Дисертації з теми "Elastic rods and waves"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Elastic rods and waves".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Durickovic, Bojan. "Waves on Elastic Rods and Helical Spring Problems." Diss., The University of Arizona, 2011. http://hdl.handle.net/10150/202750.
Повний текст джерелаFu, Tuan-Chun. "FEM simulation of ultrasonic wave propagation in solid rods." Morgantown, W. Va. : [West Virginia University Libraries], 2004. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=3452.
Повний текст джерелаTitle from document title page. Document formatted into pages; contains x, 82 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 80-81).
Cazzolli, Alessandro. "Snapping and Fluttering of Elastic Rods." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/259120.
Повний текст джерелаMiller, James Thomas Ph D. Massachusetts Institute of Technology. "Mechanical behavior of elastic rods under constraint." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/88280.
Повний текст джерелаThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 213-223).
We present the results of an experimental investigation of the mechanics of thin elastic rods under a variety of loading conditions. Four scenarios are explored, with increasing complexity: i) the shape of a naturally curved rod suspended under self-weight, ii) the buckling and post-buckling behavior of a rod compressed inside a cylindrical constraint, iii) the mechanical instabilities arising when a rod is progressively injected into a horizontal cylinder, and iv) strategies for mitigation of these instabilities by dynamic excitation of the constraint. First, we consider the role of natural curvature in determining the shape of a hanging elastic rod suspended under its own weight. We categorize three distinct configurations: planar hooks, localized helices, and global helices. Experimental results are contrasted with simulations and theory and the phase diagram of the system is rationalized. Secondly, in what we call the classic case experiment, we study the buckling and post-buckling behavior of a rod compressed inside a cylindrical constraint. Under imposed displacement, the initially straight rod buckles into a sinusoidal mode and eventually undergoes a secondary instability into a helical configuration. The critical buckling loads are quantified and found to depend strongly on the aspect ratio of the rod to pipe diameter. Thirdly, we inject a thin elastic rod into a horizontal cylinder under imposed velocity in the real case experiment. Friction between the rod and constraining pipe causes an increasing axial load with continued injection. Consecutive buckling transitions lead to straight, sinusoidal, and helical configurations in a spatially heterogeneous distribution. We quantify critical lengths and loads for the onset of the helical instability. The geometric parameters of the system strongly affect the buckling and post-buckling behavior. Finally, we explore active strategies for delaying the onset of helical buckling in the real case. Distributed vertical vibration is applied to the cylindrical constraint, which destabilizes frictional contacts between the rod and pipe. Injection speed, peak acceleration of vibration, and vibration frequency are all found to affect the postponement of helical initiation. The process is rationalized and design
by James T. Miller.
Ph. D.
Khalid, Jawed Mohammad. "Coiling of elastic rods on rigid substrates." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/93774.
Повний текст джерелаThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 115-120).
We investigate the deployment of a thin elastic rod onto a rigid substrate and study the resulting coiling patterns. In our approach, we combine precision model experiments, scaling analyses, and computer simulations towards developing predictive understanding of the coiling process. Both cases of deposition onto static and moving substrates are considered. We construct phase diagrams for the possible coiling patterns, e.g. meandering, stretched coiling, alternating loops, and translated coiling, and characterize them as a function of the geometric and material properties of the rod, as well as the height and relative speeds of deployment. The various modes selected and their characteristic length-scales are found to arise from a complex interplay between gravitational, bending, and twisting energies of the rod, coupled to the geometric nonlinearities intrinsic to their large deformations. We give particular emphasis to the first sinusoidal mode of instability, which we find to be consistent with a Hopf bifurcation, and rationalize the meandering wavelength and amplitude. Throughout, we systematically vary natural curvature of the rod as a control parameter, which has a qualitative and quantitative effect on the pattern formation, above a critical value that we determine. Upon establishing excellent quantitative agreement between experiments and simulations with no fitting parameters, we perform a numerical survey to relate the pattern size to the relevant length-scales arising from material properties and the setup geometry, and quantify the typical strain levels in the rod. The universality conferred by the prominent role of geometry in the deformation modes of the rod suggests using the gained understanding as design guidelines, in the original applications that motivated the study. These include the coiling of carbon nanotubes and the deployment of submarine cables and pipelines onto the seabed.
by Mohammad Khalid Jawed.
S.M.
Guo, Hanfen. "Quasi-static universal motions of homogeneous monotropic elastic rods." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/mq23326.pdf.
Повний текст джерелаBeretta, Robert K. (Robert Kneeland). "A geometrically exact dynamic model for spatial elastic rods." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/38117.
Повний текст джерелаGong, Chen. "Surface waves in elastic material." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-227640.
Повний текст джерелаDreyer, Daniel 1975. "Application of the Element Free Galerkin Method to elastic rods." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/80918.
Повний текст джерела"February 2000."
Includes bibliographical references (p. 115-119) and index.
by Daniel Dreyer.
S.M.
Connell, I. J. "Large elastic deformations of tubes, wires and springs." Thesis, University of Nottingham, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376636.
Повний текст джерелаManohara, Ranganath Draksharam. "Modelling of Elastic Ship in Waves." Thesis, KTH, Marina system, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-119768.
Повний текст джерелаDraksharam, Manohara Ranganath. "Modelling of Elastic Ship in Waves." Thesis, KTH, Marina system, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-121311.
Повний текст джерелаPunjani, Minaz. "Crack characterisation using ultrasonic elastic waves." Thesis, University College London (University of London), 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267567.
Повний текст джерелаSpillmann, Jonas. "CORDE: Cosserat rod elements for the animation of interacting elastic rods." [S.l. : s.n.], 2008. http://nbn-resolving.de/urn:nbn:de:bsz:25-opus-57751.
Повний текст джерелаAnakok, Isil. "A Study on Steady State Traveling Waves in Strings and Rods." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/83890.
Повний текст джерелаMaster of Science
Owen, Nicholas C. "Existence and stability of drawing and necking deformations for nonlinearly elastic rods." Thesis, Heriot-Watt University, 1986. http://hdl.handle.net/10399/1605.
Повний текст джерелаRodrigues, Ferreira Elizabete. "Finite-amplitude waves in deformed elastic materials." Doctoral thesis, Universite Libre de Bruxelles, 2008. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210464.
Повний текст джерелаAprès un rappel des équations de base de l'élasticité non linéaire (Chapitre 1), on considère tout d'abord la classe générale des matériaux incompressibles. Pour ces matériaux, on montre que la propagation d'ondes transversales polarisées linéairement est possible pour des choix appropriés des directions de polarisation et de propagation. De plus, on propose des généralisations des modèles classiques de "Mooney-Rivlin" et "néo-Hookéen" qui conduisent à de nouvelles solutions. Bien que le contexte soit tri-dimensionnel, il s'avère que toutes ces ondes sont régies par des équations d'ondes scalaires non linéaires uni-dimensionelles. Dans le cas de solutions du type ondes simples, on met en évidence une propriété remarquable du flux et de la densité d'énergie.
Dans les Chapitres 3 et 4, on se limite à un modèle particulier de matériaux compressibles appelé "modèle restreint de Blatz-Ko", qui est une version compressible du modèle néo-Hookéen.
En milieu infini (Chapitre 3), on montre que des ondes transversales polarisées linéairement, faisant intervenir deux variables spatiales, peuvent se propager. Bien que la théorie soit non linéaire, le champ de déplacement de ces ondes est régi par une version anisotrope de l'équation d'onde bi-dimensionnelle classique. En particulier, on présente des solutions à symétrie "cylindrique elliptique" analogues aux ondes cylindriques. Comme cas particulier, on obtient aussi des ondes planes inhomogènes atténuées à la fois dans l'espace et dans le temps. De plus, on montre que diverses superpositions appropriées de solutions sont possibles. Dans chaque cas, on étudie les propriétés du flux et de la densité d'énergie. En particulier, dans le cas de superpositions il s'avère que des termes d'interactions interviennent dans les expressions de la densité et du flux d'énergie.
Finalement (Chapitre 4), on présente une solution exacte qui constitue une généralisation non linéaire de l'onde de Love classique. On considère ici un espace semi-infini, appelé "substrat" recouvert par une couche. Le substrat et la couche sont constitués de deux matériaux restreints de Blatz-Ko pré-déformés. L'onde non linéaire de Love est constituée d'un mouvement non atténué dans la couche et d'une onde plane inhomogène dans le substrat, choisies de manière à satisfaire aux conditions aux limites. La relation de dispersion qui en résulte est analysée en détail. On présente de plus des propriétés générales du flux et de la densité d'énergie dans le substrat et dans la couche.
The context of this thesis is the non linear elasticity theory, also called "finite elasticity".
Results are obtained for finite-amplitude waves in non linear elastic materials which are first subjected to a large homogeneous static deformation. Although the materials are assumed to be isotropic, anisotropic behaviour for wave propagation is induced by the static deformation.
After recalling the basic equations of the non linear elasticity theory (Chapter 1), we first consider general incompressible materials. For such materials, linearly polarized transverse plane waves solutions are obtained for adequate choices of the polarization and propagation directions (Chapter 2). Also, extensions of the classical Mooney-Rivlin and neo-Hookean models are introduced, for which more solutions are obtained. Although we use the full three dimensional elasticity theory, it turns out that all these waves are governed by scalar one-dimensional non linear wave equations. In the case of simple wave solutions of these equations, a remarkable property of the energy flux and energy density is exhibited.
In Chapter 3 and 4, a special model of compressible material is considered: the special Blatz-Ko model, which is a compressible counterpart of the incompressible neo-Hookean model.
In unbounded media (Chapter 3), linearly polarized two-dimensional transverse waves are obtained. Although the theory is non linear, the displacement field of these waves is governed by a linear equation which may be seen as an anisotropic version of the classical two-dimensional wave equation. In particular, solutions analogous to cylindrical waves, but with an "elliptic cylindrical symmetry" are presented. Special solutions representing "damped inhomogeneous plane waves" are also derived: such waves are attenuated both in space and time. Moreover, various appropriate superpositions of solutions are shown to be possible. In each case, the properties of the energy density and the energy flux are investigated. In particular, in the case of superpositions, it is seen that interaction terms enter the expressions for the energy density and the energy flux.
Finally (Chapter 4), an exact finite-amplitude Love wave solution is presented. Here, an half-space, called "substrate", is assumed to be covered by a layer, both made of different prestrained special Blatz-Ko materials. The Love surface wave solution consists of an unattenuated wave motion in the layer and an inhomogeneous plane wave in the substrate, which are combined to satisfy the exact boundary conditions. A dispersion relation is obtained and analysed. General properties of the energy flux and the energy density in the substrate and the layer are exhibited.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Johnston, Clifton Reed. "Solitary waves in fluid-filled elastic tubes." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq64866.pdf.
Повний текст джерелаWang, Wei. "Manipulation of Lamb waves with elastic metamaterials." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS414.
Повний текст джерелаWe develop elastic pillared metamaterials to manipulate Lamb waves. Firstly, the negative properties associated with bending, compression and torsion resonances in two structures consisting of pillars on one side of a thin plate are examined. We describe in details two different mechanisms at the origin of doubly negative property. The potential of these structures for negative refraction of Lamb waves and acoustic cloaking is demonstrated numerically. Secondly, we present the topologically protected transport of Lamb waves by analogy with quantum spin and valley quantum Hall effects. By rearranging the previous structures into a honeycomb network, a single Dirac cone and a double Dirac cone are introduced. We discuss the appearance of topologically valley-protected edge states in an asymmetrical double-sided pillar structure. The unidirectional propagation of edge states on different domain walls is studied. In addition, we consider a symmetrical double-sided system allowing the separation of the symmetric and antisymmetric modes. Combined edge states protected topologically by pseudospin and pseudospin-valley degree of freedom are demonstrated. Third, we propose an approach to actively control the transmission of the antisymmetric Lamb wave propagating through an infinite line of pillars. Two different situations with bending and compression resonances respectively separated or superimposed are studied. External tensile force and pressure are applied to the pillars, which allows them to couple with the bending and compressive vibrations. The transmission is studied as a function of the amplitude and the relative phase of the external sources
Schlottmann, Robert Brian. "A path integral formulation of elastic wave propagation /." Full text (PDF) from UMI/Dissertation Abstracts International, 2000. http://wwwlib.umi.com/cr/utexas/fullcit?p3004372.
Повний текст джерелаArens, Tilo. "The scattering of elastic waves by rough surfaces." Thesis, Brunel University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311560.
Повний текст джерелаImhof, Matthias Georg. "Scattering of elastic waves using non-orthagonal expansions." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/54423.
Повний текст джерелаIncludes bibliographical references (p. 270-284).
by Matthias Georg Imhof.
Ph.D.
Ahonsi, Bright. "On the propagation of stress waves in viscoelastic rods for Hopkinson bar studies." Thesis, University of Aberdeen, 2011. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=182239.
Повний текст джерелаKim, Hyun Sil. "Instability of finite amplitude wave propagation in harmonically heterogeneous elastic solids." Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/16437.
Повний текст джерелаDe, Lima Washington Jose. "Harmonic generation in isotropic elastic waveguides /." Full text (PDF) from UMI/Dissertation Abstracts International, 2000. http://wwwlib.umi.com/cr/utexas/fullcit?p3004249.
Повний текст джерелаMaboudi, Afkham Babak. "Modeling and Simulation of Elastic Rods with Intrinsic Curvature and Twist Immersed in Fluid." Thesis, KTH, Numerisk analys, NA, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-148168.
Повний текст джерелаFörståelsen för dynamiken hos tunna elastiska fibrer eller stavar inuti en vätska är fundamental för att förklara många problem som uppstår inom biologi, fysik och ingenjörsvetenskap. Att lösa det sammanbundna stav-vätska systemet i 3D är vanligtvis väldigt kostsamt; men vid ett lågt Reynoldstal kan det tredimensionella problemet reduceras till ett endimensionellt längs stavens centrumlinje. I det här arbetet har vi undersökt metoden med regulariserande Stokeslets, vilken är en numerisk algoritm som används på elastiska stavar inuti en viskös, inkompressibel vätska med Reynoldstal noll, modellerad med Stokes ekvation. I den här metoden så är den elastiska staven representerad av en kurva i rummet som beskriver stavens centrumlinje. Dessutom används en ortogonal triad som varierar längs kurvan, och som beskriver materialets vridning. Med den modell som används för de elastiska krafterna baserat på detta, så kan stavarnas naturliga konfiguration vara allt annat än raka, och beskrivas med kurvatur och torsion. På detta sätt kan grundläget för staven vara tex spiralformad. Lineariteten av Stokes ekvation möjliggör att vi kan beräkna både den linjära och vinkel-flödeshastigheten endast längs med stavens centrumlinje. Vi undersöker också hur metoden beror av de numeriska parametrarna och metodens noggrannhets- och konvergens-egenskaper. Som ett riktmärke jämför vi de numeriska resultaten av metoden med resultaten producerade av den så kallade ”non-local slender body” metoden som använts för elastiska stavar utan naturlig kurvatur och vridning som placeras i ett plant skjuvflöde. Vi presenterar också simuleringar av utsträckning av spiralformade stavar då dessa är placerade i ett konstant bakgrundsflöde, och dessutom så tillhandahåller vi en snabbt konvergerande formel för den periodiska summeringen av de fundamentala lösningarna till Stokes ekvation.
Xu, Liwei. "Computational methods for a class of problems in acoustic, elastic and water waves." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 203 p, 2009. http://proquest.umi.com/pqdweb?did=1833647381&sid=12&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Повний текст джерелаYi, Kaijun. "Controlling guided elastic waves using adaptive gradient-index structures." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEC044/document.
Повний текст джерелаGRadient INdex (GRIN) media are those whose properties smoothly vary in space or/and time. They have shown promising effects in many engineering applications, such as Structural Health Monitoring (SHM), vibration and noise control, energy harvesting, etc. On the other hand, piezoelectric materials provide the possibility to build unit cells, whose mechanical properties can be controlled on-line. Motivated by these two facts, adaptive GRIN structures, which can be realized using shunted piezoelectric materials, are explored in this dissertation to control guided elastic waves. Two types of adaptive GRIN structures are studied in this work. The first type is a piezo-lens. It is composed of shunted piezoelectric patches bonded on the surfaces of plates. To control the mechanical properties of the piezoelectric composite, the piezoelectric patches are shunted with Negative Capacitance (NC). By tuning the shunting NC values, refractive indexes inside the piezo-lens are designed to satisfy a hyperbolic secant function in space. Numerical results show that the piezo-lens can focus waves by smoothly bending them toward the designated focal point. The piezo-lens is effective in a large frequency band and is efficient in many different working conditions. Also the same piezo-lens can focus waves at different locations by tuning the shunting NC values. The focusing effect and tunable feature of piezo-lens make it useful in many applications like energy harvesting and SHM. The former application is fully discussed in this thesis. The focusing effect at the focal point results in a known point with high energy density, therefore harvesting at the focal point can yield more energy. Besides, the tunable ability makes the harvesting system adaptive to environment changes. The second type is the time-space modulated structure. Its properties are modulated periodically both in time and space. Particularly, the modulation works like a traveling wave in the structure. Due to the time-varying feature, time-space modulated structures break the reciprocity theorem, i.e., the wave propagation in them is nonreciprocal. Many unusual phenomena are observed during the interaction between waves and time-space modulated structures: frequency splitting, frequency conversion and one-way wave transmission. Two types of frequency conversion are demonstrated and explained. The first type is caused by energy transmission between different orders Bloch modes. The second type is due to the Bragg scattering effect inside the modulated structures. The one-way wave transmission could be exploited to realize one-way energy insulation in equivalent infinite or semi-inffnite systems. However, the one-way energy insulation fails in finite systems due to the frequency conversion phenomenon
Kil, Hyun-Gwon. "Propagation of elastic waves on thin-walled circular cylinders." Thesis, Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/15967.
Повний текст джерелаFong, Ka Lok Jimmy. "A study of curvature effects on guided elastic waves." Thesis, Imperial College London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.421857.
Повний текст джерелаLi, Xiaofan. "Scattering of elastic waves by heterogeneous and extended continua." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389961.
Повний текст джерелаHaslinger, Stewart. "Mathematical modelling of flexural waves in structured elastic plates." Thesis, University of Liverpool, 2014. http://livrepository.liverpool.ac.uk/16833/.
Повний текст джерелаZhao, Jinfeng. "Phononic Crystals to Control the Propagation of Elastic Waves." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066098/document.
Повний текст джерелаThis manuscript is about the focusing of elastic beams propagating in a plate or on the free surface of a semi-infinite medium, using flat acoustical lenses. The devices we have studied are based onto 2D phononic crystals that are made of air inclusions in a solid matrix and featuring a gradient of their elastic properties along one direction of the lens. The gradient index (GRIN) is obtained by modulating either the size of the air inclusions or the distance between two consecutive inclusions.We primarily adopted a computational approach but a significant part of the work concerns the analytical calculation of the ray trajectories as well as the experimental check of the theoretical findings. The analytical approach consists to calculate the ray trajectories of an elastic waves within the lens while accounting for the anisotropy along each lines of inclusions. The analysis applied to the lowest-order flexural Lamb wave (A0), together with both the numerical results and the experimental data, well explains the features of the displacements field in the focus area, including the location, shape and lateral width. The formalism applies whatever the symmetry of the phononic crystal is and can be extended to other polarization of the elastic wave. We show in this work that FWHM as small as 0.64 may be obtained when focusing inside the lens.The formalism applies also to the focusing behind the lens. In that case, the resolution at the focus is determined by the “maximum transverse wavenumber” at the exit of lens, in good agreement with the numerical and experimental results. Then we designed a GRIN phononic lens featuring resonant pillars in addition to the constitutive air inclusions. The numerical analysis foresees the resolution at the focus beyond the diffraction limit, while experimentally we measured the resolution to be just above the diffraction limit. Lastly, we turned to the subwavelength focusing of Rayleigh waves through GRIN lenses. We found a good agreement between the ray trajectories calculation, the numerical simulations and the experiments. We further analysed the influence of energy transmission when the focus is located behind the lens
Shearer, Tom. "Waves in nonlinear elastic media with inhomogeneous pre-stress." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/waves-in-nonlinear-elastic-media-with-inhomogeneous-prestress(39ffbda5-3510-4941-b092-208b854141b4).html.
Повний текст джерелаBrevis, Vergara Rodrigo Ignacio. "Source time reversal methods for acoustic and elastic waves." Tesis, Universidad de Chile, 2018. http://repositorio.uchile.cl/handle/2250/152342.
Повний текст джерелаEsta tesis estudia la detección y reconstrucción del término espacial de una fuente de variables separables en problemas de onda acústica y elástica. Para esto, estudiamos el método time-reversal mirror, el cual explota una invariancia intrínseca de la física a nivel microscópico que se observa también a nivel macroscópico en las ecuaciones de ondas. Esto significa que es posible recuperar la condición inicial de una ecuación de ondas homogénea revirtiendo la onda a través del tiempo. Para localizar y reconstruir el término espacial de la fuente, desarrollamos un método llamado source time reversal. La aplicación subyacente aquí es la detección de fuentes sísmicas en la minería. Es sabido que la actividad minera induce temblores dentro de las minas [50]. Esto se vuelve bastante peligroso si no se toman las precauciones adecuadas. Conocer sobre el origen de las actividades sísmicas puede ser utilizado para reducir el peligro de derrumbes y mejorar la seguridad dentro de las minas. Este trabajo se divide en tres capítulos; cada uno de ellos constituye un documento autocontenido para ser presentado como artículo. El primer capítulo aborda el problema de reconstrucción de fuente para ondas acústicas. Para esto introducimos el método source time reversal, la cual reconstruye el término espacial de una fuente de la forma f(x)g(t), donde f(x) entrega la forma y g(t) representa la distribución en tiempo de la fuente. Además, presentamos una estimación del error de la reconstrucción para el caso cuando f es una función de cuadrado integrable. Aquí, proponemos un método de regularización para implementar la reconstrucción de la fuente numéricamente. Adicionalmente, analizamos las principales características y limitaciones del método propuesto cuando se aplica a ondas acústicas. El capítulo dos estudia el problema de reconstrucción de fuente para ondas elásticas. Extendemos el método source time reversal para problemas elásticos. Además, introducimos un nuevo método de regularización para implementar la reconstrucción del término espacial de la fuente numéricamente para grandes volúmenes de datos. El nuevo método de regularización elimina las altas frecuencias presentes en la señal procesada, lo que permite utilizar mallas numéricas más gruesas y reduce el costo computacional. Finalmente, este capítulo presenta diversos experimentos numéricos para probar que el método es válido en el caso elástico. El último capítulo analiza un problema de reconstrucción de fuente diferente. Aquí consideramos una fuente compuesta por una suma finita de funciones de variable separable, donde cada término temporal de la fuente es una función delta de Dirac actuando a un tiempo diferente. Basado en una propiedad de tiempo reverso, la fuente puede ser localizada observando el desplazamiento y la velocidad de desplazamiento en el problema reverso [31]. Nosotros extendemos esta idea a sistemas de ondas elásticas. Adicionalmente, proponemos un algoritmo para la implementación numérica.
CONICYT, CMM - Conicyt PIA AFB170001 y el proyecto GEAGAM
Kocaoglu, Argun H. "A new method for modeling surface wave propagation in heterogeneous media." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/25716.
Повний текст джерелаTie, An. "On scattering of seismic waves by a spherical obstacle." Diss., Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/27988.
Повний текст джерелаDalo, Dominic N. "A finite element solution of thermal wave propagation in elastic media /." Online version of thesis, 1987. http://hdl.handle.net/1850/8821.
Повний текст джерелаLiu, Zunping. "Three-dimensional multiple scattering of elastic waves by spherical inclusions." Diss., Manhattan, Kan. : Kansas State University, 2007. http://hdl.handle.net/2097/386.
Повний текст джерелаLittles, Jerrol W. Jr. "Scattering of longitudinal elastic waves from a distribution of cracks." Thesis, Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/19242.
Повний текст джерелаMiniaci, Marco <1986>. "Behaviour and applications of elastic waves in structures and metamaterials." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amsdottorato.unibo.it/6634/.
Повний текст джерелаCaptain, V. S. "The effect of inextensibility on elastic surface and interfacial waves." Thesis, University of East Anglia, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378895.
Повний текст джерелаPrikazchikova, Liudmila A. "Small amplitude waves in a pre-stressed compressible elastic plate." Thesis, University of Salford, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.419310.
Повний текст джерелаGarnier, Erell-Isis. "Long waves in water over a visco-elastic muddy seabed." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/67613.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (p. 289-290).
The propagation of surface waves over a flat muddy seabed are studied. Mud is first considered as a Newtonian fluid. Water and mud equations are derived in order to obtain governing equation for surface and interface waves. By the method of multiple scales. nonlinear evolution equations are derived for the harmonic amplitudes. These equations are numerically solved for a finite number of harmonics to show the behavior of surface and interface motions. A drift current in mud is found at the second order., meaning that surface waves induce mud motion. Equation governing the total wave energy variation is derived and used to verify the accuracy of numerical solutions. The model is extended to viscoelastic mud, using the results of four experiments carried on different types of muds. These muds range from very elastic to rather viscous, allowing us to compare hie differences in behavior. Surface and interface variations. mud drift current and energy variations are plotted and compared to the results with Newtonian muds. A sloping muddy seabed is then considered. Mud is modeled as viscoelastic to avoid a constant static current that would happen with Newtonian mud. By the method of multiple scales and by introducing a space-dependent wavenumber, mud drift current and energy variation equations are derived again, taking into account the effect of the slope. An analytic stud v of the surface variations demonstrates that surface and interface waves, as well as drift current, exponentially decay to reach a zero value at the shore.
by Erell-Isis Garnier.
S.M.
Drozdz, Mickael Brice. "Efficient finite element modelling of ultrasound waves in elastic media." Thesis, Imperial College London, 2008. http://hdl.handle.net/10044/1/7974.
Повний текст джерелаLiow, J. (Jeih-San). "A two dimensional finite-difference simulation of seismic wave propagation in elastic media." Diss., Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/25781.
Повний текст джерелаBurton, David A. "Slender elastic media and the gravitational field." Thesis, Lancaster University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322890.
Повний текст джерелаShu, Kun-Tien. "Multidimensional reflection and refraction of infinite amplitude stress waves in elastic solids." Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/17680.
Повний текст джерелаBrookes, David William. "The existence of surface waves in piezoelectric half-spaces and of edge waves in elastic laminated plates." Thesis, Keele University, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.425970.
Повний текст джерелаZhang, Jin E. Wu Theodore Y. T. Wu Theodore Y. T. "I. Run-up of ocean waves on beaches. : II. Nonlinear waves in a fluid-filled elastic tube /." Diss., Pasadena, Calif. : California Institute of Technology, 1996. http://resolver.caltech.edu/CaltechETD:etd-01072008-105605.
Повний текст джерела