Добірка наукової літератури з теми "Eigentensor"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Eigentensor".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Eigentensor"

1

Nikabadze, M. U. "Construction of eigentensor columns in the linear micropolar theory of elasticity." Moscow University Mechanics Bulletin 69, no. 1 (January 2014): 1–9. http://dx.doi.org/10.3103/s0027133014010014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nikabadze, M. U. "On the eigenvalue and eigentensor problem for a tensor of even rank." Mechanics of Solids 43, no. 4 (August 2008): 586–99. http://dx.doi.org/10.3103/s0025654408040079.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

MARTÍNEZ-MORALES, JOSÉ L. "THE MASTER EQUATIONS IN THE EUCLIDEAN SCHWARZSCHILD–TANGHERLINI METRIC OF A SMALL STATIC PERTURBATION." International Journal of Modern Physics A 22, no. 06 (March 10, 2007): 1239–64. http://dx.doi.org/10.1142/s0217751x07036208.

Повний текст джерела
Анотація:
The master equations in the Euclidean Schwarzschild–Tangherlini space–time of a small static perturbation are studied. For each harmonic mode on the sphere there are two solutions that behave differently at infinity. One solution goes like the power 2-l-n of the radial variable, the other solution goes like the power l. These solutions occur in power series. The second main statement of the paper is that any eigentensor of the Lichnerowicz operator in a Euclidean Schwarzschild space–time with an eigenvalue different from zero is essentially singular at infinity. Possible applications of the stability of instantons are discussed. We present the analysis of a small static perturbation of the Euclidean Schwarzschild–Tangherlini metric tensor. The higher order perturbations will appear later. We determine independently the static perturbations of the Schwarzschild quantum black hole in dimension 1+n≥4, where the system of equations is reduced to master equations — ordinary differential equations. The solutions are hypergeometric functions which in some cases can be reduced to polynomials. In the same Schwarzschild background, we analyze static perturbations of the scalar mode and show that there does not exist any static perturbation that is regular everywhere outside the event horizon and is well-behaved at the spatial infinity. This confirms the uniqueness of the spherically symmetric static empty quantum black hole, within the perturbation framework. Our strategy for treating the stability problem is also applicable to other symmetric quantum black holes with a nonzero cosmological constant.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Douglas, Stephen R. "Letter: Eigentensors of the Bel Tensor." General Relativity and Gravitation 31, no. 10 (October 1999): 1605–7. http://dx.doi.org/10.1023/a:1026738622165.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

MEHRABADI, MORTEZA M., and STEPHEN C. COWIN. "EIGENTENSORS OF LINEAR ANISOTROPIC ELASTIC MATERIALS." Quarterly Journal of Mechanics and Applied Mathematics 43, no. 1 (1990): 15–41. http://dx.doi.org/10.1093/qjmam/43.1.15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

MEHRABADI, MORTEZA M., and STEPHEN C. COWIN. "EIGENTENSORS OF LINEAR ANISOTROPIC ELASTIC MATERIALS." Quarterly Journal of Mechanics and Applied Mathematics 44, no. 2 (1991): 331. http://dx.doi.org/10.1093/qjmam/44.2.331.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Theocaris, Pericles S., and Dimitrios P. Sokolis. "Spectral decomposition of the linear elastic tensor for monoclinic symmetry." Acta Crystallographica Section A Foundations of Crystallography 55, no. 4 (July 1, 1999): 635–47. http://dx.doi.org/10.1107/s0108767398016766.

Повний текст джерела
Анотація:
The compliance fourth-rank tensor related to crystalline or other anisotropic media belonging to the monoclinic crystal system is spectrally decomposed for the first time, and its characteristic values and idempotent fourth-rank tensors are established. Further, it is proven that the idempotent tensors resolve the stress and strain second-rank tensors into eigentensors, thus giving rise to a decomposition of the total elastic strain-energy density into non-interacting strain-energy parts. Several examples of representative inorganic crystals of the monoclinic system illustrate the results of the theoretical analysis. It is also proven that the essential parameters required for a coordinate-invariant characterization of the elastic properties of a crystal exhibiting monoclinic symmetry are both the six characteristic values of the compliance tensor and seven dimensionless parameters. These material constants, referred to as the eigenangles, are shown to be accountable for the orientation of the stress and strain eigentensors, when represented in a stress coordinate system. Finally, the restrictions dictated by the classical thermodynamical argument on the elements of the compliance tensor, which are necessary and sufficient for the elastic strain-energy density to be positive definite, are investigated for the monoclinic symmetry.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Martínez-Morales, J. L. "Eigentensors of the Lichnerowicz operator in Euclidean Schwarzschild metrics." Annalen der Physik 15, no. 9 (September 1, 2006): 653–62. http://dx.doi.org/10.1002/andp.200510184.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

François, Marc L. M. "A damage model based on Kelvin eigentensors and Curie principle." Mechanics of Materials 44 (January 2012): 23–34. http://dx.doi.org/10.1016/j.mechmat.2011.07.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Martínez‐Morales, J. L. "Eigentensors of the Lichnerowicz operator in Euclidean Schwarzschild metrics *." Annalen der Physik 518, no. 9 (July 24, 2006): 653–62. http://dx.doi.org/10.1002/andp.20065180903.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Eigentensor"

1

Turatti, Ettore Teixeira. "Singular vector tuples and their geometry." Doctoral thesis, 2022. https://hdl.handle.net/2158/1291204.

Повний текст джерела
Анотація:
The main topic of this thesis is the geometry of singular vector tuples of tensors. Singular vector tuples are a generalization of singular pairs of matrices to higher-order tensors. The singular vector tuples of a tensor T consist of the critical points of the function d(T, X) that measures the distance between the tensor T and the Segre-Veronese variety X, where the distance is the one defined by the Bombieri-Weyl product on the tensor space. The main question of this work is to answer the question: are tensors determined by their singular vector tuples? For partially symmetric tensors the answer is positive if some degree is odd. On the other hand, if all degrees are even there exists a one-dimensional family of tensors with the same singular vector tuples. Another important fact of the geometry of singular vector tuples is that the tensor T itself is a linear combination of them when the dual variety of the Segre-Veronese variety is non-defective, however, when such condition is disregarded the answer is not known. Utilizing cohomological techniques, together with symbolical computation in Macaulay2, we show that this property remains true in the first examples where the dual of the Segre-Veronese variety is defective.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Eigentensor"

1

Lipson, Hod, and Hava T. Siegelmann. "High Order Eigentensors as Symbolic Rules in Competitive Learning." In Lecture Notes in Computer Science, 286–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/10719871_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

"Eigentensors of the elastic tensor and their relationship with material symmetry." In Handbook of Geophysical Exploration: Seismic Exploration, 393–470. Elsevier, 1994. http://dx.doi.org/10.1016/s0950-1401(13)70031-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії