Статті в журналах з теми "Dynamical coupling"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Dynamical coupling.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Dynamical coupling".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Ramadoss, Janarthan, Premraj Durairaj, Karthikeyan Rajagopal, and Akif Akgul. "Collective Dynamical Behaviors of Nonlocally Coupled Brockett Oscillators." Mathematical Problems in Engineering 2023 (April 17, 2023): 1–7. http://dx.doi.org/10.1155/2023/1600610.

Повний текст джерела
Анотація:
In this study, we consider a network of nonlocally coupled Brockett oscillators (BOs) with attractive and repulsive (AR) couplings to illustrate the existence of diverse collective dynamical behaviors, whereas previous studies solely concentrated on synchronization. In the absence of coupling, the individual BO oscillator shows stable periodic oscillations (POs) or stable steady state (SS) depending on the critical values of the parameters. We first begin by examining the collective dynamics by setting the critical value of the parameters at the active (PO) region. A diverge collective dynamical states are manifested for a fixed nonlocal coupling range with rising coupling magnitude. Notably, the lower coupling strength exhibits two distinct dynamical patterns at lower and higher transients. At lesser transients, for example, transient dynamics of desynchronization, chimera, and traveling wave states are observed. At larger time periods, the transient dynamics disappear with the emergence of a synchronized state. Increasing the coupling strength results in a unique state of traveling wave or synchronized state for smaller and larger time periods depending on the coupling strength. Increasing the coupling strength further gives rise to clustering behaviors. Importantly, the considered system attains cluster oscillation death (COD) through a cluster oscillatory state (COS). Finally, there exists a chimera death at a larger coupling strength. The observed dynamical transitions are further demonstrated through the two-parameter analysis by setting different critical thresholds.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Trinschek, Sarah, and Stefan J. Linz. "Dynamics of Attractively and Repulsively Coupled Elementary Chaotic Systems." International Journal of Bifurcation and Chaos 26, no. 03 (March 2016): 1630005. http://dx.doi.org/10.1142/s0218127416300056.

Повний текст джерела
Анотація:
We investigate an elementary model for doubly coupled dynamical systems that consists of two identical, mutually interacting minimal chaotic flows in the form of jerky dynamics. The coupling mechanisms allow for the simultaneous presence of attractive and repulsive interactions between the systems. Despite its functional simplicity, the model is capable of exhibiting diverse types of dynamical phenomena induced by the presence of the couplings. We provide an in-depth numerical investigation of the dynamics depending on the coupling strengths and the autonomous dynamical behavior of the subsystems. Partly, the dynamics of the system can be analytically understood using the Poincaré–Lindstedt method. An approximation of periodic orbits is carried out in the vicinity of a phase-flip transition that leads to deeper insights into the organization of the appearing dynamics in the parameter space. In addition, we propose a circuit that enables an electronic implementation of the model. A variation of the coupling mechanism to a coupling in conjugate variables leads to a regime of amplitude death.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Westerhoff, Hans V., Miguel A. Aon, Karel van Dam, Sonia Cortassa, Daniel Kahn, and Marielle van Workum. "Dynamical and hierarchical coupling." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1018, no. 2-3 (July 1990): 142–46. http://dx.doi.org/10.1016/0005-2728(90)90235-v.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hou, Wei-Shu. "Bootstrap Dynamical Symmetry Breaking." Advances in High Energy Physics 2013 (2013): 1–19. http://dx.doi.org/10.1155/2013/650617.

Повний текст джерела
Анотація:
Despite the emergence of a 125 GeV Higgs-like particle at the LHC, we explore the possibility of dynamical electroweak symmetry breaking by strong Yukawa coupling of very heavy new chiral quarksQ. Taking the 125 GeV object to be a dilaton with suppressed couplings, we note that the Goldstone bosonsGexist as longitudinal modesVLof the weak bosons and would couple toQwith Yukawa couplingλQ. WithmQ≳700 GeV from LHC, the strongλQ≳4could lead to deeply boundQQ¯states. We postulate that the leading “collapsed state,” the color-singlet (heavy) isotriplet, pseudoscalarQQ¯mesonπ1, isGitself, and a gap equation without Higgs is constructed. Dynamical symmetry breaking is affected via strongλQ, generatingmQwhile self-consistently justifying treatingGas massless in the loop, hence, “bootstrap,” Solving such a gap equation, we find thatmQshould be several TeV, orλQ≳4π, and would become much heavier if there is a light Higgs boson. For such heavy chiral quarks, we find analogy with theπ−Nsystem, by which we conjecture the possible annihilation phenomena ofQQ¯→nVLwith high multiplicity, the search of which might be aided by Yukawa-boundQQ¯resonances.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

WU, ZHAOYAN, and XINCHU FU. "SYNCHRONIZATION OF COMPLEX-VARIABLE DYNAMICAL NETWORKS WITH COMPLEX COUPLING." International Journal of Modern Physics C 24, no. 02 (February 2013): 1350007. http://dx.doi.org/10.1142/s0129183113500071.

Повний текст джерела
Анотація:
In this paper, synchronization of complex-variable dynamical networks with complex coupling is investigated. An adaptive feedback control scheme is adopted to design controllers for achieving synchronization of a general network with both complex inner and outer couplings. For a network with only complex inner or outer coupling, pinning control and adaptive coupling strength methods are adopted to achieve synchronization under some assumptions. Several synchronization criteria are derived based on Lyapunov stability theory. Numerical simulations are provided to verify the effectiveness of the theoretical results.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hovhannisyan, Garri, and Caleb Dewey. "Natural & normative dynamical coupling." Cognitive Systems Research 43 (June 2017): 128–39. http://dx.doi.org/10.1016/j.cogsys.2016.11.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Liao, Bin-Kai, Chin-Hao Tseng, Yu-Chen Chu, and Sheng-Kwang Hwang. "Effects of Asymmetric Coupling Strength on Nonlinear Dynamics of Two Mutually Long-Delay-Coupled Semiconductor Lasers." Photonics 9, no. 1 (January 3, 2022): 28. http://dx.doi.org/10.3390/photonics9010028.

Повний текст джерела
Анотація:
This study investigates the effects of asymmetric coupling strength on nonlinear dynamics of two mutually long-delay-coupled semiconductor lasers through both experimental and numerical efforts. Dynamical maps and spectral features of dynamical states are analyzed as a function of the coupling strength and detuning frequency for a fixed coupling delay time. Symmetry in the coupling strength of the two lasers, in general, symmetrizes their dynamical behaviors and the corresponding spectral features. Slight to moderate asymmetry in the coupling strength moderately changes their dynamical behaviors from the ones when the coupling strength is symmetric, but does not break the symmetry of their dynamical behaviors and the corresponding spectral features. High asymmetry in the coupling strength not only strongly changes their dynamical behaviors from the ones when the coupling strength is symmetric, but also breaks the symmetry of their dynamical behaviors and the corresponding spectral features. Evolution of the dynamical behaviors from symmetry to asymmetry between the two lasers is identified. Experimental observations and numerical predictions agree not only qualitatively to a high extent but also quantitatively to a moderate extent.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kurizki, Gershon. "Universal Dynamical Control of Open Quantum Systems." ISRN Optics 2013 (September 19, 2013): 1–51. http://dx.doi.org/10.1155/2013/783865.

Повний текст джерела
Анотація:
Due to increasing demands on speed and security of data processing, along with requirements on measurement precision in fundamental research, quantum phenomena are expected to play an increasing role in future technologies. Special attention must hence be paid to omnipresent decoherence effects, which hamper quantumness. Their consequence is always a deviation of the quantum state evolution (error) with respect to the expected unitary evolution if these effects are absent. In operational tasks such as the preparation, transformation, transmission, and detection of quantum states, these effects are detrimental and must be suppressed by strategies known as dynamical decoupling, or the more general dynamical control by modulation developed by us. The underlying dynamics must be Zeno-like, yielding suppressed coupling to the bath. There are, however, tasks which cannot be implemented by unitary evolution, in particular those involving a change of the system’s state entropy. Such tasks necessitate efficient coupling to a bath for their implementation. Examples include the use of measurements to cool (purify) a system, to equilibrate it, or to harvest and convert energy from the environment. If the underlying dynamics is anti-Zeno like, enhancement of this coupling to the bath will occur and thereby facilitate the task, as discovered by us. A general task may also require state and energy transfer, or entanglement of noninteracting parties via shared modes of the bath which call for maximizing the shared (two-partite) couplings with the bath, but suppressing the single-partite couplings. For such tasks, a more subtle interplay of Zeno and anti-Zeno dynamics may be optimal. We have therefore constructed a general framework for optimizing the way a system interacts with its environment to achieve a desired task. This optimization consists in adjusting a given “score” that quantifies the success of the task, such as the targeted fidelity, purity, entropy, entanglement, or energy by dynamical modification of the system-bath coupling spectrum on demand.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

YANG, XIAO-SONG, and QUAN YUAN. "EMERGENT CHAOS SYNCHRONIZATION IN NONCHAOTIC CNNS." International Journal of Bifurcation and Chaos 18, no. 05 (May 2008): 1337–42. http://dx.doi.org/10.1142/s0218127408021026.

Повний текст джерела
Анотація:
It is shown that emergent chaos synchronization can take place in coupled nonchaotic unit dynamical systems. This is demonstrated by coupling two nonchaotic cellular neural networks, in which the couplings give rise to a synchronous chaotic dynamics and in the meanwhile the synchronous dynamics is globally asymptotically stable, thus chaos synchronization takes place under the suitable couplings.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

DELBOURGO, R., and M. D. SCADRON. "DYNAMICAL GENERATION OF THE GAUGED SU(2) LINEAR SIGMA MODEL." Modern Physics Letters A 10, no. 03 (January 30, 1995): 251–66. http://dx.doi.org/10.1142/s0217732395000284.

Повний текст джерела
Анотація:
The fermion and meson sectors of the quark-level SU(2) linear sigma model are dynamically generated from a meson–quark Lagrangian, with the quark (q) and meson (σ, π) fields all treated as elementary, having neither bare masses nor expectation values. In the chiral limit, the masses are predicted to be mq = fπg, mπ = 0, mσ = 2mq, and we also find that the quark–meson coupling is [Formula: see text], the three-meson coupling is [Formula: see text] and the four-meson coupling is λ = 2g2 = g′/fπ, where fπ ≃ 90 MeV is the pion decay constant and Nc = 3 is the color number. By gauging this model one can generate the couplings to the vector mesons ρ and A1, including the quark–vector coupling constant gρ = 2π, gρππ, gA1ρπ and the masses mρ ~ 700 MeV, [Formula: see text]; of course the vector and axial currents remain conserved throughout.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Grácio, Clara, Sara Fernandes, Luís Lopes, and Gyan Bahadur Thapa. "Analysis of the Behavior of a Chaotic Dynamic System under Different Types of Couplings and Several free Dynamics." Journal of the Institute of Engineering 15, no. 2 (July 31, 2019): 92–112. http://dx.doi.org/10.3126/jie.v15i2.27647.

Повний текст джерела
Анотація:
In this paper, we analyze how the behavior of a chaotic dynamical system changes when we couple it with another. We focus our attention on two aspects: the possibility of chaos suppression and the possibility of synchronization. We consider a Symmetric Linear Coupling and several free dynamics. For each of them we study the evolution of the coupling behavior with the coupling strength constant, defining windows of behavior. We extend the analysis to some other couplings. This is a survey paper.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Legorreta, U. Uriostegui, E. S. Tututi Hernández, and G. Arroyo-Correa. "A new scheme of coupling and synchronizing low-dimensional dynamical systems." Revista Mexicana de Física 67, no. 2 Mar-Apr (July 15, 2021): 334–42. http://dx.doi.org/10.31349/revmexfis.67.334.

Повний текст джерела
Анотація:
A different manner of study synchronization between chaotic systems is presented. This is done by using two different forced coupled nonlinear circuits. The way of coupling the systems under study is different from those used in the analysis of chaos in dynamical systems of low dimensionality. The study of synchronization and how to manipulate it, is carried out through the variation of the couplings by calculating the bifurcation diagrams. We observed that for rather larger values of the coupling between the circuits it is reached total synchronization, while for small values of the coupling it is obtained, in the best of the cases, partial synchronization.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Wang, Xinwei, Guo-Ping Jiang, Chunxia Fan, and Xu Wu. "Topology Detection for Output-Coupling Weighted Complex Dynamical Networks with Coupling and Transmission Delays." Mathematical Problems in Engineering 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/6019714.

Повний текст джерела
Анотація:
Topology detection for output-coupling weighted complex dynamical networks with two types of time delays is investigated in this paper. Different from existing literatures, coupling delay and transmission delay are simultaneously taken into account in the output-coupling network. Based on the idea of the state observer, we build the drive-response system and apply LaSalle’s invariance principle to the error dynamical system of the drive-response system. Several convergent criteria are deduced in the form of algebraic inequalities. Some numerical simulations for the complex dynamical network, with node dynamics being chaotic, are given to verify the effectiveness of the proposed scheme.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Moon, Woosok, and John S. Wettlaufer. "Coupling functions in climate." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, no. 2160 (October 28, 2019): 20190006. http://dx.doi.org/10.1098/rsta.2019.0006.

Повний текст джерела
Анотація:
We examine how coupling functions in the theory of dynamical systems provide a quantitative window into climate dynamics. Previously, we have shown that a one-dimensional periodic non-autonomous stochastic dynamical system can simulate the monthly statistics of surface air temperature data. Here, we expand this approach to two-dimensional dynamical systems to include interactions between two sub-systems of the climate. The relevant coupling functions are constructed from the covariance of the data from the two sub-systems. We demonstrate the method on two tropical climate indices, the El-Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD), to interpret the mutual interactions between these two air–sea interaction phenomena in the Pacific and Indian Oceans. The coupling function reveals that the ENSO mainly controls the seasonal variability of the IOD during its mature phase. This demonstrates the plausibility of constructing a network model for the seasonal variability of climate systems based on such coupling functions. This article is part of the theme issue ‘Coupling functions: dynamical interaction mechanisms in the physical, biological and social sciences’.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Granda, L. N., and D. F. Jimenez. "Dynamical analysis for a scalar–tensor model with kinetic and nonminimal couplings." International Journal of Modern Physics D 27, no. 03 (February 2018): 1850030. http://dx.doi.org/10.1142/s021827181850030x.

Повний текст джерела
Анотація:
We study the autonomous system for a scalar–tensor model of dark energy with nonminimal coupling to curvature and nonminimal kinetic coupling to the Einstein tensor. The critical points describe important stable asymptotic scenarios including quintessence, phantom and de Sitter attractor solutions. Two functional forms for the coupling functions and the scalar potential were considered: power-law and exponential functions of the scalar field. For power-law couplings, the restrictions on stable quintessence and phantom solutions lead to asymptotic freedom regime for the gravitational interaction. For the exponential functions, the stable quintessence, phantom or de Sitter solutions allow asymptotic behaviors where the effective Newtonian coupling can reach either the asymptotic freedom regime or constant value. The phantom solutions could be realized without appealing to ghost degrees of freedom. Transient inflationary and radiation dominated phases can also be described.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Miao, Yu, He Liang, Zhao Haiyun, Chen Zhigang, and Yi Junyan. "Analysis and Design of Adaptive Synchronization of a Complex Dynamical Network with Time-Delayed Nodes and Coupling Delays." Mathematical Problems in Engineering 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/8965124.

Повний текст джерела
Анотація:
This paper is devoted to the study of synchronization problems in uncertain dynamical networks with time-delayed nodes and coupling delays. First, a complex dynamical network model with time-delayed nodes and coupling delays is given. Second, for a complex dynamical network with known or unknown but bounded nonlinear couplings, an adaptive controller is designed, which can ensure that the state of a dynamical network asymptotically synchronizes at the individual node state locally or globally in an arbitrary specified network. Then, the Lyapunov-Krasovskii stability theory is employed to estimate the network coupling parameters. The main results provide sufficient conditions for synchronization under local or global circumstances, respectively. Finally, two typical examples are given, using the M-G system as the nodes of the ring dynamical network and second-order nodes in the dynamical network with time-varying communication delays and switching communication topologies, which illustrate the effectiveness of the proposed controller design methods.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Ren, Guowu, Dier Zhang, and Xin-Gao Gong. "Dynamical Coupling Atomistic and Continuum Simulations." Communications in Computational Physics 10, no. 5 (November 2011): 1305–14. http://dx.doi.org/10.4208/cicp.231110.080211a.

Повний текст джерела
Анотація:
AbstractWe propose a new multiscale method that couples molecular dynamics simulations (MD) at the atomic scale and finite element simulations (FE) at the continuum regime. By constructing the mass matrix and stiffness matrix dependent on coarsening of grids, we find a general form of the equations of motion for the atomic and continuum regions. In order to improve the simulation at finite temperatures, we propose a low-pass phonon filter near the interface between the atomic and continuum regions, which is transparent for low frequency phonons, but dampens the high frequency phonons.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Anselmino, M., and M. D. Scadron. "Dynamical model coupling strangeness to nucleons." Il Nuovo Cimento A 104, no. 8 (August 1991): 1091–94. http://dx.doi.org/10.1007/bf02784491.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Nakagawa, N., and K. Kaneko. "1O1145 Dynamical Mechanism for Loose Coupling." Seibutsu Butsuri 42, supplement2 (2002): S89. http://dx.doi.org/10.2142/biophys.42.s89_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Bartkowska, J. A. "Dynamical Magnetoelectric Coupling in Multiferroic BiFeO3." International Journal of Thermophysics 32, no. 4 (February 4, 2011): 739–45. http://dx.doi.org/10.1007/s10765-011-0920-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Dosch, H. G., та Erasmo Ferreira. "Dynamical evaluation ofπd-dibaryon coupling parameters". Physical Review C 32, № 2 (1 серпня 1985): 496–501. http://dx.doi.org/10.1103/physrevc.32.496.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Daffertshofer, Andreas, Raoul Huys, and Peter J. Beek. "Dynamical coupling between locomotion and respiration." Biological Cybernetics -1, no. 1 (July 7, 2003): 1. http://dx.doi.org/10.1007/s00422-004-0462-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Daffertshofer, Andreas, Raoul Huys, and Peter J. Beek. "Dynamical coupling between locomotion and respiration." Biological Cybernetics 90, no. 3 (March 1, 2004): 157–64. http://dx.doi.org/10.1007/s00422-004-0462-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

ALAMOUDI, SAEED M. "DYNAMICAL VISCOSITY OF NUCLEATING BUBBLES." International Journal of Modern Physics A 16, supp01c (September 2001): 1291–93. http://dx.doi.org/10.1142/s0217751x01009569.

Повний текст джерела
Анотація:
We study the viscosity corrections to the growth rate of nucleating bubbles in a slightly supercooled first order phase transition. We propose a microscopic approach that leads to the nonequilibrium equation of motion of the coordinate that describes small departures from the critical bubble and allows to extract the growth rate consistently in a weak coupling expansion and in the thin wall limit. In 3+1 dimensions we recognize model independent long-wavelength hydrodynamic fluctuations that describe surface waves. The coupling of this coordinate to these hydrodynamic modes results in the largest contribution to the viscosity corrections to the growth rate. The growth rate was calculated for a ϕ4 scalar field theory to lowest order in the coupling constant.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Zhang, Gang, and Guanrong Chen. "Synchronization of Intermittently Coupled Dynamical Networks." Mathematical Problems in Engineering 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/208609.

Повний текст джерела
Анотація:
This paper investigates the synchronization phenomenon of an intermittently coupled dynamical network in which the coupling among nodes can occur only at discrete instants and the coupling configuration of the network is time varying. A model of intermittently coupled dynamical network consisting of identical nodes is introduced. Based on the stability theory for impulsive differential equations, some synchronization criteria for intermittently coupled dynamical networks are derived. The network synchronizability is shown to be related to the second largest and the smallest eigenvalues of the coupling matrix, the coupling strength, and the impulsive intervals. Using the chaotic Chua system and Lorenz system as nodes of a dynamical network for simulation, respectively, the theoretical results are verified and illustrated.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Hagos, Zeray, Tomislav Stankovski, Julian Newman, Tiago Pereira, Peter V. E. McClintock, and Aneta Stefanovska. "Synchronization transitions caused by time-varying coupling functions." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, no. 2160 (October 28, 2019): 20190275. http://dx.doi.org/10.1098/rsta.2019.0275.

Повний текст джерела
Анотація:
Interacting dynamical systems are widespread in nature. The influence that one such system exerts on another is described by a coupling function; and the coupling functions extracted from the time-series of interacting dynamical systems are often found to be time-varying. Although much effort has been devoted to the analysis of coupling functions, the influence of time-variability on the associated dynamics remains largely unexplored. Motivated especially by coupling functions in biology, including the cardiorespiratory and neural delta-alpha coupling functions, this paper offers a contribution to the understanding of effects due to time-varying interactions. Through both numerics and mathematically rigorous theoretical consideration, we show that for time-variable coupling functions with time-independent net coupling strength, transitions into and out of phase- synchronization can occur, even though the frozen coupling functions determine phase-synchronization solely by virtue of their net coupling strength. Thus the information about interactions provided by the shape of coupling functions plays a greater role in determining behaviour when these coupling functions are time-variable. This article is part of the theme issue ‘Coupling functions: dynamical interaction mechanisms in the physical, biological and social sciences’.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Raushan, Rakesh, and R. Chaubey. "Qualitative study of anisotropic cosmological models with dark sector coupling." Canadian Journal of Physics 95, no. 11 (November 2017): 1049–61. http://dx.doi.org/10.1139/cjp-2017-0088.

Повний текст джерела
Анотація:
In this paper, we study the dynamical evolution of locally rotationally symmetric (LRS) Bianchi type I cosmological model with coupling of dark sector. We investigate the phase-plane analysis when dark energy is modelled as exponential quintessence, and is coupled to dark energy matter via linear coupling between both dark components. The evolution of cosmological solutions is studied by using dynamical systems techniques. Stability and viability issues for three different physically viable linear couplings between both dark components are presented and discussed in detail.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Ashwin, Peter, Christian Bick, and Camille Poignard. "State-dependent effective interactions in oscillator networks through coupling functions with dead zones." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, no. 2160 (October 28, 2019): 20190042. http://dx.doi.org/10.1098/rsta.2019.0042.

Повний текст джерела
Анотація:
The dynamics of networks of interacting dynamical systems depend on the nature of the coupling between individual units. We explore networks of oscillatory units with coupling functions that have ‘dead zones’, that is the coupling functions are zero on sets with interior. For such networks, it is convenient to look at the effective interactions between units rather than the (fixed) structural connectivity to understand the network dynamics. For example, oscillators may effectively decouple in particular phase configurations. Along trajectories, the effective interactions are not necessarily static, but the effective coupling may evolve in time. Here, we formalize the concepts of dead zones and effective interactions. We elucidate how the coupling function shapes the possible effective interaction schemes and how they evolve in time. This article is part of the theme issue ‘Coupling functions: dynamical interaction mechanisms in the physical, biological and social sciences’.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Cerf, Raphaël, and Sana Louhichi. "Dynamical coupling between Ising and FK percolation." Latin American Journal of Probability and Mathematical Statistics 16, no. 2 (2019): 1235. http://dx.doi.org/10.30757/alea.v16-48.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Cerf, Raphaël, and Sana Louhichi. "Dynamical coupling between Ising and FK percolation." Latin American Journal of Probability and Mathematical Statistics 17, no. 1 (2020): 23. http://dx.doi.org/10.30757/alea.v17-02.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Singh, Harpartap, and P. Parmananda. "Alternate Coupling Mechanism for Dynamical Quorum Sensing." Journal of Physical Chemistry A 116, no. 42 (October 10, 2012): 10269–75. http://dx.doi.org/10.1021/jp308752c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Mukherjee, R., and R. C. Rosenberg. "Gyroscopic Coupling in Holonomic Lagrangian Dynamical Systems." Journal of Applied Mechanics 66, no. 2 (June 1, 1999): 552–56. http://dx.doi.org/10.1115/1.2791084.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Grigoryan, Vahram, and Jiang Xiao. "Dynamical spin-spin coupling of quantum dots." EPL (Europhysics Letters) 104, no. 1 (October 1, 2013): 17008. http://dx.doi.org/10.1209/0295-5075/104/17008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Sharma, Amit, Manish Dev Shrimali, Awadhesh Prasad, and Ram Ramaswamy. "Time-delayed conjugate coupling in dynamical systems." European Physical Journal Special Topics 226, no. 9 (June 2017): 1903–10. http://dx.doi.org/10.1140/epjst/e2017-70026-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Broze, George, Satish Narayanan, and Fazle Hussain. "Measuring spatial coupling in inhomogeneous dynamical systems." Physical Review E 55, no. 4 (April 1, 1997): 4179–86. http://dx.doi.org/10.1103/physreve.55.4179.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Guendelman, E. I., and R. Steiner. "Confining boundary conditions from dynamical coupling constants." Physics Letters B 734 (June 2014): 245–48. http://dx.doi.org/10.1016/j.physletb.2014.05.057.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Shvaika, Andrij M. "Dynamical susceptibilities in a strong coupling approach." Physica C: Superconductivity 341-348 (November 2000): 177–78. http://dx.doi.org/10.1016/s0921-4534(00)00435-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Choi, Kiwoon. "Dynamical gauge coupling unification from moduli stabilization." Physics Letters B 642, no. 4 (November 2006): 404–10. http://dx.doi.org/10.1016/j.physletb.2006.10.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Roberts, Craig D., and Bruce H. J. McKellar. "Critical coupling for dynamical chiral-symmetry breaking." Physical Review D 41, no. 2 (January 15, 1990): 672–78. http://dx.doi.org/10.1103/physrevd.41.672.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Moreira, Evaldinolia, Sérgio Costa, Ana Paula Aguiar, Gilberto Câmara, and Tiago Carneiro. "Dynamical coupling of multiscale land change models." Landscape Ecology 24, no. 9 (September 4, 2009): 1183–94. http://dx.doi.org/10.1007/s10980-009-9397-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Kia, Behnam, Sarvenaz Kia, John F. Lindner, Sudeshna Sinha, and William L. Ditto. "Coupling Reduces Noise: Applying Dynamical Coupling to Reduce Local White Additive Noise." International Journal of Bifurcation and Chaos 25, no. 03 (March 2015): 1550040. http://dx.doi.org/10.1142/s0218127415500406.

Повний текст джерела
Анотація:
We demonstrate how coupling nonlinear dynamical systems can reduce the effects of noise. For simplicity we investigate noisy coupled map lattices and assume noise is white and additive. Noise from different lattice nodes can diffuse across the lattice and lower the noise level of individual nodes. We develop a theoretical model that explains this observed noise evolution and show how the coupled dynamics can naturally function as an averaging filter. Our numerical simulations are in excellent agreement with the model predictions.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Solís-Perales, Gualberto, José Luis Zapata, and Guillermo Obregón-Pulido. "Synchronization in Time-Varying and Evolving Complex Networks." Mathematics 8, no. 11 (November 3, 2020): 1939. http://dx.doi.org/10.3390/math8111939.

Повний текст джерела
Анотація:
In this contribution, we present the synchronization in dynamical complex networks with varying couplings. We identify two kinds of variations—(i) Non autonomous (Time-varying) couplings: where the coupling strength depends exclusively on time, (ii) Autonomous or Varying couplings (evolution) where the coupling strength depends on the behavior of the interconnected systems. The coupling strength in (i) is exogenous whereas in (ii) the coupling strength is endogenous and is defined by the states of the systems in the nodes. The exponential stability of the synchronization is ensured for the non autonomous couplings, due to the imposition of the coupling strength. Whereas, in the case of evolutionary couplings the exponential stability of the synchronization is not guaranteed for all time, due to the couplings are not controlled or imposed. We present an overview of these features in complex networks and illustrated by means of numerical examples.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Li, Wang, Yongzheng Sun, Youquan Liu, and Donghua Zhao. "Analyzing synchronization of time-delayed complex dynamical networks with periodic on-off coupling." International Journal of Modern Physics B 31, no. 28 (November 9, 2017): 1750210. http://dx.doi.org/10.1142/s0217979217502101.

Повний текст джерела
Анотація:
We investigate the synchronization of time-delayed complex dynamical networks with periodic on-off coupling. We derive sufficient conditions for the complete and generalized outer synchronization. Both our analytical and numerical results show that two time-delayed networks can achieve outer synchronization even if the couplings between the two networks switch off periodically. This synchronization behavior is largely dependent of the coupling strength, the on-off period, the on-off rate and the time delay. In particular, we find that the synchronization time nonmonotonically increases as the time delay increases when the time delay step is not equal to an integer multiple of the on-off period.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

He, Xiang Xin, Jian Guo Li, and Yue Hua Pang. "Modeling and Simulation of Electromechanical Coupling Dynamics for Permanent Magnet Synchronous AC Servomotor." Advanced Materials Research 418-420 (December 2011): 2106–9. http://dx.doi.org/10.4028/www.scientific.net/amr.418-420.2106.

Повний текст джерела
Анотація:
Lagrange-Maxwell equations and Park transform are adopted based on electrical and mechanical energy equations consisting of servomotor parameters. Lagrange-Maxwell equations are transformed from three-phase stator reference coordinates to two-phase rotor reference coordinates. Electromechanical coupling dynamics equations of permanent magnet synchronous servomotor in two-phase reference coordinates are obtained. In this dynamical modeling method of electromechanical coupling system, to establish dynamical differential equations needs to measure amplitude of the flux induced by the permanent magnets and the winding's inductance in dq0 reference of the motor but needs not to measure the size of magnetic circuit. The equations deduced is terse, efficient, and the equations easy to use. Electromechanical coupling dynamics system, servomotor is simulated. Simulation results show that the electromechanical coupling dynamics equations deduced for servomotor are correct, and current control schemes are reasonable.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

He, Li Le, and Rong Li Li. "Dynamical Analysis for Mechanical Arm of the Coal Sampling Machine Based on Rigid-Flexible Coupling Model." Advanced Materials Research 605-607 (December 2012): 1172–75. http://dx.doi.org/10.4028/www.scientific.net/amr.605-607.1172.

Повний текст джерела
Анотація:
Based on multi-body dynamics theory and the Lagrange equation, the rigid-flexible coupling dynamical equations of the Coal sampling arm was deduced.The rigid-flexible coupling mode is established by combining with Pro/E, ANSYS and ADAMS, and the model curve is gotten by simulation. The simulation results indicate that rigid-flexible coupling modeling is more actual and it is necessary to consider the flexible deformation of all arms when the sampling arm system is researched. The results in this paper presents the theoretical foundation for the sampling arm dynamical analysis and structure optimization.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

HARADA, Y., K. MASUDA, and A. OGAWA. "DYNAMICAL BEHAVIOR OF ACOUSTICALLY COUPLED CHAOS OSCILLATORS." Fractals 04, no. 03 (September 1996): 407–14. http://dx.doi.org/10.1142/s0218348x96000534.

Повний текст джерела
Анотація:
We have found, for the first time, that Acoustically Coupling Chaos Oscillator (ACCO) also exhibits a chaotic attractor called the “double scroll Chua’s attractor” by using the modified Chua’s circuit. When each ACCO is in an oscillating periodic state, the interaction of sound waves with acoustic coupling of two ACCOs can also result in the appearance of chaotic sound waves.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Faranda, Davide, Yuzuru Sato, Gabriele Messori, Nicholas R. Moloney, and Pascal Yiou. "Minimal dynamical systems model of the Northern Hemisphere jet stream via embedding of climate data." Earth System Dynamics 10, no. 3 (September 19, 2019): 555–67. http://dx.doi.org/10.5194/esd-10-555-2019.

Повний текст джерела
Анотація:
Abstract. We derive a minimal dynamical systems model for the Northern Hemisphere midlatitude jet dynamics by embedding atmospheric data and by investigating its properties (bifurcation structure, stability, local dimensions) for different atmospheric flow regimes. The derivation is a three-step process: first, we obtain a 1-D description of the midlatitude jet stream by computing the position of the jet at each longitude using ERA-Interim. Next, we use the embedding procedure to derive a map of the local jet position dynamics. Finally, we introduce the coupling and stochastic effects deriving from both atmospheric turbulence and topographic disturbances to the jet. We then analyze the dynamical properties of the model in different regimes: one that gives the closest representation of the properties extracted from real data; one featuring a stronger jet (strong coupling); one featuring a weaker jet (weak coupling); and one with modified topography. Our model, notwithstanding its simplicity, provides an instructive description of the dynamical properties of the atmospheric jet.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Breitschwerdt, D., H. J. Völk, V. Ptuskin, and V. Zirakashvili. "Dynamical Galactic Halos." Symposium - International Astronomical Union 157 (1993): 415–19. http://dx.doi.org/10.1017/s0074180900174546.

Повний текст джерела
Анотація:
It is argued that the description of the magnetic field in halos of galaxies should take into account its dynamical coupling to the other major components of the interstellar medium, namely thermal plasma and cosmic rays (CR's). It is then inevitable to have some loss of gas and CR's (galactic wind) provided that there exist some “open” magnetic field lines, facilitating their escape, and a sufficient level of self-generated waves which couple the particles to the gas. We discuss qualitatively the topology of the magnetic field in the halo and show how galactic rotation and magnetic forces can be included in such an outflow picture.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Aldaya, V., and J. L. Jaramillo. "A first analysis regarding matter-dynamical diffeomorphism coupling." Classical and Quantum Gravity 17, no. 23 (November 16, 2000): 4877–94. http://dx.doi.org/10.1088/0264-9381/17/23/307.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Wu, Jianshe, and Licheng Jiao. "Synchronization in complex dynamical networks with nonsymmetric coupling." Physica D: Nonlinear Phenomena 237, no. 19 (October 2008): 2487–98. http://dx.doi.org/10.1016/j.physd.2008.03.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії