Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Dynamical instabilities.

Статті в журналах з теми "Dynamical instabilities"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Dynamical instabilities".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Fuchs, B., and O. Esquivel. "Can Massive Dark Haloes Destroy the Discs of Dwarf Galaxies?" Proceedings of the International Astronomical Union 3, S244 (June 2007): 336–40. http://dx.doi.org/10.1017/s1743921307014184.

Повний текст джерела
Анотація:
AbstractRecent high-resolution simulations together with theoretical studies of the dynamical evolution of galactic disks have shown that contrary to wide-held beliefs a ‘live’, dynamically responsive, dark halo surrounding a disk does not stabilize the disk against dynamical instabilities. We generalize Toomre's Q stability parameter for a disk-halo system and show that if a disk, which would be otherwise stable, is embedded in a halo, which is too massive and cold, the combined disk-halo system can become locally Jeans unstable. The good news is, on the other hand, that this will not happen in real dark haloes, which are in radial hydrostatic equilibrium. Even very low-mass disks are not prone to such dynamical instabilities.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Barnes, Joshua. "Dynamical Instabilities in Spherical Stellar Systems." Symposium - International Astronomical Union 113 (1985): 297–99. http://dx.doi.org/10.1017/s0074180900147461.

Повний текст джерела
Анотація:
Equlibrium spherical stellar systems exhibiting instabilities on a dynamical timescale were first studied by Henon (1973), using a spherically symmetric N-body code. We have re-examined Henon's models using an improved code which includes non-radial forces to quadrupole order. In addition to the radial instability reported by Henon, two new non-radial instabilities are also observed. In one, found in models with highly circular orbits, the mass distribution exhibits quadrupole-mode oscillations. In the other, seen in models with highly radial orbits, the system spontaneously breaks spherical symmetry and settles into a tri-axial ellipsoid. These instabilities, which are driven by fluctuations of the mean field, offer some analogies to the well-known dynamical instabilities of a cold disk of stars. While our models are rather artificial, they indicate that dynamical instabilities may be more common in spherical systems than had been thought.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Michtchenko, T. A., S. Ferraz-Mello, and C. Beaugé. "Dynamical instabilities in planetary systems." EAS Publications Series 42 (2010): 315–31. http://dx.doi.org/10.1051/eas/1042035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ivanov, Yu B. "Dynamical instabilities in hadron plasma:." Nuclear Physics A 474, no. 3-4 (November 1987): 693–716. http://dx.doi.org/10.1016/0375-9474(87)90602-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

West, Bruce J. "Book review:Synergetics and dynamical instabilities." Journal of Statistical Physics 62, no. 1-2 (January 1991): 493–95. http://dx.doi.org/10.1007/bf01020886.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Orellana, P., F. Claro, E. V. Anda, and E. S. Rodrigues. "Dynamical Instabilities in Resonant Tunneling." physica status solidi (b) 218, no. 1 (March 2000): 303–7. http://dx.doi.org/10.1002/(sici)1521-3951(200003)218:1<303::aid-pssb303>3.0.co;2-f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Baier, Gerold, Peter Urban, and Klaus Wegmann. "Dynamical Instabilities in a Diffusion Layer." Zeitschrift für Naturforschung A 44, no. 11 (November 1, 1989): 1107–10. http://dx.doi.org/10.1515/zna-1989-1111.

