Добірка наукової літератури з теми "Echocardiography motion tracking"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Echocardiography motion tracking".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Echocardiography motion tracking":

1

Du Toit, Riëtte, Phillip G. Herbst, Annari van Rensburg, Hendrik W. Snyman, Helmuth Reuter, and Anton F. Doubell. "Speckle tracking echocardiography in acute lupus myocarditis: comparison to conventional echocardiography." Echo Research and Practice 4, no. 2 (June 2017): 9–19. http://dx.doi.org/10.1530/erp-17-0005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Aims Lupus myocarditis occurs in 5–10% of patients with systemic lupus erythematosus (SLE). No single feature is diagnostic of lupus myocarditis. Speckle tracking echocardiography (STE) can detect subclinical left ventricular dysfunction in SLE patients, with limited research on its utility in clinical lupus myocarditis. We report on STE in comparison to conventional echocardiography in patients with clinical lupus myocarditis. Methods and results A retrospective study was done at a tertiary referral hospital in South Africa. SLE patients with lupus myocarditis were included and compared to healthy controls. Echocardiographic images were reanalyzed, including global longitudinal strain through STE. A poor echocardiographic outcome was defined as final left ventricular ejection fraction (LVEF) <40%. 28 SLE patients fulfilled the criteria. Global longitudinal strain correlated with global (LVEF: r = −0.808; P = 0.001) and regional (wall motion score: r = 0.715; P < 0.001) function. In patients presenting with a LVEF ≥50%, global longitudinal strain (P = 0.023), wall motion score (P = 0.005) and diastolic function (P = 0.004) were significantly impaired vs controls. Following treatment, LVEF (35–47% (P = 0.023)) and wall motion score (1.88–1.5 (P = 0.017)) improved but not global longitudinal strain. Initial LVEF (34%; P = 0.046) and global longitudinal strain (−9.5%; P = 0.095) were lower in patients with a final LVEF <40%. Conclusions This is the first known report on STE in a series of patients with clinical lupus myocarditis. Global longitudinal strain correlated with regional and global left ventricular function. Global longitudinal strain, wall motion score and diastolic parameters may be more sensitive markers of lupus myocarditis in patients presenting with a preserved LVEF ≥50%. A poor initial LVEF and global longitudinal strain were associated with a persistent LVEF <40%. Echocardiography is a non-invasive tool with diagnostic and prognostic value in lupus myocarditis.
2

Ahn, Chi Young. "Robust Myocardial Motion Tracking for Echocardiography: Variational Framework Integrating Local-to-Global Deformation." Computational and Mathematical Methods in Medicine 2013 (2013): 1–14. http://dx.doi.org/10.1155/2013/974027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper proposes a robust real-time myocardial border tracking algorithm for echocardiography. Commonly, after an initial contour of LV border is traced at one or two frames from the entire cardiac cycle, LV contour tracking is performed over the remaining frames. Among a variety of tracking techniques, optical flow method is the most widely used for motion estimation of moving objects. However, when echocardiography data is heavily corrupted in some local regions, the errors bring the tracking point out of the endocardial border, resulting in distorted LV contours. This shape distortion often occurs in practice since the data acquisition is affected by ultrasound artifacts, dropouts, or shadowing phenomena of cardiac walls. The proposed method is designed to deal with this shape distortion problem by integrating local optical flow motion and global deformation into a variational framework. The proposed descent method controls the individual tracking points to follow the local motions of a specific speckle pattern, while their overall motions are confined to the global motion constraint being approximately an affine transform of the initial tracking points. Many real experiments show that the proposed method achieves better overall performance than conventional methods.
3

Aniyathodiyil, Gopi, Sunil S. Bohra, Anup Mottengar, and Satish C. Govind. "Speckle-Tracking Echocardiography to Assess Global and Regional Left Ventricular Function in Acute Myocardial Infarction." Journal of The Indian Academy of Echocardiography & Cardiovascular Imaging 1, no. 3 (2017): 177–84. http://dx.doi.org/10.4103/jiae.jiae_24_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Speckle tracking is a useful tool in assessing global & regional myocardial function in patients with acute myocardial infarction undergoing primary PCI. Global Longitudinal Strain (GLS) is a robust parameter to assess regional and global LV function. Global longitudinal strain helps in predicting short term outcomes in these patients and has shown to be better than ejection fraction, and as good as wall motion scoring, wall motion scoring index and myocardial performance index. A Lower global longitudinal strain parallels the rise in troponin T and CPKMB in acute myocardial infarction. Global longitudinal strain may have the potential to be an echocardiographic parameter which is useful in identifying multivessel disease. Assessment of regional myocardial function by speckle tracking echocardiography, particularly GLS, can be useful in ACS patients undergoing PCI in predicting short term recovery of the affected segments. Speckle tracking echocardiography can be used independent of the conventional markers to assess regional and global LV function.
4

Hong, Gloria H., Allison G. Hays, and Nisha A. Gilotra. "The Evolving Role of Echocardiography During the Coronavirus Disease 2019 Pandemic." Heart International 16, no. 1 (2022): 28. http://dx.doi.org/10.17925/hi.2022.16.1.28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Coronavirus disease 2019 (COVID-19) has been associated with a wide spectrum of cardiovascular manifestations. Since the beginning of the pandemic, echocardiography has served as a valuable tool for triaging, diagnosing and managing patients with COVID-19. More recently, speckle-tracking echocardiography has been shown to be effective in demonstrating subclinical myocardial dysfunction that is often not detected in standard echocardiography. Echocardiographic findings in COVID-19 patients include left or right ventricular dysfunction, including abnormal longitudinal strain and focal wall motion abnormalities, valvular dysfunction and pericardial effusion. Additionally, some of these echocardiographic abnormalities have been shown to correlate with biomarkers and adverse clinical outcomes, suggesting an additional prognostic value of echocardiography. With increasing evidence of cardiac sequelae of COVID-19, the use of echocardiography has expanded to patients with cardiopulmonary symptoms after recovery from initial infection. This article aims to highlight the available echocardiographic tools and to summarize the echocardiographic findings across the full spectrum of COVID-19 disease and their correlations with biomarkers and mortality.
5

Piros, Györgyike Ágnes, Péter Domsik, Anita Kalapos, Csaba Lengyel, Andrea Orosz, Tamás Forster, and Attila Nemes. "A jobb pitvar és bal kamra méretének és funkciójának összefüggései egészségesekben. Eredmények a háromdimenziós speckle-tracking echokardiográfiás MAGYAR-Healthy Tanulmányból." Orvosi Hetilap 156, no. 24 (June 2015): 972–78. http://dx.doi.org/10.1556/650.2015.30133.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Introduction: Heart cycle includes systole and diastole when heart chambers are characterized by a complex motion. Aim: The present study was designed to test whether relationships exist between three-dimensional speckle-tracking echocardiography-derived right atrial and routine two-dimensional echocardiography-derived left ventricular volumetric and functional parameters is healthy subjects. Method: The present study comprised 20 healthy volunteers. Complete two-dimensional echocardiography and three-dimensional speckle-tracking echocardiography were perfomed in all cases. Results: Left ventricular ejection fraction showed correlations with systolic and diastolic right atrial volumes and area strain characterzing atrial contraction in diastole. Right atrial volumes respecting cardiac cycle correlated only with left ventricular end-systolic diameter and volume, while similar relationships could not be confirmed with end-diastolic parameters. Conclusions: Relationships could be demonstrated between three-dimensional speckle-tracking echocardiography-derived right atrial and two-dimensional echocardiography-derived left ventricular volumetric and functional parameters in healthy subjects. Orv. Hetil., 2015, 156(24), 972–978.
6

Nesser, Hans Joachim. "Wall Motion Tracking and Activation Imaging – Latest Developments and Applications for Patients with Heart Failure." European Cardiology Review 8, no. 1 (2012): 51. http://dx.doi.org/10.15420/ecr.2012.8.1.51.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Wall motion tracking is a relatively new tool to define regional and global wall motion, ventricular volumes and ejection fraction. Speckle-tracking echocardiography (STE) allows the calculation of a variety of myocardial function indices – including longitudinal, radial, transverse and circumferential strain, strain rate, displacement, velocity and rotation (twist and torsion) – not only as a 2D application, but also in 3D. In patients with heart failure and cardiac dyssynchrony, there remains a lack of optimal management regarding decisions to implant a cardiac resynchronisation therapy device. Many decisions are made based on data from electrocardiography. Whereas conventional echocardiographic techniques are of limited value in defining mechanical dyssynchrony, newer developments, such as 2D and 3D speckle tracking, have been shown to have significant potential to define the latest site of mechanical activation. Recent 3D STE innovations, including activation imaging, 3D strain and area tracking, open new doors to the definition of segmental delay of mechanical deformation related to time. There is considerable optimism that 3D techniques will improve the present understanding and treatment of patients with cardiac dyssynchrony.
7

SEO, Yoshihiro, Tomoko ISHIZU, Akiko ATSUMI, Ryo KAWAMURA, and Kazutaka AONUMA. "Cardiac wall motion analysis by three-dimensional speckle tracking echocardiography." Choonpa Igaku 41, no. 2 (2014): 155–63. http://dx.doi.org/10.3179/jjmu.jjmu.r.13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Enzensberger, C., J. Degenhardt, A. Tenzer, A. Doelle, and R. Axt-Fliedner. "First Experience with Three-Dimensional Speckle Tracking (3D Wall Motion Tracking) in Fetal Echocardiography." Ultraschall in der Medizin - European Journal of Ultrasound 35, no. 06 (August 20, 2014): 566–72. http://dx.doi.org/10.1055/s-0034-1384882.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Туаева, Z. Tuaeva, Кириченко, and T. Kirichenko. "Clinical significance of myocardial strain in the patients with chd (literature review)." Journal of New Medical Technologies. eJournal 8, no. 1 (November 5, 2014): 0. http://dx.doi.org/10.12737/7363.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
2-D echocardiography is currently the first-line imaging modality for assessing global and regional function of left ventricle (LV). Using 2-D echocardiography, LV function is most often evaluated visually, as a result of the quality of the research depends directly on the experience and qualifications of the expert. The new technology of two-dimensional speckle tracking echocardiography allows to assessing the contractile function of the left ventricle quantitative. Over the years, the numerous studies have demonstrated the value of speckle tracking echocardiography in the diagnosis and risk stratification of a wide range of cardiac diseases, including coronary heart disease [14]. During the cardiac cycle the speckle tracking echocardiography allows in semi-automatic mode to evaluate the deformation of the myocardium in the three spatial directions: longitudinal, radial, and circular. In addition, speckle tracking estimates the direction of rotation and speed of motion of the left ventricular myocardium. This technology may have important clinical value for quick and accurate assessment of global and segmental myocardial function. The use of estimates of the deformation of the myocardium and the speed of deformation of the myocardium by means of speckle tracking method may be able to increase the sensitivity and precision of stenosing lesions of the coronary arteries [16].
10

Shiri, M., H. Behnam, H. Yeganegi, Z. A. Sani, and N. Nematollahi. "TRACKABLE-SPECKLE DETECTION USING A DUAL-PATH CONVOLUTIONAL NEURAL NETWORK FOR NODES SELECTION IN SPECKLE TRACKING ECHOCARDIOGRAPHY." Asian Journal Of Medical Technology 2, no. 2 (August 5, 2022): 33–54. http://dx.doi.org/10.32896/ajmedtech.v2n2.33-54.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Speckle tracking echocardiography (STE) is widely used to quaantify regional motion and deformation of heart tissues. Before tracking, a segmentation step is first carried out, and only a set of nodes in the segmented model are tracked. However, a random selection of the nodes even after tissue segmentation could lead to an inaccurate estimation. In this paper, a convolutional neural network (CNN)-based method is presented to detect trackable speckle spots that have important properties of the texture for speckle tracking. The proposed CNN was trained and validated on 29500 ultrasound manually labelled image patches extracted from the echocardiography of 65 people. Using the proposed network, in silico experiments for automatic node selection were conducted to investigate the applicability of the proposed method in speckle tracking. The results were statistically highly significant (P<0.001) and demonstrated that the proposed method has the least tracking error among various existing methods.

Дисертації з теми "Echocardiography motion tracking":

1

Joos, Philippe. "Imagerie ultrasonore ultra-rapide dédiée à la quantification 3D du mouvement cardiaque." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1312/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse porte sur le développement et l’évaluation de techniques d’imagerie en échocardiographie. L’objectif est de proposer des méthodes d’imagerie ultrasonore ultrarapide pour estimer le mouvement cardiaque 2-D et 3-D.Première modalité d’imagerie du cœur, l’échocardiographie conventionnelle permet la mesure des déformations myocardiques à 80 images/s. Cette cadence d’imagerie est insuffisante pour quantifier les mouvements de la totalité du myocarde lors de tests d’efforts, utiles en évaluation clinique, au cours desquels le rythme cardiaque est augmenté. De plus, la résolution temporelle actuelle en échocardiographie 3-D limite ses applications, pourtant essentielles pour une caractérisation complète du cœur.Les contributions présentées ici sont 1) le développement et l’évaluation, pour l’application cardiaque, d’une méthode originale d’estimation de mouvement 2-D par imagerie ultrarapide et marquage des images, 2) l’étude de faisabilité de la mesure globale des déformations cardiaques avec une méthode innovante d’imagerie ultrasonore ultrarapide 2-D et 3) la généralisation de cette approche en 3-D pour l’imagerie des volumes cardiaques à haute résolution temporelle. Cette technique est basée sur l’émission d’ondes divergentes, et l’intégration d’une compensation de mouvement dans le processus de formation des volumes cardiaques.La méthode proposée permet l’estimation des mouvements cardiaques 2-D et l’échocardiographie ultrarapide 3-D. L’évaluation de notre approche pour la quantification des déformations myocardiques locales 2-D et 3-D pourrait permettre de proposer des pistes innovantes pour poursuivre nos études et améliorer le diagnostic en routine clinique
This PhD work focuses on the development and the evaluation of imaging techniques in echocardiography. Our objective is to propose ultrafast ultrasound imaging methods for 2-D and 3-D cardiac motion estimations.Echocardiography is one of the most widespread modality for cardiovascular imaging. Conventional clinical scanners allow measurement of myocardial velocities and deformations at 80 images / s. In some situations, it can be recommended to increase the heart rate during a stress echocardiographic examination. Motion estimation of the whole myocardium at such heart rates is challenging with the conventional imaging systems. In addition, the low temporal resolution of the current conventional 3-D echocardiography limits quantitative applications, which would be needed for a complete characterization of the heart.The three contributions presented here are 1) the development and evaluation of an original method for 2-D cardiac motion estimation, with ultrafast imaging and image tagging, 2) the feasibility study of the global myocardial deformation measurement using an innovative 2-D ultrafast ultrasound imaging method and 3) the generalization of this approach in three dimensions for high frame-rate 3-D echocardiography. This method is based on the transmission of divergent waves and the integration of motion compensation, during the imaging process, to produce high-quality volumetric images of the heart.The proposed method allows 2-D cardiac motion estimation and 3-D echocardiography at high frame-rate. The evaluation of our approach for local 2-D and 3-D myocardial deformation measurements should permit to conduct further study in order to improve medical diagnosis
2

Zhao, Ying. "Effect of valve replacement for aortic stenosis on ventricular function." Doctoral thesis, Umeå universitet, Institutionen för folkhälsa och klinisk medicin, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-46809.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Background:Aortic stenosis (AS) is the commonest valve disease in the West. Aortic valve replacement (AVR) remains the only available management for AS and results in improved symptoms and recovery of ventricular functions. In addition, it is well known that AVR results in disruption of LV function mainly in the form of reversal of septal motion as well as depression of right ventricular (RV) systolic function. The aim of this thesis was to study, in detail, the early and mid-term response of ventricular function to AVR procedures (surgical and TAVI) as well as post operative patients’ exercise capacity. Methods:We studied LV and RV function by Doppler echocardiography and speckle tracking echocardiography (STE) in the following 4 groups; (1) 30 severe AS patients (age 62±11 years, 19 male) with normal LV ejection fraction (EF) who underwent AVR, (2) 20 severe AS patients (age 79±6 years, 14 male) who underwent TAVI, (3) 30 healthy controls (age 63±11 years, 16 male), (4) 21 healthy controls (age 57±9 years, 14 male) who underwent exercise echocardiography. Results: After one week of TAVI, the septal radial motion and RV tricuspid annulus peak systolic excursion (TAPSE) were not different from before, while surgical AVR had significantly reversed septal radial motion and TAPSE dropped by 70% compared to before. The extent of the reversed septal motion correlated with that of TAPSE (r=0.78, p<0.001) in the patients as a whole after AVR and TAVI (Study I). Compared with controls, the LV twist function was increased in AS patients before and normalized after 6 months of surgical AVR. In controls, the LV twist correlated with LV fractional shortening (r=0.81, p<0.001), a relationship which became weak in patients before (r=0.52, p<0.01) and after AVR (r=0.34, p=ns) (Study II). After 6 months of surgical AVR, the reversed septal radial motion was still significantly lower than before. The septal peak displacement also decreased and its time became prolonged. In contrast, the LV lateral wall peak displacement increased and the time to peak displacement was early. The accentuated lateral wall peak displacement correlated with the septal peak displacement time delay (r=0.60, p<0.001) and septal-lateral time delay (r=0.64, p<0.001) (Study III). In 21 surgical AVR patients who performed exercise echocardiography, the LV function was normal at rest but different from controls with exercise. At peak exercise, oxygen consumption (pVO2) was lower in patients than controls. Although patients could achieve cardiac output (CO) and heart rate (HR) similar to controls at peak exercise, the LV systolic and early diastolic myocardial velocities and strain rate as well as their delta changes were significantly lower than controls. pVO2 correlated with peak exercise LV myocardial function in the patients group only, and the systolic global longitudinal strain rate (GLSRs) at peak exercise was the only independent predictor of pVO2 in multivariate regression analysis (p=0.03) (Study IV). Conclusion: Surgical AVR is an effective treatment for AS patients, but results in reversed septal radial motion and reduced TAPSE. The newly developed TAVI procedure maintains RV function which results in preservation of septal radial motion. In AS, the LV twist function is exaggerated, normalizes after AVR but loses its relationship with basal LV function. While the reversed septal motion results in decreased and delayed septal longitudinal displacement which is compensated for by the accentuated lateral wall displacement and the time early. These patients remain suffering from limited exercise capacity years after AVR.
3

Yang, Yingyu. "Analyse automatique de la fonction cardiaque par intelligence artificielle : approche multimodale pour un dispositif d'échocardiographie portable." Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4107.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Selon le rapport annuel de la Fédération Mondiale du Cœur de 2023, les maladies cardiovasculaires (MCV) représentaient près d'un tiers de tous les décès mondiaux en 2021. Comparativement aux pays à revenu élevé, plus de 80% des décès par MCV surviennent dans les pays à revenu faible et intermédiaire. La répartition inéquitable des ressources de diagnostic et de traitement des MCV demeure toujours non résolue. Face à ce défi, les dispositifs abordables d'échographie de point de soins (POCUS) ont un potentiel significatif pour améliorer le diagnostic des MCV. Avec l'aide de l'intelligence artificielle (IA), le POCUS permet aux non-experts de contribuer, améliorant ainsi largement l'accès aux soins, en particulier dans les régions moins desservies.L'objectif de cette thèse est de développer des algorithmes robustes et automatiques pour analyser la fonction cardiaque à l'aide de dispositifs POCUS, en mettant l'accent sur l'échocardiographie et l'électrocardiogramme. Notre premier objectif est d'obtenir des caractéristiques cardiaques explicables à partir de chaque modalité individuelle. Notre deuxième objectif est d'explorer une approche multimodale en combinant les données d'échocardiographie et d'électrocardiogramme.Nous commençons par présenter deux nouvelles structures d'apprentissage profond (DL) pour la segmentation de l'échocardiographie et l'estimation du mouvement. En incorporant des connaissance a priori de forme et de mouvement dans les modèles DL, nous démontrons, grâce à des expériences approfondies, que de tels a priori contribuent à améliorer la précision et la généralisation sur différentes séries de données non vues. De plus, nous sommes en mesure d'extraire la fraction d'éjection du ventricule gauche (FEVG), la déformation longitudinale globale (GLS) et d'autres indices utiles pour la détection de l'infarctus du myocarde (IM).Ensuite, nous proposons un modèle DL explicatif pour la décomposition non supervisée de l'électrocardiogramme. Ce modèle peut extraire des informations explicables liées aux différentes sous-ondes de l'ECG sans annotation manuelle. Nous appliquons ensuite ces paramètres à un classificateur linéaire pour la détection de l'infarctus du myocarde, qui montre une bonne généralisation sur différentes séries de données.Enfin, nous combinons les données des deux modalités pour une classification multimodale fiable. Notre approche utilise une fusion au niveau de la décision intégrant de l'incertitude, permettant l'entraînement avec des données multimodales non appariées. Nous évaluons ensuite le modèle entraîné à l'aide de données multimodales appariées, mettant en évidence le potentiel de la détection multimodale de l'IM surpassant celle d'une seule modalité.Dans l'ensemble, nos algorithmes proposés robustes et généralisables pour l'analyse de l'échocardiographie et de l'ECG démontrent un potentiel significatif pour l'analyse de la fonction cardiaque portable. Nous anticipons que notre cadre pourrait être davantage validé à l'aide de dispositifs portables du monde réel
According to the 2023 annual report of the World Heart Federation, cardiovascular diseases (CVD) accounted for nearly one third of all global deaths in 2021. Compared to high-income countries, more than 80% of CVD deaths occurred in low and middle-income countries. The inequitable distribution of CVD diagnosis and treatment resources still remains unresolved. In the face of this challenge, affordable point-of-care ultrasound (POCUS) devices demonstrate significant potential to improve the diagnosis of CVDs. Furthermore, by taking advantage of artificial intelligence (AI)-based tools, POCUS enables non-experts to help, thus largely improving the access to care, especially in less-served regions.The objective of this thesis is to develop robust and automatic algorithms to analyse cardiac function for POCUS devices, with a focus on echocardiography (ECHO) and electrocardiogram (ECG). Our first goal is to obtain explainable cardiac features from each single modality respectively. Our second goal is to explore a multi-modal approach by combining ECHO and ECG data.We start by presenting two novel deep learning (DL) frameworks for echocardiography segmentation and motion estimation tasks, respectively. By incorporating shape prior and motion prior into DL models, we demonstrate through extensive experiments that such prior can help improve the accuracy and generalises well on different unseen datasets. Furthermore, we are able to extract left ventricle ejection fraction (LVEF), global longitudinal strain (GLS) and other useful indices for myocardial infarction (MI) detection.Next, we propose an explainable DL model for unsupervised electrocardiogram decomposition. This model can extract interpretable information related to different ECG subwaves without manual annotation. We further apply those parameters to a linear classifier for myocardial infarction detection, which showed good generalisation across different datasets.Finally, we combine data from both modalities together for trustworthy multi-modal classification. Our approach employs decision-level fusion with uncertainty, allowing training with unpaired multi-modal data. We further evaluate the trained model using paired multi-modal data, showcasing the potential of multi-modal MI detection to surpass that from a single modality.Overall, our proposed robust and generalisable algorithms for ECHO and ECG analysis demonstrate significant potential for portable cardiac function analysis. We anticipate that our novel framework could be further validated using real-world portable devices. We envision that such advanced integrative tools may significantly contribute towards better identification of CVD patients
4

Ting, Tzu-Heng, and 丁子恆. "Evaluation of Left Ventricular Myocardial Motion by Speckle Tracking Echocardiography in Maltese Dogs with Myxomatous Mitral Valve Disease." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/65896734122821337116.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Echocardiography motion tracking":

1

Edvardsen, Thor. Cardiomyopathies, myocarditis, and the transplanted heart. Edited by Frank Flachskampf. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198784906.003.0094.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Echocardiography is an excellent tool for the diagnosis and follow-up of patients with cardiomyopathies, myocarditis, and the transplanted heart. It is the preferred method for assessment of ventricular function and valvular dysfunction and is of great value in decision-making in these patients. The different types of cardiomyopathies can usually be differentiated by echocardiography. Speckle tracking echocardiography has increased our awareness on early staging of the disease and the progress of cardiomyopathies. This chapter will explain important features of the most common cardiomyopathies and how echocardiography should be utilized. Echocardiographic findings in myocarditis include non-specific features such as decreased left ventricular function, wall motion abnormalities, and texture changes. These findings will in certain circumstances often prompt the awareness of myocarditis. Echocardiography has an important diagnostic position in patients with end-stage heart failure. The chapter will explain how echocardiography can be used in the screening period of recipients and donors, and how it can be an essential diagnostic tool in the perioperative and postoperative phases of cardiac transplantation.
2

Lancellotti, Patrizio, and Bernard Cosyns, eds. The EACVI Echo Handbook. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198713623.001.0001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Echocardiography has become the most requested imaging modalities. It is the first line imaging in the diagnostic work-up and monitoring of most cardiac diseases. Echocardiography is harmless and combines low-cost high technology with easy accessibility. The advent of the new modalities such as harmonic imaging, tissue Doppler imaging, speckle tracking, real time 3-dimensional imaging, ad contrast cavity enhancement have also contributed to expand the role of echocardiography. It provides rapid quantitative information about cardiac structure and function, valvular motion, vascular system and haemodynamics at bedside. This imaging technique is considered an extension of the physical examination. Proper technical skills and knowledge are required for the optimal application of echocardiography. Disease-focused and succinct, the present handbook covers the information needed to perform and interpret echocardiogramsaccurately, including how to set up the echomachine to optimize an examination and how to perform echocardiographic disease assessment, and the clinical indicators, procedures, and contraindications. Sections include assessment of the left ventricular systolic dysfunction and diastolic function, discussion on ischaemic heart disease, heart valve disease, cardiomyopathies, pericardial disease, congenital heart disease, and many other aspects of echocardiology. Many talented people have contributed to the present handbook, which represents the pocket echocardiography book flagship of the European Association of Cardiovascular Imaging. This book is intended principally as a clinical guide to the broad field of echocardiography at a glance.
3

Citro, Rodolfo, Laurent Davin, and Daniel Rodriguez Muñoz. Takotsubo syndrome. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198726012.003.0046.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Owing to its dynamic and unique nature, standard echocardiography plays a key role in the diagnostic work-up of patients suspected of takotsubo cardiomyopathy (TTC), providing distinctive features of this peculiar syndrome. Useful information for the early recognition of TTC can be derived from the discrepancy between extensive myocardial dysfunction and a modest increase in troponin levels; the detection of a ‘circumferential pattern’ of left ventricular (LV) wall motion abnormalities, which typically extend beyond the distribution of a single coronary artery; coronary flow assessment in the distal tract of the left anterior descending artery; and right ventricular (RV) involvement (biventricular ballooning). Advanced echocardiographic techniques, including speckle tracking, myocardial contrast and coronary flow studies, are providing further mechanistic and pathophysiological insights. Additionally, evaluation of both LV systolic and diastolic function along with early identification of any potential complications are crucial for clinical management and risk stratification. Comprehensive serial echocardiographic examinations should be systematically performed during the follow-up of TTC patients to monitor myocardial function recovery.
4

Lancellotti, Patrizio, and Bernard Cosyns. The Standard Transthoracic Echo Examination. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198713623.003.0002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Functional imaging by modern echocardiography offers a variety of methods to assess regional and global myocardial function beyond classic dimension, volume and ejection fraction measurements. This chapter shows how various modalities of Doppler echocardiography can be used for assessment of valves, haemodynamics, and coronary flow reserve. It also provides information on myocardial function can be extracted from echo images using a tissue Doppler or speckle tracking approach. 3Dechocardiography provides real-time 3D images of the heart in motion. Various types of examination and quantification are also shown. A brief explanation of contrast imaging is included as well as practical considerations such as administration protocols and the safety of ultrasound contrast.
5

Voigt, Jens-Uwe. Quantification of left ventricular function and synchrony using tissue Doppler, strain imaging, and speckle tracking. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780199599639.003.0006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Modern echocardiographic systems allow the quantitative and qualitative assessment of regional myocardial function by measuring velocity, motion, deformation, and other parameters of myocardial function.Both colour Doppler (CD) and spectral Doppler modes provide one-dimensional estimates of velocity. From CD data only, further parameters can be derived. Tracking techniques have recently been introduced which provide all parameters two-dimensionally, but at the cost of lower temporal resolution.Several clinical applications have been proposed, including regional and global systolic function assessment, evaluation of diastolic cardiac properties, and assessment of ventricular dyssynchrony.This chapter provides an introduction to the method of Doppler- and tracking-based function assessment and provides a basis for understanding its different clinical applications.

Частини книг з теми "Echocardiography motion tracking":

1

Casas Rojo, Eduardo. "3D-Wall Motion Tracking: Measuring Myocardial Strain with 3D." In Manual of 3D Echocardiography, 145–66. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50335-6_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Curiale, Ariel Hernán, Gonzalo Vegas Sánchez-Ferrero, and Santiago Aja-Fernández. "Speckle Tracking in Interpolated Echocardiography to Estimate Heart Motion." In Functional Imaging and Modeling of the Heart, 325–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38899-6_39.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ta, Kevinminh, Shawn S. Ahn, John C. Stendahl, Albert J. Sinusas, and James S. Duncan. "A Semi-supervised Joint Network for Simultaneous Left Ventricular Motion Tracking and Segmentation in 4D Echocardiography." In Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, 468–77. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59725-2_45.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

"3D Wall Motion Tracking as the Ultimate Technology for Wall Motion Analysis." In Live/Real Time 3D Echocardiography, 287–93. Oxford, UK: Wiley-Blackwell, 2010. http://dx.doi.org/10.1002/9781444320305.ch16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Edvardsen, Thor. "Cardiomyopathies, myocarditis, and the transplanted heart." In ESC CardioMed, edited by Frank Flachskampf, 456–60. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198784906.003.0094_update_001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Echocardiography is an excellent tool for the diagnosis and follow-up of patients with cardiomyopathies, myocarditis, and the transplanted heart. It is the preferred method for assessment of ventricular function and valvular dysfunction and is of great value in decision-making in these patients. The different types of cardiomyopathies can usually be differentiated by echocardiography. Speckle tracking echocardiography has increased our awareness on early staging of the disease and the progress of cardiomyopathies. This chapter will explain important features of the most common cardiomyopathies and how echocardiography should be utilized. Echocardiographic findings in myocarditis include non-specific features such as decreased left ventricular function, wall motion abnormalities, and texture changes. These findings will in certain circumstances often prompt the awareness of myocarditis. Echocardiography has an important diagnostic position in patients with end-stage heart failure. The chapter will explain how echocardiography can be used in the screening period of recipients and donors, and how it can be an essential diagnostic tool in the perioperative and postoperative phases of cardiac transplantation.
6

Edvardsen, Thor, Lars Gunnar Klaeboe, Ewa Szymczyk, and Jarosław D. Kasprzak. "Assessment of myocardial function by speckle-tracking echocardiography." In The ESC Textbook of Cardiovascular Imaging, edited by José Luis Zamorano, Jeroen J. Bax, Juhani Knuuti, Patrizio Lancellotti, Fausto J. Pinto, Bogdan A. Popescu, and Udo Sechtem, 103–10. Oxford University Press, 2021. http://dx.doi.org/10.1093/med/9780198849353.003.0007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Myocardial deformation or strain is the universal property of contracting cardiac muscle. Deformation is defined in physics as relative change of length (and is therefore unitless and usually given as percentage) and in cardiac imaging it is thus algebraically negative for shortening or positive for thickening. There are several definitions of strain—Lagrangian strain refers to a fixed baseline distance and Eulerian (or natural) strain—to a dynamically changing reference length, representing a time integral of strain rate (which can be obtained by tissue Doppler). Measurements of strains are usually obtained by greyscale image quantification modality—speckle-tracking echocardiography (STE) which analyses myocardial motion by tracking and matching naturally occurring markers of myocardial texture, described as speckles. Echocardiographic speckles represent interference pattern of subtle myocardial scatters and can be followed from frame to frame by dedicated software to define the displacement of the myocardium within the interval between consecutive frames (inverse of frame rate).
7

Hoffmann, Rainer, and Paolo Colonna. "Evaluation of left ventricular systolic function and mechanics." In The ESC Textbook of Cardiovascular Imaging, 315–22. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780198703341.003.0023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Analysis of left ventricular (LV) systolic function is the most frequent indication to perform echocardiography and an integral part of cardiac magnetic resonance (CMR) or radionuclide studies. Visual estimation of LV function may be supplemented by quantitative analysis of 2D images to obtain parameters of global or regional function. Administration of contrast agents to improve identification of myocardium–blood interface has been demonstrated to improve the reproducibility of 2D-echocardiography-based analysis of LV function and should be applied in cases of insufficient endocardial border definition (more than two LV segments not adequately visualized). 2D-echocardiography-based analysis of LV volumes results in underestimation of end-systolic and end-diastolic LV volumes compared to CMR. 3D-echocardiography results in significantly less volume underestimation and higher accuracy in the analysis of ejection fraction. Analysis of regional wall motion is mainly based on subjective visual assessment, which is limited by significant inter-observer variability. Doppler tissue imaging and speckle tracking echocardiography have become validated methods for quantitative analysis of regional LV function. Similarly, tagging, strain-encoded cardiac magnetic resonance (SENC) and feature tracking are modalities to quantify regional LV function based on CMR. Echocardiography should be used as a primary technique to assess systolic LV function as it is the cheapest, widely available and can be applied without the use of ionizing radiation or nephrotoxic contrast material. CMR has become the clinical gold standard for quantification of LV function and may be applied if other information achievable best by CMR is required. Similarly, nuclear techniques should be applied to assess LV function only if simultaneous assessment of myocardial perfusion is requested.
8

Voigt, Jens-Uwe. "Principles of echocardiographic imaging and velocity assessment by Doppler and speckle tracking." In ESC CardioMed, edited by Frank Flachskampf, 419–22. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198784906.003.0083.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ultrasound waves which are sent with a focussed beam into the body and which are reflected and scattered by tissue boundaries are used to compose an image of the heart. The display of a single scan line over time is called M-mode. B-mode images show a 2-dimensional cross section of the heart. A frequency shift of the reflected soundwaves indicates that the reflector is moving which allows to calculate tissue or blood velocities. Velocities are displayed as velocity spectrum or as colour coded overlay over the B-mode image. These so-called Doppler measurements measure true velocities only along the scan line. Alternatively, structures with an individual texture can be followed over time, which also allows to measure motion and deformation of the myocardium.

Тези доповідей конференцій з теми "Echocardiography motion tracking":

1

Ahn, Shawn, Kevinminh Ta, Allen Lu, John C. Stendahl, Albert J. Sinusas, and James S. Duncan. "Unsupervised motion tracking of left ventricle in echocardiography." In Ultrasonic Imaging and Tomography, edited by Nicole V. Ruiter and Brett C. Byram. SPIE, 2020. http://dx.doi.org/10.1117/12.2549572.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Song, Xubo, Andriy Myronenko, and David J. Sahn. "Speckle Tracking in 3D Echocardiography with Motion Coherence." In 2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2007. http://dx.doi.org/10.1109/cvpr.2007.383140.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chen, Yida, Xiaoyan Zhang, Christopher M. Haggerty, and Joshua V. Stough. "Fully automated multi-heartbeat echocardiography video segmentation and motion tracking." In Image Processing, edited by Ivana Išgum and Olivier Colliot. SPIE, 2022. http://dx.doi.org/10.1117/12.2607871.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ahn, Chi, and Jin Seo. "Myocardial motion tracking method integrating local-to-global deformation for echocardiography." In 2012 International Ultrasonics Symposium. IEEE, 2012. http://dx.doi.org/10.1109/ultsym.2012.0692.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yinbo Li, C. D. Garson, Yaqin Xu, B. A. French, and J. A. Hossack. "10C-4 Improved Myocardial Motion Tracking in Mouse Echocardiography Using Large-Diameter Microbubbles." In 2007 IEEE Ultrasonics Symposium. IEEE, 2007. http://dx.doi.org/10.1109/ultsym.2007.228.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ta, Kevinminh, Shawn S. Ahn, Allen Lu, John C. Stendahl, Albert J. Sinusas, and James S. Duncan. "A Semi-Supervised Joint Learning Approach to Left Ventricular Segmentation and Motion Tracking in Echocardiography." In 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). IEEE, 2020. http://dx.doi.org/10.1109/isbi45749.2020.9098664.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Touil, Basma, Adrian Basarab, Olivier Bernard, and Denis Friboulet. "Influence of system geometry on motion tracking in echocardiographic image sequences." In 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI). IEEE, 2009. http://dx.doi.org/10.1109/isbi.2009.5193261.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Leung, K. Y. Esther, Mikhail G. Danilouchkine, Marijn van Stralen, Nico de Jong, Antonius F. W. van der Steen, and Johan G. Bosch. "Tracking left ventricular borders in 3D echocardiographic sequences using motion-guided optical flow." In SPIE Medical Imaging, edited by Josien P. W. Pluim and Benoit M. Dawant. SPIE, 2009. http://dx.doi.org/10.1117/12.810990.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dietenbeck, T., D. Barbosa, M. Alessandrini, R. Jasaityte, V. Robesyn, J. D'hooge, D. Friboulet, and O. Bernard. "Multiview myocardial tracking in echocardiographic 2D sequences using shape and motion constrained level-set." In 2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI 2013). IEEE, 2013. http://dx.doi.org/10.1109/isbi.2013.6556651.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії