Дисертації з теми "Dynamical Systems"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Dynamical Systems".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Behrisch, Mike, Sebastian Kerkhoff, Reinhard Pöschel, Friedrich Martin Schneider, and Stefan Siegmund. "Dynamical Systems in Categories." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-129909.
Повний текст джерелаZaks, Michael. "Fractal Fourier spectra in dynamical systems." Thesis, [S.l.] : [s.n.], 2001. http://pub.ub.uni-potsdam.de/2002/0019/zaks.ps.
Повний текст джерелаHaydn, Nicolai Theodorus Antonius. "On dynamical systems." Thesis, University of Warwick, 1986. http://wrap.warwick.ac.uk/55813/.
Повний текст джерелаMiles, Richard Craig. "Arithmetic dynamical systems." Thesis, University of East Anglia, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323222.
Повний текст джерелаChe, Dzul-Kifli Syahida. "Chaotic dynamical systems." Thesis, University of Birmingham, 2012. http://etheses.bham.ac.uk//id/eprint/3410/.
Повний текст джерелаHillman, Chris. "Sturmian dynamical systems /." Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/5806.
Повний текст джерелаUmenberger, Jack. "Convex Identifcation of Stable Dynamical Systems." Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/17321.
Повний текст джерелаFreeman, Isaac. "A modular system for constructing dynamical systems." Thesis, University of Canterbury. Mathematics, 1998. http://hdl.handle.net/10092/8888.
Повний текст джерелаOzaki, Junichi. "Dynamical quantum effects in cluster dynamics of Fermi systems." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199083.
Повний текст джерелаCAPPELLINI, VALERIO. "QUANTUM DYNAMICAL ENTROPIES AND COMPLEXITY IN DYNAMICAL SYSTEMS." Doctoral thesis, Università degli studi di Trieste, 2004. http://thesis2.sba.units.it/store/handle/item/12545.
Повний текст джерелаWe analyze the behavior of two quantum dynamical entropies in connection with the classical limit. Using strongly chaotic classical dynamical systems as models (Arnold Cat Maps and Sawtooth Maps), we also propose a discretization procedure that resembles quantization; even in this case, studies of quantum dynamical entropy production are carried out and the connection with the continuous limit is explored. In both case (quantization and discretization) the entropy production converge to the Kolmogorov-Sinai invariant on time-scales that are logarithmic in the quantization (discretization) parameter.
XVI Ciclo
1969
Versione digitalizzata della tesi di dottorato cartacea.
McKee, Andrew. "Multipliers of dynamical systems." Thesis, Queen's University Belfast, 2017. https://pure.qub.ac.uk/portal/en/theses/multipliers-of-dynamical-systems(65b93a06-6e7b-420b-ae75-c28d373f8bdf).html.
Повний текст джерелаHook, James Louis. "Topics in dynamical systems." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/topics-in-dynamical-systems(427b5d98-197d-4b53-876e-a81142f72375).html.
Повний текст джерелаHua, Xinhou. "Dynamical systems and wavelets." Thesis, University of Ottawa (Canada), 2002. http://hdl.handle.net/10393/6143.
Повний текст джерелаDam, Albert Anton ten. "Unilaterally constrained dynamical systems." [S.l : [Groningen] : s.n.] ; [University Library Groningen] [Host], 1997. http://irs.ub.rug.nl/ppn/159407869.
Повний текст джерелаSchinkel, Michael. "Nondeterministic hybrid dynamical systems." Thesis, University of Glasgow, 2002. http://theses.gla.ac.uk/1853/.
Повний текст джерелаChan, N. "Dynamical systems in cosmology." Thesis, University College London (University of London), 2012. http://discovery.ucl.ac.uk/1348375/.
Повний текст джерелаKrcelic, Khristine M. "Chaos and Dynamical Systems." Youngstown State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1364545282.
Повний текст джерелаRoyals, Robert. "Arithmetic and dynamical systems." Thesis, University of East Anglia, 2015. https://ueaeprints.uea.ac.uk/57191/.
Повний текст джерелаHayden, Kevin. "Modeling of dynamical systems /." abstract and full text PDF (UNR users only), 2007. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1446796.
Повний текст джерела"May, 2007." Includes bibliographical references (leaves 128-129). Library also has microfilm. Ann Arbor, Mich. : ProQuest Information and Learning Company, [2008]. 1 microfilm reel ; 35 mm. Online version available on the World Wide Web.
Sun, Hongyan. "Coupled nonlinear dynamical systems." Morgantown, W. Va. : [West Virginia University Libraries], 2000. http://etd.wvu.edu/templates/showETD.cfm?recnum=1636.
Повний текст джерелаTitle from document title page. Document formatted into pages; contains xi, 113 p. : ill. (some col.). Includes abstract. Includes bibliographical references.
Tse, Pak-hoi Isaac. "Dynamical systems theory and school change." Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B37626218.
Повний текст джерелаTse, Pak-hoi Isaac, and 謝伯開. "Dynamical systems theory and school change." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B37626218.
Повний текст джерелаKuhlman, Christopher James. "Generalizations of Threshold Graph Dynamical Systems." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/76765.
Повний текст джерелаMaster of Science
Nersesov, Sergey G. "Nonlinear Impulsive and Hybrid Dynamical Systems." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7147.
Повний текст джерелаShadden, Shawn Christopher Marsden Jerrold E. "A dynamical systems approach to unsteady systems /." Diss., Pasadena, Calif. : Caltech, 2006. http://resolver.caltech.edu/CaltechETD:etd-05122006-083011.
Повний текст джерелаSchneider, Judith. "Dynamical structures and manifold detection in 2D and 3D chaotic flows." Phd thesis, [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=973637420.
Повний текст джерелаGil, Gibin. "Hybrid Numerical Integration Scheme for Highly Oscillatory Dynamical Systems." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/306771.
Повний текст джерелаZhao, Zhenyuan. "Dynamical Grouping in Complex Systems." Scholarly Repository, 2010. http://scholarlyrepository.miami.edu/oa_dissertations/498.
Повний текст джерелаBadar, Muhammad. "Dynamical Systems Over Finite Groups." Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-17948.
Повний текст джерелаNewman, Julian. "Synchronisation in random dynamical systems." Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/39569.
Повний текст джерелаHendtlass, Matthew Ralph John. "Aspects of Constructive Dynamical Systems." Thesis, University of Canterbury. Mathematics and Statistics, 2009. http://hdl.handle.net/10092/2724.
Повний текст джерелаOzik, Jonathan. "Evolution of discrete dynamical systems." College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/2351.
Повний текст джерелаThesis research directed by: Physics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Ertem, Turker. "Asymptotic Integration Of Dynamical Systems." Phd thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615405/index.pdf.
Повний текст джерела&prime
= f (t, x) (0.1) and the solutions 1 and t of x&prime
&prime
= 0. More specifically, the existence of a solution of (0.1) asymptotic to x(t) = at + b, a, b &isin
R has been obtained. In this thesis we investigate in a systematic way the asymptotic behavior as t &rarr
&infin
of solutions of a class of differential equations of the form (p(t)x&prime
)&prime
+ q(t)x = f (t, x), t &ge
t_0 (0.2) and (p(t)x&prime
)&prime
+ q(t)x = g(t, x, x&prime
), t &ge
t_0 (0.3) by the help of principal u(t) and nonprincipal v(t) solutions of the corresponding homogeneous equation (p(t)x&prime
)&prime
+ q(t)x = 0, t &ge
t_0. (0.4) Here, t_0 &ge
0 is a real number, p &isin
C([t_0,&infin
), (0,&infin
)), q &isin
C([t_0,&infin
),R), f &isin
C([t_0,&infin
) ×
R,R) and g &isin
C([t0,&infin
) ×
R ×
R,R). Our argument is based on the idea of writing the solution of x&prime
&prime
= 0 in terms of principal and nonprincipal solutions as x(t) = av(t) + bu(t), where v(t) = t and u(t) = 1. In the proofs, Banach and Schauder&rsquo
s fixed point theorems are used. The compactness of the operator is obtained by employing the compactness criteria of Riesz and Avramescu. The thesis consists of three chapters. Chapter 1 is introductory and provides statement of the problem, literature review, and basic definitions and theorems. In Chapter 2 first we deal with some asymptotic relationships between the solutions of (0.2) and the principal u(t) and nonprincipal v(t) solutions of (0.4). Then we present existence of a monotone positive solution of (0.3) with prescribed asimptotic behavior. In Chapter 3 we introduce the existence of solution of a singular boundary value problem to the Equation (0.2).
Johnson, M. E. "Bifurcations in lattice dynamical systems." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.605623.
Повний текст джерелаBernhard, Michael A. "Introduction to chaotic dynamical systems." Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/23708.
Повний текст джерелаClewlow, Les. "Cellular automata and dynamical systems." Thesis, University of Warwick, 1989. http://wrap.warwick.ac.uk/4233/.
Повний текст джерелаGarira, Winston. "Synchronisation of coupled dynamical systems." Thesis, University of London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399495.
Повний текст джерелаBandtlow, Oscar F. "Spectral analysis of dynamical systems." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.396095.
Повний текст джерелаCampanella, Giammarco. "Dynamical aspects of exoplanetary systems." Thesis, Queen Mary, University of London, 2013. http://qmro.qmul.ac.uk/xmlui/handle/123456789/8374.
Повний текст джерелаJoyner, Sheldon T. "On non-archimedean dynamical systems." Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/51861.
Повний текст джерелаENGLISH ABSTRACT: A discrete dynamical system is a pair (X, cf;) comprising a non-empty set X and a map cf; : X ---+ X. A study is made of the effect of repeated application of cf; on X, whereby points and subsets of X are classified according to their behaviour under iteration. These subsets include the JULIA and FATOU sets of the map and the sets of periodic and preperiodic points, and many interesting questions arise in the study of their properties. Such questions have been extensively studied in the case of complex dynamics, but much recent work has focussed on non-archimedean dynamical systems, when X is projective space over some field equipped with a non-archimedean metric. This work has uncovered many parallels to complex dynamics alongside more striking differences. In this thesis, various aspects of the theory of non-archimedean dynamics are presented, with particular reference to JULIA and FATOU sets and the relationship between good reduction of a map and the empty JULIA set. We also discuss questions of the finiteness of the sets of periodic points in special contexts.
AFRIKAANSE OPSOMMING: 'n Paar (X,
Frisk, Martin. "Synchronization in chaotic dynamical systems." Thesis, Uppsala universitet, Tillämpad matematik och statistik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-287624.
Повний текст джерелаLiu, Zheng. "Dynamical systems and random perturbations." Diss., The University of Arizona, 1993. http://hdl.handle.net/10150/186232.
Повний текст джерелаCarracedo, Rodriguez Andrea. "Approximation of Parametric Dynamical Systems." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/99895.
Повний текст джерелаDoctor of Philosophy
Simulation of mathematical models plays an important role in the development of science. There is a wide range of models and approaches that depend on the information available and the goal of the problem. In this dissertation we focus on three problems whose solution depends on parameters and for which we have either data resulting from simulations of the model or a explicit structure that describes the model. First, for the case when only data are available, we develop an algorithm that builds a data-driven approximation that is then easy to reevaluate. Second, we embed our algorithm in an already developed framework for the solution of a specific kind of model structure: nonlinear eigenvalue problems. Third, given a model with a specific nonlinear structure, we develop a method to build a model with the same structure, smaller dimension (for faster computation), and that provides an accurate approximation of the original model.
Grimm, Alexander Rudolf. "Taming of Complex Dynamical Systems." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/24775.
Повний текст джерелаMaster of Science
Mcnitt, Joseph Andrew. "Stability in Graph Dynamical Systems." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/83604.
Повний текст джерелаMaster of Science
Polo, Fabrizio. "Equidistribution on Chaotic Dynamical Systems." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1306527005.
Повний текст джерелаBhagavatula, Ravi S. "Topics in extended dynamical systems /." The Ohio State University, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487856076416283.
Повний текст джерелаKupsa, Michal. "Return times in dynamical systems." Toulon, 2005. http://www.theses.fr/2005TOUL0009.
Повний текст джерелаSeveral statistics of hitting and return times in dynamical systems are investigated in this thesis. It concerns local return rates and the limit laws of k-th return and hitting times. Formulas to compute the local return rates in Sturmian shifts are developed. The class of all limit laws of the first hitting times is described. The class of all limit laws of the k-th return times is shown to be the same as the class of all limit laws of the first return times, characterized by Lacroix. Last but not least, we exhibit a link between k-limit laws of return and hitting times
Stergiopoulou, Aikaterini. "Dynamical Stability of Planetary Systems." Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-323006.
Повний текст джерелаDundar, Veli Ufuktepe Ünal. "Dynamical Systems on Time Scales/." [s.l.]: [s.n.], 2007. http://library.iyte.edu.tr/tezler/master/matematik/T000648.pdf.
Повний текст джерела