Повний текст джерела
Анотація:
We investigate the dynamics of a reaction-diffusion-convection enzyme system as a function of relevant parameters and observe reproducible types of periodic and aperiodic oscillations. These oscillations arise within a narrow diffusion layer only. Some implications for more complex reaction networks are considered
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tamayo, D., J. A. Burns, D. P. Hamilton, and P. D. Nicholson. "DYNAMICAL INSTABILITIES IN HIGH-OBLIQUITY SYSTEMS." Astronomical Journal 145, no. 3 (January 18, 2013): 54. http://dx.doi.org/10.1088/0004-6256/145/3/54.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Barnes, J., P. Hut, and J. Goodman. "Dynamical instabilities in spherical stellar systems." Astrophysical Journal 300 (January 1986): 112. http://dx.doi.org/10.1086/163786.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Barnes, Joshua E. "Dynamical Instabilities in Hollow Halo Models." Astrophysical Journal 419 (December 1993): L17. http://dx.doi.org/10.1086/187126.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Harrison, Robert G. "Dynamical instabilities and chaos in lasers." Contemporary Physics 29, no. 4 (July 1988): 341–71. http://dx.doi.org/10.1080/00107518808213764.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Kuna, M., and W. A. Majewski. "Quantum dynamical system with hyperbolic instabilities." International Journal of Theoretical Physics 34, no. 11 (November 1995): 2205–16. http://dx.doi.org/10.1007/bf00673836.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Henning, Peter A., and Bengt L. Friman. "Dynamical instabilities in heavy-ion collisions." Nuclear Physics A 490, no. 3 (December 1988): 689–714. http://dx.doi.org/10.1016/0375-9474(88)90021-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Owocki, Stanley P. "Instabilities in massive stars." Symposium - International Astronomical Union 212 (2003): 281–90. http://dx.doi.org/10.1017/s0074180900212345.

Повний текст джерела
Анотація:
A defining property of massive stars is the dominant, dynamical role played by radiation throughout the stellar interior, atmosphere, and wind. Associated with this radiation hydrodynamics are several distinct kinds of instabilities that can lead to convection in both core and envelope, clumping in atmosphere and wind outflow, and perhaps even the dramatic mass loss outbursts associated with Luminous Blue Variable phases. Here I review these instabilities with emphasis on basic physical properties of radiative driving. I draw on two specific examples of dynamical instability, namely the strong instability associated with line-driving of a stellar wind outflow, and the global stellar instabilities associated with approaching or exceeding a modified Eddington limit. I conclude with a brief mention of recent ideas on the role of stellar rotation in the shaping of bipolar LBV outbursts.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Appenzeller, I. "Instability in Massive Stars: An Overview." Symposium - International Astronomical Union 116 (1986): 139–49. http://dx.doi.org/10.1017/s0074180900148831.

Повний текст джерела
Анотація:
Dynamical, vibrational, and thermal instabilities of massive blue stars are discussed as possible mechanisms for the observed brightness variations of such objects. Relaxation oscillations (on local thermal time scales) due to dynamical instabilities of the stellar wind flows appear to be the most likely mechanism, at least for the S Dor variables. Very massive main-sequence stars with M > 103 M⊙ should be violently vibrationally unstable and therefore should differ significantly from stable main-sequence stars of lower mass.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Jeffries, Carson, and Kurt Wiesenfeld. "Observation of noisy precursors of dynamical instabilities." Physical Review A 31, no. 2 (February 1, 1985): 1077–84. http://dx.doi.org/10.1103/physreva.31.1077.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Burgio, G. F., Ph Chomaz, and J. Randrup. "Dynamical clusterization in the presence of instabilities." Physical Review Letters 69, no. 6 (August 10, 1992): 885–88. http://dx.doi.org/10.1103/physrevlett.69.885.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Goriely, Alain, and Michael Tabor. "Nonlinear dynamics of filaments I. Dynamical instabilities." Physica D: Nonlinear Phenomena 105, no. 1-3 (June 1997): 20–44. http://dx.doi.org/10.1016/s0167-2789(96)00290-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Frankel, Michael L., Gregor Kovačič, Victor Roytburd, and Ilya Timofeyev. "Finite-dimensional dynamical system modeling thermal instabilities." Physica D: Nonlinear Phenomena 137, no. 3-4 (March 2000): 295–315. http://dx.doi.org/10.1016/s0167-2789(99)00180-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Persson, B. N. J. "Layering transition: dynamical instabilities during squeeze-out." Chemical Physics Letters 324, no. 4 (July 2000): 231–39. http://dx.doi.org/10.1016/s0009-2614(00)00606-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

OTSUKA, Kenju. "Light-Injection-Induced Dynamical Instabilities in Lasers." Review of Laser Engineering 13, no. 3 (1985): 219–31. http://dx.doi.org/10.2184/lsj.13.219.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Laraudogoitia, Jon Pérez. "Some surprising instabilities in idealized dynamical systems." Synthese 197, no. 7 (June 29, 2018): 3007–26. http://dx.doi.org/10.1007/s11229-018-1861-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Raymond, Sean N., Philip J. Armitage, Amaya Moro-Martín, Mark Booth, Mark C. Wyatt, John C. Armstrong, Avi M. Mandell, and Franck Selsis. "The debris disk – terrestrial planet connection." Proceedings of the International Astronomical Union 6, S276 (October 2010): 82–88. http://dx.doi.org/10.1017/s1743921311019983.

Повний текст джерела
Анотація:
AbstractThe eccentric orbits of the known extrasolar giant planets provide evidence that most planet-forming environments undergo violent dynamical instabilities. Here, we numerically simulate the impact of giant planet instabilities on planetary systems as a whole. We find that populations of inner rocky and outer icy bodies are both shaped by the giant planet dynamics and are naturally correlated. Strong instabilities – those with very eccentric surviving giant planets – completely clear out their inner and outer regions. In contrast, systems with stable or low-mass giant planets form terrestrial planets in their inner regions and outer icy bodies produce dust that is observable as debris disks at mid-infrared wavelengths. Fifteen to twenty percent of old stars are observed to have bright debris disks (at λ ~ 70μm) and we predict that these signpost dynamically calm environments that should contain terrestrial planets.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Ford, Eric B. "Dynamics and instabilities in exoplanetary systems." Proceedings of the International Astronomical Union 3, S249 (October 2007): 441–46. http://dx.doi.org/10.1017/s1743921308016955.

Повний текст джерела
Анотація:
AbstractExtrasolar planet surveys have discovered over two dozen multiple planet systems. As radial velocity searches push towards higher precisions and longer survey durations, they can be expected to discover an even higher fraction of multiple planet systems. Combined with radial velocity data, dynamical studies of these systems can constrain planet masses and inclinations, measure the significance of resonant and secular interactions, and provide insights into the formation and evolution of these systems. Here, we review the dynamical properties of known extrasolar multiple planet systems and their implications for planet formation theory. We conclude by outlining pressing questions to be addressed by a combination of future observations and theoretical research.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Volk, Kathryn, and Renu Malhotra. "Differences between Stable and Unstable Architectures of Compact Planetary Systems." Astronomical Journal 167, no. 6 (May 17, 2024): 271. http://dx.doi.org/10.3847/1538-3881/ad3de5.

Повний текст джерела
Анотація:
Abstract We present a stability analysis of a large set of simulated planetary systems of three or more planets based on architectures of multiplanet systems discovered by Kepler and K2. We propagated 21,400 simulated planetary systems up to 5 billion orbits of the innermost planet; approximately 13% of these simulations ended in a planet–planet collision within that time span. We examined trends in dynamical stability based on dynamical spacings, orbital period ratios, and mass ratios of nearest-neighbor planets as well as the system-wide planet mass distribution and the spectral fraction describing the system’s short-term evolution. We find that instability is more likely in planetary systems with adjacent planet pairs that have period ratios less than 2 and in systems of greater variance of planet masses. Systems with planet pairs at very small dynamical spacings (less than ∼10–12 mutual Hill radii) are also prone to instabilities, but instabilities also occur at much larger planetary separations. We find that a large spectral fraction (calculated from short integrations) is a reasonable predictor of longer-term dynamical instability; systems that have a large number of Fourier components in their eccentricity vectors are prone to secular chaos and subsequent eccentricity growth and instabilities.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Goldberg, Max, and Konstantin Batygin. "Architectures of Compact Super-Earth Systems Shaped by Instabilities." Astronomical Journal 163, no. 5 (April 8, 2022): 201. http://dx.doi.org/10.3847/1538-3881/ac5961.

Повний текст джерела
Анотація:
Abstract Compact nonresonant systems of sub-Jovian planets are the most common outcome of the planet formation process. Despite exhibiting broad overall diversity, these planets also display dramatic signatures of intrasystem uniformity in their masses, radii, and orbital spacings. Although the details of their formation and early evolution are poorly known, sub-Jovian planets are expected to emerge from their natal nebulae as multiresonant chains, owing to planet–disk interactions. Within the context of this scenario, the architectures of observed exoplanet systems can be broadly replicated if resonances are disrupted through postnebular dynamical instabilities. Here, we generate an ad hoc sample of resonant chains and use a suite of N-body simulations to show that instabilities can not only reproduce the observed period ratio distribution, but that the resulting collisions also modify the mass uniformity in a way that is consistent with the data. Furthermore, we demonstrate that primordial mass uniformity, motivated by the sample of resonant chains coupled with dynamical sculpting, naturally generates uniformity in orbital period spacing similar to what is observed. Finally, we find that almost all collisions lead to perfect mergers, but some form of postinstability damping is likely needed to fully account for the present-day dynamically cold architectures of sub-Jovian exoplanets.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Andersson, Nils, and Andreas Schmitt. "Dissipation Triggers Dynamical Two-Stream Instability." Particles 2, no. 4 (October 31, 2019): 457–80. http://dx.doi.org/10.3390/particles2040028.

Повний текст джерела
Анотація:
Two coupled, interpenetrating fluids suffer instabilities beyond certain critical counterflows. For ideal fluids, an energetic instability occurs at the point where a sound mode inverts its direction due to the counterflow, while dynamical instabilities only occur at larger relative velocities. Here, we discuss two relativistic fluids, one of which is dissipative. Using linearized hydrodynamics, we show that, in this case, the energetic instability turns dynamical, i.e., there is an exponentially growing mode, and this exponential growth only occurs in the presence of dissipation. This result is general and does not rely on an underlying microscopic theory. It can be applied to various two-fluid systems, for instance, in the interior of neutron stars. We also point out that, under certain circumstances, the two-fluid system exhibits a mode analogous to the r-mode in neutron stars that can become unstable for arbitrarily small values of the counterflow.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Majda, Andrew J., and Di Qi. "Effective control of complex turbulent dynamical systems through statistical functionals." Proceedings of the National Academy of Sciences 114, no. 22 (May 15, 2017): 5571–76. http://dx.doi.org/10.1073/pnas.1704013114.

Повний текст джерела
Анотація:
Turbulent dynamical systems characterized by both a high-dimensional phase space and a large number of instabilities are ubiquitous among complex systems in science and engineering, including climate, material, and neural science. Control of these complex systems is a grand challenge, for example, in mitigating the effects of climate change or safe design of technology with fully developed shear turbulence. Control of flows in the transition to turbulence, where there is a small dimension of instabilities about a basic mean state, is an important and successful discipline. In complex turbulent dynamical systems, it is impossible to track and control the large dimension of instabilities, which strongly interact and exchange energy, and new control strategies are needed. The goal of this paper is to propose an effective statistical control strategy for complex turbulent dynamical systems based on a recent statistical energy principle and statistical linear response theory. We illustrate the potential practical efficiency and verify this effective statistical control strategy on the 40D Lorenz 1996 model in forcing regimes with various types of fully turbulent dynamics with nearly one-half of the phase space unstable.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Ou, Shangli, and Joel E. Tohline. "Unexpected Dynamical Instabilities in Differentially Rotating Neutron Stars." Astrophysical Journal 651, no. 2 (November 10, 2006): 1068–78. http://dx.doi.org/10.1086/507597.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Whalen, Daniel J., and Michael L. Norman. "Three‐Dimensional Dynamical Instabilities in Galactic Ionization Fronts." Astrophysical Journal 672, no. 1 (January 2008): 287–97. http://dx.doi.org/10.1086/522569.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Manca, Gian Mario, Luca Baiotti, Roberto De Pietri, and Luciano Rezzolla. "Dynamical non-axisymmetric instabilities in rotating relativistic stars." Classical and Quantum Gravity 24, no. 12 (May 30, 2007): S171—S186. http://dx.doi.org/10.1088/0264-9381/24/12/s12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Donangelo, R., A. Romanelli, H. Schulz, and A. C. Sicardi-Schifino. "Dynamical effects in the growth of density instabilities." Physical Review C 49, no. 6 (June 1, 1994): 3182–84. http://dx.doi.org/10.1103/physrevc.49.3182.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

KEVREKIDIS, P. G., and D. J. FRANTZESKAKIS. "PATTERN FORMING DYNAMICAL INSTABILITIES OF BOSE–EINSTEIN CONDENSATES." Modern Physics Letters B 18, no. 05n06 (March 12, 2004): 173–202. http://dx.doi.org/10.1142/s0217984904006809.

Повний текст джерела
Анотація:
In this short topical review, we revisit a number of works on the pattern-forming dynamical instabilities of Bose–Einstein condensates in one- and two-dimensional settings. In particular, we illustrate the trapping conditions that allow the reduction of the three-dimensional, mean field description of the condensates (through the Gross–Pitaevskii equation) to such lower dimensional settings, as well as to lattice settings. We then go on to study the modulational instability in one dimension and the snaking/transverse instability in two dimensions as typical examples of long-wavelength perturbations that can destabilize the condensates and lead to the formation of patterns of coherent structures in them. Trains of solitons in one dimension and vortex arrays in two dimensions are prototypical examples of the resulting nonlinear waveforms, upon which we briefly touch at the end of this review.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Persson, Kristin, Mathias Ekman, and Göran Grimvall. "Dynamical and thermodynamical instabilities in the disorderedRexW1−xsystem." Physical Review B 60, no. 14 (October 1, 1999): 9999–10007. http://dx.doi.org/10.1103/physrevb.60.9999.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Kamaya, Hideyuki, and Ryoichi Nishi. "Fluid Dynamical Instabilities in a Partially Ionized Flow." Astrophysical Journal 534, no. 1 (May 2000): 309–16. http://dx.doi.org/10.1086/308721.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Sieber, J., and P. Kowalczyk. "Small-scale instabilities in dynamical systems with sliding." Physica D: Nonlinear Phenomena 239, no. 1-2 (January 2010): 44–57. http://dx.doi.org/10.1016/j.physd.2009.10.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Colonna, M., M. Di Toro, A. Guarnera, S. Maccarone, M. Zielinska-Pfabé, and H. H. Wolter. "Fluctuations and dynamical instabilities in heavy-ion reactions." Nuclear Physics A 642, no. 3-4 (November 1998): 449–60. http://dx.doi.org/10.1016/s0375-9474(98)00542-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Walgraef, Daniel, and Cristoph Schiller. "Anisotropy effects on pattern selection near dynamical instabilities." Physica D: Nonlinear Phenomena 27, no. 3 (August 1987): 423–32. http://dx.doi.org/10.1016/0167-2789(87)90041-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Rius, J., M. Figueras, R. Herrero, J. Farjas, F. Pi, and G. Orriols. "N-dimensional dynamical systems exploiting instabilities in full." Chaos: An Interdisciplinary Journal of Nonlinear Science 10, no. 4 (2000): 760. http://dx.doi.org/10.1063/1.1324650.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Lega, E., A. Morbidelli, and D. Nesvorný. "Early dynamical instabilities in the giant planet systems." Monthly Notices of the Royal Astronomical Society 431, no. 4 (April 9, 2013): 3494–500. http://dx.doi.org/10.1093/mnras/stt431.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Colonna, M., N. Colonna, A. Bonasera, and M. DiToro. "Equilibrium features and dynamical instabilities in nuclear fragmentation." Nuclear Physics A 541, no. 2 (May 1992): 295–317. http://dx.doi.org/10.1016/0375-9474(92)90098-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Jørgen, Knut, and Røed Ødegaard. "Instabilities in Very Massive Stars." International Astronomical Union Colloquium 176 (2000): 391–92. http://dx.doi.org/10.1017/s0252921100058176.

Повний текст джерела
Анотація:
AbstractDetailed dynamical models and nucleosynthesis yields of very massive stars from early pre-MS through very late stages have been computed. The recent reduction of mass loss rates for the WR stages can have important consequences for both the evolution, surface composition and stability. Depending on mass and metallicity, in the present models instabilities occur during the accretion phase (pre-ZAMS), LBV stage and very late stages (WC).
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Cavazzini, G., G. Pavesi, and G. Ardizzon. "Pressure instabilities in a vaned centrifugal pump." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 225, no. 7 (August 4, 2011): 930–39. http://dx.doi.org/10.1177/0957650911410643.

Повний текст джерела
Анотація:
This article reports the acoustic and fluid-dynamical analyses of large-scale instabilities in a vaned centrifugal pump. The unsteady pressure fields at full/part load were measured by dynamic piezoresistive transducers placed at the impeller discharge and on an instrumented diffuser vane. To spectrally characterize the inception and the evolution of the unsteady phenomena, spectral analyses of the pressure signals were carried out both in frequency and time–frequency domains. Numerical analyses were carried out on the same pump with the help of the commercial code CFX. All the computations were performed using the unsteady ‘transient’ model with a time step corresponding to about 1° of the impeller rotation. The turbulence was modelled by the detached eddy simulation model. Numerical pressure signals were compared with the experimental ones to verify the development of the same pressure instabilities. The unsteady numerical flow fields were analysed to study the fluid-dynamical evolution of the instabilities and investigate their origin.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Ødegaard, Knut Jørgen Røed. "Instabilities in LBVs and WR Stars." International Astronomical Union Colloquium 169 (1999): 353–56. http://dx.doi.org/10.1017/s0252921100072237.

Повний текст джерела
Анотація:
AbstractUsing a dynamical stellar code, detailed evolutionary models have been computed that follow the evolution and nucleosynthesis of massive stars from the pre-MS (accretion phase) up to the onset of O-burning. Various instabilities occur during the evolution. As an example, the evolution of a star with maximum mass 120 Mʘ is discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Sapsis, Themistoklis P. "New perspectives for the prediction and statistical quantification of extreme events in high-dimensional dynamical systems." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, no. 2127 (July 23, 2018): 20170133. http://dx.doi.org/10.1098/rsta.2017.0133.

Повний текст джерела
Анотація:
We discuss extreme events as random occurrences of strongly transient dynamics that lead to nonlinear energy transfers within a chaotic attractor. These transient events are the result of finite-time instabilities and therefore are inherently connected with both statistical and dynamical properties of the system. We consider two classes of problems related to extreme events and nonlinear energy transfers, namely (i) the derivation of precursors for the short-term prediction of extreme events, and (ii) the efficient sampling of random realizations for the fastest convergence of the probability density function in the tail region. We summarize recent methods on these problems that rely on the simultaneous consideration of the statistical and dynamical characteristics of the system. This is achieved by combining available data, in the form of second-order statistics, with dynamical equations that provide information for the transient events that lead to extreme responses. We present these methods through two high-dimensional, prototype systems that exhibit strongly chaotic dynamics and extreme responses due to transient instabilities, the Kolmogorov flow and unidirectional nonlinear water waves. This article is part of the theme issue ‘Nonlinear energy transfer in dynamical and acoustical systems’.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Liu, Ben-Qiong, Xiao-Xi Duan, Guang-Ai Sun, Jin-Wen Yang, and Tao Gao. "Structural instabilities and mechanical properties of U2Mo from first principles calculations." Physical Chemistry Chemical Physics 17, no. 6 (2015): 4089–95. http://dx.doi.org/10.1039/c4cp05483k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Jahnke, Craig C., and F. E. C. Culick. "Application of dynamical systems theory to nonlinear combustion instabilities." Journal of Propulsion and Power 10, no. 4 (July 1994): 508–17. http://dx.doi.org/10.2514/3.23801.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Faivre, G., C. Guthmann, and J. Mergy. "Dynamical Instabilities in the Solidification Front of Lamellar Eutectics." Applied Mechanics Reviews 43, no. 5S (May 1, 1990): S89—S90. http://dx.doi.org/10.1115/1.3120858.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Challet, D., A. De Martino, and M. Marsili. "Dynamical instabilities in a simple minority game with discounting." Journal of Statistical Mechanics: Theory and Experiment 2008, no. 04 (April 14, 2008): L04004. http://dx.doi.org/10.1088/1742-5468/2008/04/l04004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Blanchard, Antoine, and Themistoklis P. Sapsis. "Learning the tangent space of dynamical instabilities from data." Chaos: An Interdisciplinary Journal of Nonlinear Science 29, no. 11 (November 2019): 113120. http://dx.doi.org/10.1063/1.5120830.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії