Статті в журналах з теми "Dynamical transition"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Dynamical transition.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Dynamical transition".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Beaulieu, Samuel, Shuo Dong, Nicolas Tancogne-Dejean, Maciej Dendzik, Tommaso Pincelli, Julian Maklar, R. Patrick Xian, et al. "Ultrafast dynamical Lifshitz transition." Science Advances 7, no. 17 (April 2021): eabd9275. http://dx.doi.org/10.1126/sciadv.abd9275.

Повний текст джерела
Анотація:
Fermi surface is at the heart of our understanding of metals and strongly correlated many-body systems. An abrupt change in the Fermi surface topology, also called Lifshitz transition, can lead to the emergence of fascinating phenomena like colossal magnetoresistance and superconductivity. While Lifshitz transitions have been demonstrated for a broad range of materials by equilibrium tuning of macroscopic parameters such as strain, doping, pressure, and temperature, a nonequilibrium dynamical route toward ultrafast modification of the Fermi surface topology has not been experimentally demonstrated. Combining time-resolved multidimensional photoemission spectroscopy with state-of-the-art TDDFT+U simulations, we introduce a scheme for driving an ultrafast Lifshitz transition in the correlated type-II Weyl semimetal Td-MoTe2. We demonstrate that this nonequilibrium topological electronic transition finds its microscopic origin in the dynamical modification of the effective electronic correlations. These results shed light on a previously unexplored ultrafast scheme for controlling the Fermi surface topology in correlated quantum materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

KIM, SANG PYO. "DYNAMICAL THEORY OF PHASE TRANSITIONS AND COSMOLOGICAL EW AND QCD PHASE TRANSITIONS." Modern Physics Letters A 23, no. 17n20 (June 28, 2008): 1325–35. http://dx.doi.org/10.1142/s0217732308027692.

Повний текст джерела
Анотація:
We critically review the cosmological EW and QCD phase transitions. The EW and QCD phase transitions would have proceeded dynamically since the expansion of the universe determines the quench rate and critical behaviors at the onset of phase transition slow down the phase transition. We introduce a real-time quench model for dynamical phase transitions and describe the evolution using a canonical real-time formalism. We find the correlation function, the correlation length and time and then discuss the cosmological implications of dynamical phase transitions on EW and QCD phase transitions in the early universe.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Appert, C., and S. Zaleski. "Dynamical liquid-gas phase transition." Journal de Physique II 3, no. 3 (March 1993): 309–37. http://dx.doi.org/10.1051/jp2:1993135.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Meibohm, Jan, and Massimiliano Esposito. "Landau theory for finite-time dynamical phase transitions." New Journal of Physics 25, no. 2 (February 1, 2023): 023034. http://dx.doi.org/10.1088/1367-2630/acbc41.

Повний текст джерела
Анотація:
Abstract We study the time evolution of thermodynamic observables that characterise the dissipative nature of thermal relaxation after an instantaneous temperature quench. Combining tools from stochastic thermodynamics and large-deviation theory, we develop a powerful theory for computing the large-deviation statistics of such observables. Our method naturally leads to a description in terms of a dynamical Landau theory, a versatile tool for the analysis of finite-time dynamical phase transitions. The topology of the associated Landau potential allows for an unambiguous identification of the dynamical order parameter and of the phase diagram. As an immediate application of our method, we show that the probability distribution of the heat exchanged between a mean-field spin model and the environment exhibits a singular point, a kink, caused by a finite-time dynamical phase transition. Using our Landau theory, we conduct a detailed study of the phase transition. Although the manifestation of the new transition is similar to that of a previously found finite-time transition in the magnetisation, the properties and the dynamical origins of the two turn out to be very different.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Žunkovič, Bojan, Alessandro Silva, and Michele Fabrizio. "Dynamical phase transitions and Loschmidt echo in the infinite-range XY model." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, no. 2069 (June 13, 2016): 20150160. http://dx.doi.org/10.1098/rsta.2015.0160.

