for unicycles and a method based on displacement forpoint agents. Finally, collision avoidance is incorporated withthe displacement-based controller. For this case, agents keepformation without colliding within formation and with staticobstacles in the workspace. The proposed controllers are verifiedthrough simulations in MATLAB.
Användningen av autonoma markfordon har ökat kraftigt de senaste åren. Således är det viktigt att få en bättre förståelse för grunderna i deras kommunikationsnätverk. I detta projekt studeras tre essentiella områden: projektilspårning, formationshållning och undvikning av kollisioner. Först och främst implementeras projektilspårning för en enhjuling där den styrs mot en önskad projektilbana. Därefter betraktas formationshållning genom två metoder: Den första metoden handlar om virtuella strukturer med en förutbestämd bana för enhjulingar. Den andra metoden baseras på en förskjutningsbaserad regulator. Slutligen införs undvikning av kollisioner tillsammans med den förskjutningsbaserade regulatorn för att uppnå ett kollisionsundvikande robotsystem. Samtliga objektiv inom de tre områdena nås med varierande precision.
Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Chari, Kartik Seshadri. "Dynamic Modelling and Optimal Control of Autonomous Heavy-duty Vehicles." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291634.

Повний текст джерела
Анотація:
Autonomous vehicles have gained much importance over the last decade owing to their promising capabilities like improvement in overall traffic flow, reduction in pollution and elimination of human errors. However, when it comes to long-distance transportation or working in complex isolated environments like mines, various factors such as safety, fuel efficiency, transportation cost, robustness, and accuracy become very critical. This thesis, developed at the Connected and Autonomous Systems department of Scania AB in association with KTH, focuses on addressing the issues related to fuel efficiency, robustness and accuracy of an autonomous heavy-duty truck used for mining applications. First, in order to improve the state prediction capabilities of the simulation model, a comparative analysis of two dynamic bicycle models was performed. The first model used the empirical PAC2002 Magic Formula (MF) tyre model to generate the tyre forces, and the latter used a piece-wise Linear approximation of the former. On top of that, in order to account for the nonlinearities and time delays in the lateral direction, the steering dynamic equations were empirically derived and cascaded to the vehicle model. The fidelity of these models was tested against real experimental logs, and the best vehicle model was selected by striking a balance between accuracy and computational efficiency. The Dynamic bicycle model with piece-wise Linear approximation of tyre forces proved to tick-all-the-boxes by providing accurate state predictions within the acceptable error range and handling lateral accelerations up to 4 m/s2. Also, this model proved to be six times more computationally efficient than the industry-standard PAC2002 tyre model. Furthermore, in order to ensure smooth and accurate driving, several Model Predictive Control (MPC) formulations were tested on clothoid-based Single Lane Change (SLC), Double Lane Change (DLC) and Truncated Slalom trajectories with added disturbances in the initial position, heading and velocities. A linear time-varying Spatial error MPC is proposed, which provides a link between spatial-domain and time-domain analysis. This proposed controller proved to be a perfect balance between fuel efficiency which was achieved by minimising braking and acceleration sequences and offset-free tracking along with ensuring that the truck reached its destination within the stipulated time irrespective of the added disturbances. Lastly, a comparative analysis between various Prediction-Simulation model pairs was made, and the best pair was selected in terms of its robustness to parameter changes, simplicity, computational efficiency and accuracy.
Under det senaste årtiondet har utveckling av autonoma fordon blivit allt viktigare på grund av de stora möjligheterna till förbättringar av trafikflöden, minskade utsläpp av föroreningar och eliminering av mänskliga fel. När det gäller långdistanstransporter eller komplexa isolerade miljöer så som gruvor blir faktorer som bränsleeffektivitet, transportkostnad, robusthet och noggrannhet mycket viktiga. Detta examensarbete utvecklat vid avdelningen Connected and Autonomous Systems på Scania i samarbete med KTH fokuserar på frågor gällande bränsleeffektivitet, robusthet och exakthet hos en autonom tung lastbil i gruvmiljö. För att förbättra simuleringsmodellens tillståndsprediktioner, genomfördes en jämförande analys av två dynamiska fordonsmodeller. Den första modellen använde den empiriska däckmodellen PAC2002 Magic Formula (MF) för att approximera däckkrafterna, och den andra använde en stegvis linjär approximation av samma däckmodell. För att ta hänsyn till ickelinjäriteter och laterala tidsfördröjningar inkluderades empiriskt identifierade styrdynamiksekvationer i fordonsmodellen. Modellerna verifierades mot verkliga mätdata från fordon. Den bästa fordonsmodellen valdes genom att hitta en balans mellan noggrannhet och beräkningseffektivitet. Den Dynamiska fordonsmodellen med stegvis linjär approximation av däckkrafter visade goda resultat genom att ge noggranna tillståndsprediktioner inom det acceptabla felområdet och hantera sidoacceleration upp till 4 m/s2 . Den här modellen visade sig också vara sex gånger effektivare än PAC2002-däckmodellen. v För att säkerställa mjuk och korrekt körning testades flera MPC varianter på klotoidbaserade trajektorier av filbyte SLC, dubbelt filbyte DLC och slalom. Störningar i position, riktining och hastighet lades till startpositionen. En MPC med straff på rumslig avvikelse föreslås, vilket ger en länk mellan rumsdomän och tidsdomän. Den föreslagna regleringen visade sig vara en perfekt balans mellan bränsleeffektivitet, genom att minimering av broms- och accelerationssekvenser, och felminimering samtidigt som lastbilen nådde sin destination inom den föreskrivna tiden oberoende av de extra störningarna. Slutligen gjordes en jämförande analys mellan olika kombinationer av simulerings- och prediktionsmodell och den bästa kombinationen valdes med avseende på dess robusthet mot parameterändringar, enkelhet, beräkningseffektivitet och noggrannhet.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії