Зміст
Добірка наукової літератури з теми "Efflux des médicaments"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Efflux des médicaments".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Efflux des médicaments"
Gbian, Douweh Leyla, та Abdelwahab Omri. "Évaluation de l'activité antimicrobienne du Phénylalanine-arginine β-naphthylamide en combinaison avec des aminoglycosides et des macrolides sur des souches de Pseudomonas aeruginosa isolées de patients atteints de la Fibrose kystique". Actes de la Journée des Sciences et Savoirs, № 24 (22 березня 2019): 41–55. http://dx.doi.org/10.28984/actes_acfas.v0i24.306.
Повний текст джерелаДисертації з теми "Efflux des médicaments"
Kovachka, Sandra. "Inhibition de l'activité de Patched impliquée dans la résistance aux chimiothérapies : approches biocomputationnelle, chimique et cellulaire." Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4052.
Повний текст джерелаDespite the continuous efforts in the design and development of new drugs with innovative mode of action, resistance to both chemo- and targeted therapy remains a major challenge in cancer treatment. One of the major mechanisms responsible for multidrug resistance is the efflux of therapeutics out of cancer cells by multidrug transporters.The Hedgehog receptor Patched1 (PTCH1), part of the Hedgehog signaling pathway, is over-expressed in many cancers. In addition to its physiological role as cholesterol transporter, PTCH1 is also able to transport anticancer agents out of cancer cells, thus contributing to multidrug resistance together with the ATP binding cassette (ABC) transporters. Unlike ABC transporters which are endogenously expressed in normal cells and play a crucial role in cell survival, PTCH1 efflux activity takes place only in cancer cells. This makes PTCH1 a new attractive target for cancer treatment. Three inhibitors of PTCH1 efflux activity have been identified to date, namely, astemizole, methiothepin and the natural compound panicein A hydroquinone (PAH). These compounds increased the efficacy of both conventional and targeted chemotherapies against melanoma cells in vitro and in vivo, showing the proof of concept of PTCH1 inhibition as a successful anticancer strategy. However, they have some intrinsic limitations and require optimization. For instance, PAH, has a very low metabolic stability which prevents its advance in a drug development pipeline towards the clinics.In that context, this PhD project is aimed at the ultimate goal of developing a PTCH1 drug efflux inhibitor as a first-in-class drug candidate to fight chemotherapy resistance and improve patient survival. In particular, it comprehends the medicinal chemistry efforts made in the direction of rational optimization of the natural compound PAH.To this aim we studied the interaction between PAH and PTCH1 by means of in silico methodologies and we performed structure- and ligand based comparison between the three known inhibitors. By using an ensemble docking protocol coupled to molecular dynamics simulations of the ligands we extracted important information about the active conformation of a PTCH1 inhibitor and we identified a putative binding site within the hydrophobic channel on PTCH1.We developed a new total synthesis for E-PAH which addresses some important limitations of the previous one, such as its non-stereoselectivity and high substrate specificity. We applied several strategies and eventually obtained a stereoselective and robust new synthesis protocol for E and Z PAH. This allowed for the synthesis of several PAH analogs whose activity was evaluated on melanoma cells, in combination with vemurafenib, with the aim to assess a structure-activity relationship for the hydroquinone scaffold. We further evaluated some PK properties of the hydroquinone scaffold such as plasma stability and safety profile.The hydroquinone moiety of PAH is important for its biological activity but it is also one of its major drawbacks due to its easy oxidation to quinone. By combining the knowledge acquired from the in silico and SAR studies on the hydroquinone, in the last part of this PhD project we aimed at the synthesis of innovative scaffolds by applying a “bioisosteric” replacement on the hydroquinone, an approach often successfully used in medicinal chemistry. First, the replacement of the double bond of PAH with biologically equivalent chemical groups allowed for a robust, convergent and efficient synthetic strategy, which is line with the modern trends of sustainable chemistry approaches. Next, it made possible to readily synthesize a large number of compounds, substituting the hydroxyquinone motif, and screen the in cellulo biological activity of a diversified chemical space with quite promising biological results
Hocquet, Didier. "Résistance aux antibiotiques par efflux actif chez Pseudomonas aeruginosa." Besançon, 2003. http://www.theses.fr/2003BESAA003.
Повний текст джерелаBassuel, Virginie. "Macrolides, streptogramines et staphylocoques : étude d'une nouvelle résistance à l'érythromycine par efflux et d'une nouvelle streptogramine, injectable, le RP 59500." Paris 5, 1993. http://www.theses.fr/1993PA05P210.
Повний текст джерелаOtrebska-Machaj, Ewa. "The search for new inhibitors of bacterial efflux pumps among amine derivates of 5-Arylidenehydantoin." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM5010.
Повний текст джерелаThe purpose of this research was to find new EPIs of the AcrAB-TolC efflux system in groups of amine derivatives of 5-arylidenehydantoin and 5-arylideneimidazolone. In the first stage of the research 32 new derivatives of 5-arylidenehydantoin were obtained as a result of modifications of the lead structure P2. Theoretical screening of the toxicity risk as well as the prediction of drug-like properties of hydantoins/imidazolones synthesised were performed by using the OSIRIS program which calculates various drug-relevant properties based on a planar structure of the molecule.In the next stage of the research the activity of compounds was evaluated in microbiological studies. Strains of Enterobacter aerogenes with different expressions of the AcrAB efflux pump were used. The first study carried out was a susceptibility test determining the MICs of compounds in order to find a concentration that could be used in combination with antibiotics without the influence of an intrinsic antibacterial activity of the compounds. Then the effect of the compounds on bacterial susceptibility to antibiotics such as nalidixic acid, chloramphenicol, doxycycline and erythromycin was examined. After, the type of cooperation with antibiotics was determined based on isobolograms and the FIC index calculated. The last of microbiological studies was the real-time efflux (RTE) assay which used the fluorescent dye 1,2’-dinaphthylamine and allowed the functioning of the pump to be monitored directly. The structure-activity relationship (SAR) analysis emphasized the essential role of the amphiphilic nature of the EPIs from the group of arylidene derivatives of hydantoin and imidazolone
Ramos, Aires Julio. "IInteractions de surface et efflux actif des agents antibactériens polycationiques chez Pseudomonas aeruginosa : rôle du système MexGH dans la résistance naturelle aux aminosides." Besançon, 1999. http://www.theses.fr/1999BESA3706.
Повний текст джерелаHevér, Aniko. "Inhibition of P-glycoprotein mediated efflux and modulation of MDR-1 gene expression in tumor cells by newly synthesised azaheteroyclic derivatives." Aix-Marseille 2, 1998. http://theses.univ-amu.fr.lama.univ-amu.fr/PHA_1998_1512.pdf.
Повний текст джерелаSimsir, Méliné. "Modélisation structurale des pompes à efflux de la famille des RND : de la résistance aux antibiotiques à la résistance à la chimiothérapie." Electronic Thesis or Diss., Université Côte d'Azur, 2020. http://www.theses.fr/2020COAZ6040.
Повний текст джерелаResistance to chemotherapy can be studied comparatively to the study of resistance in microorganisms. Among the protein superfamily identified as being responsible for multidrug resistance are RND. Its members are widespread in bacterial organisms, but also in Archaea and Eukaryotes. Ptch1, a transmembrane protein, receptor of morphogen Hedgehog (Hh), a member of the RND, has cholesterol efflux activity, but also of chemotherapeutic drugs which confers resistanceto chemotherapy to cancer cells. In fact, an aberrant activity of the Hh signaling pathway has been observed in nearly 25% of cancers. Among the common features of multidrug resistance in RND is the ability of these transmembrane proteins to efflux a broad spectrum of substrates and drugs using protonmotive force.The goal of this project is the structural study of the drug efflux mechanism of Ptch1.In a first step, since we did not yet have access to a structure of Ptch1, we have performed an analysis of the numerous available structures of its bacterial counterpart AcrB, the RND paradigm model responsible for antibiotic resistance in gram-negative bacteria, in order to better understand the drug efflux mechanism of these proteins. We have implemented a strategy of conformational analysis of all available structures in order to explain the complex mechanism, including the drug efflux mechanism of these proteins, as a function of the structural and dynamic properties of sub-domains. The tools developed have been made available to the community.The structures of Ptch1 published in 2018 and 2019 revealed that the drug efflux mechanism of Ptch1 was probably very different from that of AcrB. In a second step, using these structures, we studied the cholesterol efflux mechanism of Ptch1 by molecular dynamics in order to subsequently study the drug efflux mechanism. We thus identified certain characteristics of the conformational changes that cantake place to allow this efflux. Finally, the docking of chemotherapeutic agents carried by Ptch1 suggests that drugs use the same interaction sites as cholesterol and potentially the same efflux mechanism
Ferhat, Mourad. "Rôle des pompes à efflux de legionella pneumophila dans la résistance aux biocides et à l’hôte." Thesis, Lyon 1, 2010. http://www.theses.fr/2010LYO10067/document.
Повний текст джерелаBacterial multi-drug resistance is of major concern in the case of clinic. One of the resistance mecanisms used by bacteria is the efflux of noxious compounds out of the cell thanks to inner membran proteins called efflux pumps. This proteins belong to five families (MFS, RND, MATE, SMR and ABC) and can function in close association with two partners (periplasmic protein and outer membrane protein) to form a canal. In our new research axis based on the study of the drug resistance of the bacterium Legionella pneumophila, we conducted a bioinformatical approach to identify efflux pumps proteins coded by the sequenced genome of three strains (strains Lens, Paris and Philadelphia). Our goal was to study the role of this proteins in Legionella drug resistance and in its virulence. The bioinformatic approach data allowed us to choose one or several genes coding for potential efflux pump components for genetic invalidation by an homologousrecombination strategy. The bacterial mutants were exposed to different noxious compounds in order to know ifthe target genes invalidated were implicated in the efflux of drugs. One of this mutants, strain MF201, which isdeleted for the gene encoding a protein homologous to E. coli TolC protein, revealed to be 2 to 16 times moresensitive to the drug tested compared to the wild-type strain. Furthermore, this mutant showed an importantvirulence defect in Acanthamoeba castellanii, Dictyostelium discoideum and U937 macrophages. This first resultsmeans that the TolC-like protein of Legionella could be a key factor in host-pathogen interaction and stronglysuggests a link between multi-drug resistance and virulence. We also initiated a transcriptomic approach to studyefflux pump genes expression in order to understand their role during the infectious cycle of Legionella
Schnetterle, Marine. "Résistance acquise chez les Burkholderia pseudomallei : analyse de l'expression de l'efflux et de son inhibition." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0710.
Повний текст джерелаBurkholderia pseudomallei is thecausal agent of melioidosis, a tropical disease, endemic in Notrhern Australia and South-East Asia. We have analyzed efflux systeme, known to be one of the main mecanism implicated in antibiotic resistance phenotypes. We have looked for mutations in efflux pumps and for transient modulations of the efflux pumps expression, that could explain resistance phenotypes. Whole genome sequencing and a the targeted method of RT-qPCR allowed us to identified two mecanisms in clinical strains. A transient mecanism, responsible of a cross-resistance to Cotrimoxazole, quinolones and chloramphenicol, and we suspect an implication of modulation of efflux. The second one is implicated in meropenem resistance by an overexpression of the AmrAB-OprA efflux pumps, due to a mutation of its regulator. In a second time, we also have screened several compounds, all derivated from phenothiazines, in order to identify efflux pump inhibitors for a restoration of the antibiotic susceptibility. We have analyzed the impact of these molecules in multi-resistant strain models, and on several clinical and environnemental strains. These molecules are able to modulate efflux pumps expression, however, we think that the main inhibition mecanism of these derivatives is about a competition between the molecule and the antibiotics. We have identified one molecule, AST17, that is able to restore Cotrimoxazole and quinolones susceptibilities
Viana, Soares Ricardo. "Study of the antiepileptic drugs transport through the immature blood-brain barrier." Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCB087/document.
Повний текст джерелаResistance to Antiepileptic Drugs (AEDs) has been a major concern in infantile epilepsies such as for example the Dravet Syndrome. One hypothesis concerning the pharmacoresistance in epilepsy is that a decreased delivery of these drugs to the brain may occur in relation to changes in the Blood-Brain Barrier (BBB) function. BBB exhibits ATP-binding cassette (ABC) and SoLute Carrier (SLC) transporters at the surface of endothelial cells that control the blood-brain transport. Pharmacoresistance in epilepsy may be linked to changes in the functions of these transporters since some AEDs are substrates of the P-glycoprotein (P-gP) and Breast Cancer Resistance Protein (BCRP) transporters. The increased expression of efflux transporters in epileptogenic tissue and the identification of polymorphisms in the efflux transporters genes of resistant patients further support this potential relationship. The interaction of endothelial cells with astrocytes and neurons during brain development could change the pattern of transporters in the BBB. AEDs are also known as either inducers or inhibitors of drug metabolic enzymes and membrane transporters. Taken together, these facts led us to test the following hypothesis: 1) the developing BBB in immature animals presents a different pattern of transporters that could change AEDs disposition in the brain of immature subjects; and 2) the chronic pharmacotherapy used in infantile epilepsies such as the Dravet Syndrome may change the transporters phenotype of the BBB. Our work showed that the expression of P-gP and BCRP increases during development as a function of age. We also showed the maturation of the BBB has an impact on brain disposition of the studied AEDs. We finally observed an increase in the expression of various ABC and SLC transporters induced by the pharmacotherapy of the Dravet Syndrome in immature animals. One of the drugs used, valproic acid, appeared nonetheless to reduce the efflux activity of P-gP in developing and adult animals, which was confirmed in an in-vitro model of the immature BBB. Taken together, these results demonstrated that the interaction between the developing BBB and the AEDs chronic treatment may lead to differences in brain disposition of the AEDs that may impact on the response to AEDs