Повний текст джерела
Анотація:
We compare two different notions of dynamical phase transitions in closed quantum systems. The first is identified through the time-averaged value of the equilibrium-order parameter, whereas the second corresponds to non-analyticities in the time behaviour of the Loschmidt echo. By exactly solving the dynamics of the infinite-range XY model, we show that in this model non-analyticities of the Loschmidt echo are not connected to standard dynamical phase transitions and are not robust against quantum fluctuations. Furthermore, we show that the existence of either of the two dynamical transitions is not necessarily connected to the equilibrium quantum phase transition.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Prasad, R., and Ritam Mallick. "Dynamical Phase Transition in Neutron Stars." Astrophysical Journal 859, no. 1 (May 23, 2018): 57. http://dx.doi.org/10.3847/1538-4357/aabf3b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Vollmayr-Lee, K., W. Kob, K. Binder, and A. Zippelius. "Dynamical heterogeneities below the glass transition." Journal of Chemical Physics 116, no. 12 (2002): 5158. http://dx.doi.org/10.1063/1.1453962.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Henriksen, Niels E., and Flemming Y. Hansen. "Transition-state theory and dynamical corrections." Physical Chemistry Chemical Physics 4, no. 24 (November 5, 2002): 5995–6000. http://dx.doi.org/10.1039/b207021a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Seibert, David. "Dynamical hadronization transition and hydrodynamical stability." Physical Review D 32, no. 10 (November 15, 1985): 2812–21. http://dx.doi.org/10.1103/physrevd.32.2812.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nagatani, Takashi. "Dynamical transition in random supply chain." Physica A: Statistical Mechanics and its Applications 335, no. 3-4 (April 2004): 661–70. http://dx.doi.org/10.1016/j.physa.2003.12.027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Kim, C. U., M. W. Tate, and S. M. Gruner. "Protein dynamical transition at 110 K." Proceedings of the National Academy of Sciences 108, no. 52 (December 13, 2011): 20897–901. http://dx.doi.org/10.1073/pnas.1110840108.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Cladis, P. E., Wim van Saarloos, David A. Huse, J. S. Patel, J. W. Goodby, and P. L. Finn. "Dynamical test of phase transition order." Physical Review Letters 62, no. 15 (April 10, 1989): 1764–67. http://dx.doi.org/10.1103/physrevlett.62.1764.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Takayasu, Hideki, and Mitsuhiro Matsuzaki. "Dynamical phase transition in threshold elements." Physics Letters A 131, no. 4-5 (August 1988): 244–47. http://dx.doi.org/10.1016/0375-9601(88)90020-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Davies, Paul CW, Lloyd Demetrius, and Jack A. Tuszynski. "Cancer as a dynamical phase transition." Theoretical Biology and Medical Modelling 8, no. 1 (2011): 30. http://dx.doi.org/10.1186/1742-4682-8-30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Broderix, Kurt, Paul M. Goldbart, and Annette Zippelius. "Dynamical Signatures of the Vulcanization Transition." Physical Review Letters 79, no. 19 (November 10, 1997): 3688–91. http://dx.doi.org/10.1103/physrevlett.79.3688.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Fukao, Koji, and Yoshihisa Miyamoto. "Dynamical Transition and Crystallization of Polymers." Physical Review Letters 79, no. 23 (December 8, 1997): 4613–16. http://dx.doi.org/10.1103/physrevlett.79.4613.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Sharma, Akansha, Deepu K. George, Kimberly Crossen, Jeffrey McKinney, Cheryl Kerfeld, and Andrea Markelz. "Is the Protein Dynamical Transition useful?" Biophysical Journal 118, no. 3 (February 2020): 521a. http://dx.doi.org/10.1016/j.bpj.2019.11.2866.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Un Kim, Chae, Mark W. Tate, and Sol M. Gruner. "Protein Dynamical Transition at Cryogenic Temperatures." Biophysical Journal 104, no. 2 (January 2013): 223a—224a. http://dx.doi.org/10.1016/j.bpj.2012.11.1261.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Zanatta, Marco, Letizia Tavagnacco, Elena Buratti, Monica Bertoldo, Francesca Natali, Ester Chiessi, Andrea Orecchini, and Emanuela Zaccarelli. "Evidence of a low-temperature dynamical transition in concentrated microgels." Science Advances 4, no. 9 (September 2018): eaat5895. http://dx.doi.org/10.1126/sciadv.aat5895.

Повний текст джерела
Анотація:
A low-temperature dynamical transition has been reported in several proteins. We provide the first observation of a “protein-like” dynamical transition in nonbiological aqueous environments. To this aim, we exploit the popular colloidal system of poly-N-isopropylacrylamide (PNIPAM) microgels, extending their investigation to unprecedentedly high concentrations. Owing to the heterogeneous architecture of the microgels, water crystallization is avoided in concentrated samples, allowing us to monitor atomic dynamics at low temperatures. By elastic incoherent neutron scattering and molecular dynamics simulations, we find that a dynamical transition occurs at a temperatureTd~ 250 K, independently from PNIPAM mass fraction. However, the transition is smeared out on approaching dry conditions. The quantitative agreement between experiments and simulations provides evidence that the transition occurs simultaneously for PNIPAM and water dynamics. The similarity of these results with hydrated protein powders suggests that the dynamical transition is a generic feature in complex macromolecular systems, independently from their biological function.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Helfmann, Luzie, Enric Ribera Borrell, Christof Schütte, and Péter Koltai. "Extending Transition Path Theory: Periodically Driven and Finite-Time Dynamics." Journal of Nonlinear Science 30, no. 6 (September 10, 2020): 3321–66. http://dx.doi.org/10.1007/s00332-020-09652-7.

Повний текст джерела
Анотація:
Abstract Given two distinct subsets A, B in the state space of some dynamical system, transition path theory (TPT) was successfully used to describe the statistical behavior of transitions from A to B in the ergodic limit of the stationary system. We derive generalizations of TPT that remove the requirements of stationarity and of the ergodic limit and provide this powerful tool for the analysis of other dynamical scenarios: periodically forced dynamics and time-dependent finite-time systems. This is partially motivated by studying applications such as climate, ocean, and social dynamics. On simple model examples, we show how the new tools are able to deliver quantitative understanding about the statistical behavior of such systems. We also point out explicit cases where the more general dynamical regimes show different behaviors to their stationary counterparts, linking these tools directly to bifurcations in non-deterministic systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

SCHUSTER, H. G., M. LE VAN QUYEN, M. CHAVEZ, J. KÖHLER, J. MAYER, and J. C. CLAUSSEN. "DYNAMICAL BEHAVIOR AND CONTROL OF COUPLED THRESHOLD ELEMENTS WITH SELF-INHIBITION." International Journal of Bifurcation and Chaos 19, no. 09 (September 2009): 3119–28. http://dx.doi.org/10.1142/s0218127409024694.

Повний текст джерела
Анотація:
Coupled threshold elements with self-inhibition display a phase transition to an oscillating state where the elements fire in synchrony with a period T that is of the order of the dead-time caused by self-inhibition. This transition is noise-activated and therefore displays strong collectively enhanced stochastic resonance. For an exponentially decaying distribution of dead-times the transition to the oscillating state occurs, coming from high noise temperatures, via a Hopf bifurcation and coming from low temperatures, via a saddle node bifurcation. The transitions can be triggered externally by noise and oscillating signals. This opens up new possibilities for controlling slow wave sleep.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Calvo, H. L., and H. M. Pastawski. "Dynamical phase transition in vibrational surface modes." Brazilian Journal of Physics 36, no. 3b (September 2006): 963–66. http://dx.doi.org/10.1590/s0103-97332006000600044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Mishustin, I. N., J. Pedersen, and O. Scavenius. "Fluid dynamical description of the chiral transition." Acta Physica Hungarica A) Heavy Ion Physics 5, no. 4 (August 1997): 377–85. http://dx.doi.org/10.1007/bf03156113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Yu, Lei, Edward Ott, and Qi Chen. "Transition to chaos for random dynamical systems." Physical Review Letters 65, no. 24 (December 10, 1990): 2935–38. http://dx.doi.org/10.1103/physrevlett.65.2935.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Chatfield, David C., Ronald S. Friedman, Donald G. Truhlar, and David W. Schwenke. "Quantum-dynamical characterization of reactive transition states." Faraday Discussions of the Chemical Society 91 (1991): 289. http://dx.doi.org/10.1039/dc9919100289.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Brillaux, Éric, and Francesco Turci. "Dynamical solid–liquid transition through oscillatory shear." Soft Matter 15, no. 21 (2019): 4371–79. http://dx.doi.org/10.1039/c8sm01950a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Teitel, S., D. Kutasov, and E. Domany. "Diffusion and dynamical transition in hierarchical systems." Physical Review B 36, no. 1 (July 1, 1987): 684–98. http://dx.doi.org/10.1103/physrevb.36.684.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Nieuwenhuizen, Th M. "Solvable Glassy System: Static versus Dynamical Transition." Physical Review Letters 78, no. 18 (May 5, 1997): 3491–94. http://dx.doi.org/10.1103/physrevlett.78.3491.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Sharia, Onise, and Graeme Henkelman. "Analytic dynamical corrections to transition state theory." New Journal of Physics 18, no. 1 (January 8, 2016): 013023. http://dx.doi.org/10.1088/1367-2630/18/1/013023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Götze, Wolfgang. "Dynamical Phenomena Near the Liquid-Glass Transition*." Zeitschrift für Physikalische Chemie 156, Part_1 (January 1988): 3–22. http://dx.doi.org/10.1524/zpch.1988.156.part_1.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Li, Xiang, Guanrong Chen, and King-Tim Ko. "Transition to chaos in complex dynamical networks." Physica A: Statistical Mechanics and its Applications 338, no. 3-4 (July 2004): 367–78. http://dx.doi.org/10.1016/j.physa.2004.02.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Orecchini, A., та A. Paciaroni. "High-temperature dynamical transition in β-lactoglobulin". Physica B: Condensed Matter 350, № 1-3 (липень 2004): E595—E598. http://dx.doi.org/10.1016/j.physb.2004.03.159.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Vatansever, Zeynep Demir, and Ümit Akıncı. "Dynamical phase transition characteristics of FeC2 monolayer." Materials Research Express 5, no. 2 (February 1, 2018): 026101. http://dx.doi.org/10.1088/2053-1591/aaa741.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Ferry, Myriam, Violaine Cahouët, and Luc Martin. "Postural coordination modes and transition: dynamical explanations." Experimental Brain Research 180, no. 1 (January 26, 2007): 49–57. http://dx.doi.org/10.1007/s00221-006-0843-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Persson, B. N. J. "Layering transition: dynamical instabilities during squeeze-out." Chemical Physics Letters 324, no. 4 (July 2000): 231–39. http://dx.doi.org/10.1016/s0009-2614(00)00606-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Tsobgni Nyawo, Pelerine, and Hugo Touchette. "A minimal model of dynamical phase transition." EPL (Europhysics Letters) 116, no. 5 (December 1, 2016): 50009. http://dx.doi.org/10.1209/0295-5075/116/50009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

LUQI, LIN ZHANG, and MIKE SABOE. "THE DYNAMICAL MODELS FOR SOFTWARE TECHNOLOGY TRANSITION." International Journal of Software Engineering and Knowledge Engineering 14, no. 02 (April 2004): 179–205. http://dx.doi.org/10.1142/s0218194004001592.

Повний текст джерела
Анотація:
Currently, systematic techniques for assessing macro mechanisms for transferring software engineering technologies are non-existent. This leads to inefficient allocation of research resources and increased risk to software technology intensive programs. Consequently, software technology transition today is an ill-defined and non-repeatable, inefficient process for bringing advanced software engineering technologies to market. This paper develops two dynamical models of a software technology transition from both macroscopic and microscopic views. The models are developed utilizing information theory, communication theory, chaos control theory, and learning curve principles. The combination of those scientifically sound mechanisms provides a basis for assessing, and/or prescribing a portfolio of technologies and the implementing macro infrastructure. This provides the theoretical framework for a practical method for a program manager to establish a high capacity transition channel, which accelerates technology maturation and insertion. Experiments based on very large number of data have been performed. Data samples assess the following technologies: software engineering, software technology transfer, Ada, Java, abstract data types, rate monotonic analysis, cost models, software standards, and software work breakdown structures.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Nieuwenhuizen, Th M. "Thermodynamic description of a dynamical glassy transition." Journal of Physics A: Mathematical and General 31, no. 10 (March 13, 1998): L201—L207. http://dx.doi.org/10.1088/0305-4470/31/10/004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Cheney, Brian G., and Hans C. Andersen. "Dynamical corrections to quantum transition state theory." Journal of Chemical Physics 118, no. 21 (June 2003): 9542–51. http://dx.doi.org/10.1063/1.1570404.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Derrida, B. "Dynamical phase transition in nonsymmetric spin glasses." Journal of Physics A: Mathematical and General 20, no. 11 (August 1, 1987): L721—L725. http://dx.doi.org/10.1088/0305-4470/20/11/009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Markelz, Andrea G., Joseph R. Knab, Jing Yin Chen, and Yunfen He. "Protein dynamical transition in terahertz dielectric response." Chemical Physics Letters 442, no. 4-6 (July 2007): 413–17. http://dx.doi.org/10.1016/j.cplett.2007.05.080.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Şengül, Taylan. "Dynamical transition theory of hexagonal pattern formations." Communications in Nonlinear Science and Numerical Simulation 91 (December 2020): 105455. http://dx.doi.org/10.1016/j.cnsns.2020.105455.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Li, C. B., A. Shojiguchi, M. Toda, and T. Komatsuzaki. "Dynamical Hierarchy in Transition States of Reactions." Few-Body Systems 38, no. 2-4 (April 28, 2006): 173–79. http://dx.doi.org/10.1007/s00601-005-0130-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Li, C. B., A. Shojiguchi, M. Toda, and T. Komatsuzaki. "Dynamical Hierarchy in Transition States of Reactions." Few-Body Systems 40, no. 1-2 (November 22, 2006): 129. http://dx.doi.org/10.1007/s00601-006-0168-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Wang, Tao, Tiangang Yang, Chunlei Xiao, Zhigang Sun, Donghui Zhang, Xueming Yang, Marissa L. Weichman, and Daniel M. Neumark. "Dynamical resonances in chemical reactions." Chemical Society Reviews 47, no. 17 (2018): 6744–63. http://dx.doi.org/10.1039/c8cs00041g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Gabel, Frank, Dominique Bicout, Ursula Lehnert, Moeava Tehei, Martin Weik, and Giuseppe Zaccai. "Protein dynamics studied by neutron scattering." Quarterly Reviews of Biophysics 35, no. 4 (November 2002): 327–67. http://dx.doi.org/10.1017/s0033583502003840.

Повний текст джерела
Анотація:
1. Introduction 3282. Basic concepts of neutron scattering 3292.1 Introduction 3292.2 Neutron-scattering functions 3312.3 Coherent and incoherent neutron scattering. The particular role of hydrogen in incoherent scattering 3322.4 Total elastic scattering, EISF and mean square displacement (MSD) 3332.5 Quasielastic scattering and relaxation function 3342.6 Inelastic scattering and density of states 3353. Experimental aspects and instruments 3353.1 Energy and space resolution 3353.2 General sample aspects 3353.3 Potential effects of D2O on dynamics 3363.4 Experimental 2H (deuterium) labelling 3364. Physics of protein dynamics 3364.1 Models 3364.2 The dynamical transition 3384.3 Effective force constants 3395. Dynamics of hydrated protein powders 3395.1 First experiments on myoglobin 3405.2 Dynamical transitions in other proteins 3405.3 The role of hydration water 3415.4 Influence of the solvent 3445.5 Diffusional motions within proteins by QENS 3465.6 Inelastic neutron scattering and vibrational spectra 3475.7 Conclusions 3516. Membranes 3526.1 Lipid bilayers 3536.2 BR and the purple membrane (PM) 3536.2.1 The dynamical transition in the PM 3536.2.2 QENS from oriented PM 3546.2.3 Hydration dependence of PM motions 3556.2.4 Local dynamics in PM studied by isotope labelling 3566.2.5 Dynamics of different BR conformations 3577. Protein solutions 3587.1 From powders to solutions 3587.2 Water dynamics and solvent dependence of the dynamical transition in proteins 3598. Comparing neutron scattering with other techniques 3599. Biological relevance 3609.1 Dynamics–activity relations 3609.2 Dynamics–stability relations (adaptation to extreme environments) 3609.3 Protein folding 36110. Acknowledgements 36411. References 364This review of protein dynamics studied by neutron scattering focuses on data collected in the last 10 years. After an introduction to thermal neutron scattering and instrumental aspects, theoretical models that have been used to interpret the data are presented and discussed. Experiments are described according to sample type, protein powders, solutions and membranes. Neutron-scattering results are compared to those obtained from other techniques. The biological relevance of the experimental results is discussed. The major conclusion of the last decade concerns the strong dependence of internal dynamics on the macromolecular environment.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Kojima, Norimichi, Shin-ichi Ohkoshi, and Seiji Miyashita. "Editorial (Thematic Issue: Phase Transition and Dynamical Properties of Spin Transition Materials)." Current Inorganic Chemistry 6, no. 1 (February 16, 2016): 3. http://dx.doi.org/10.2174/187794410601160216150155.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Kealley, C. S., A. V. Sokolova, G. J. Kearley, E. Kemner, M. Russina, A. Faraone, W. A. Hamilton, and E. P. Gilbert. "Dynamical transition in a large globular protein: Macroscopic properties and glass transition." Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1804, no. 1 (January 2010): 34–40. http://dx.doi.org/10.1016/j.bbapap.2009.06.027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Kalyakin, L. A. "Asymptotics of Dynamical Saddle-node Bifurcations." Nelineinaya Dinamika 18, no. 1 (2022): 119–35. http://dx.doi.org/10.20537/nd220108.

Повний текст джерела
Анотація:
Dynamical bifurcations occur in one-parameter families of dynamical systems, when the parameter is slow time. In this paper we consider a system of two nonlinear differential equations with slowly varying right-hand sides. We study the dynamical saddle-node bifurcations that occur at a critical instant. In a neighborhood of this instant the solution has a narrow transition layer, which looks like a smooth jump from one equilibrium to another. The main result is asymptotics for a solution with respect to the small parameter in the transition layer. The asymptotics is constructed by the matching method with three time scales. The matching of the asymptotics allows us to find the delay of the loss of stability near the critical instant.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Ganev, H. G. "U(6) dynamical and quasi-dynamical symmetry in strongly deformed heavy nuclei." EPJ Web of Conferences 194 (2018): 05002. http://dx.doi.org/10.1051/epjconf/201819405002.

Повний текст джерела
Анотація:
The low-lying collective states of the ground, β and γ bands in154Sm and238U are investigated within the framework of the microscopic proton-neutron symplectic model (PNSM). For this purpose, the model Hamiltonian is diagonalized in a U(6)-coupled basis, restricted to the symplectic state space spanned by the fully symmetric U(6) vectors. A good description of the energy levels of the three bands under consideration, as well as the intraband B(E2) transition strengths between the states of the ground band is obtained for the two nuclei without the use of an effective charge. The calculations show that when the collective quadrupole dynamics is covered already by the symplectic bandhead structure, as in the case of154Sm, the results show the presence of a very good U(6) dynamical symmetry. In the case of238U, when we have an observed enhancement of the intraband B(E2) transition strengths, then the results show small admixtures from the higher major shells and a highly coherent mixing of different irreps which is manifested by the presence of a good U(6) quasi-dynamical symmetry in the microscopic structure of the collective states under consideration.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії