Добірка наукової літератури з теми "Dynamic coacervates"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Dynamic coacervates".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Dynamic coacervates"
Furlani, Franco, Pietro Parisse, and Pasquale Sacco. "On the Formation and Stability of Chitosan/Hyaluronan-Based Complex Coacervates." Molecules 25, no. 5 (February 27, 2020): 1071. http://dx.doi.org/10.3390/molecules25051071.
Повний текст джерелаZheng, Jiabao, Qing Gao, Ge Ge, Jihong Wu, Chuan-he Tang, Mouming Zhao та Weizheng Sun. "Dynamic equilibrium of β-conglycinin/lysozyme heteroprotein complex coacervates". Food Hydrocolloids 124 (березень 2022): 107339. http://dx.doi.org/10.1016/j.foodhyd.2021.107339.
Повний текст джерелаVecchies, Federica, Pasquale Sacco, Eleonora Marsich, Giuseppe Cinelli, Francesco Lopez, and Ivan Donati. "Binary Solutions of Hyaluronan and Lactose-Modified Chitosan: The Influence of Experimental Variables in Assembling Complex Coacervates." Polymers 12, no. 4 (April 13, 2020): 897. http://dx.doi.org/10.3390/polym12040897.
Повний текст джерелаAponte-Rivera, Christian, and Michael Rubinstein. "Dynamic Coupling in Unentangled Liquid Coacervates Formed by Oppositely Charged Polyelectrolytes." Macromolecules 54, no. 4 (January 29, 2021): 1783–800. http://dx.doi.org/10.1021/acs.macromol.0c01393.
Повний текст джерелаMohanty, B., V. K. Aswal, P. S. Goyal, and H. B. Bohidar. "Small-angle neutron and dynamic light scattering study of gelatin coacervates." Pramana 63, no. 2 (August 2004): 271–76. http://dx.doi.org/10.1007/bf02704984.
Повний текст джерелаLin, Ya’nan, Hairong Jing, Zhijun Liu, Jiaxin Chen, and Dehai Liang. "Dynamic Behavior of Complex Coacervates with Internal Lipid Vesicles under Nonequilibrium Conditions." Langmuir 36, no. 7 (January 31, 2020): 1709–17. http://dx.doi.org/10.1021/acs.langmuir.9b03561.
Повний текст джерелаWang, Lechuan, Mengzhuo Liu, Panpan Guo, Huajiang Zhang, Longwei Jiang, Ning Xia, Li Zheng, Qian Cui, and Shihui Hua. "Understanding the structure, interfacial properties, and digestion fate of high internal phase Pickering emulsions stabilized by food-grade coacervates: Tracing the dynamic transition from coacervates to complexes." Food Chemistry 414 (July 2023): 135718. http://dx.doi.org/10.1016/j.foodchem.2023.135718.
Повний текст джерелаFurlani, Franco, Ivan Donati, Eleonora Marsich, and Pasquale Sacco. "Characterization of Chitosan/Hyaluronan Complex Coacervates Assembled by Varying Polymers Weight Ratio and Chitosan Physical-Chemical Composition." Colloids and Interfaces 4, no. 1 (March 2, 2020): 12. http://dx.doi.org/10.3390/colloids4010012.
Повний текст джерелаBohidar, H., P. L. Dubin, P. R. Majhi, C. Tribet, and W. Jaeger. "Effects of Protein−Polyelectrolyte Affinity and Polyelectrolyte Molecular Weight on Dynamic Properties of Bovine Serum Albumin−Poly(diallyldimethylammonium chloride) Coacervates." Biomacromolecules 6, no. 3 (May 2005): 1573–85. http://dx.doi.org/10.1021/bm049174p.
Повний текст джерелаDanielsen, Scott P. O., James McCarty, Joan-Emma Shea, Kris T. Delaney, and Glenn H. Fredrickson. "Molecular design of self-coacervation phenomena in block polyampholytes." Proceedings of the National Academy of Sciences 116, no. 17 (April 4, 2019): 8224–32. http://dx.doi.org/10.1073/pnas.1900435116.
Повний текст джерелаДисертації з теми "Dynamic coacervates"
Lin, Zi. "Dynamic behavior of light-responsive coacervates in microfluidic droplets." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0191.
Повний текст джерелаLiving cells are dynamic compartmentalized systems that operate under non-equilibrium conditions. Emulating such dynamic compartmentalization in artificial systems is gaining attention in soft matter and bottom-up synthetic biology. Liquid-liquid phase separation (LLPS) is particularly key to produce dynamic compartments in biology. This phenomenon underlies the formation of biomolecular condensates in cells and has been hypothesized to play a role in the emergence of protocells at the origins of Life. In vitro, coacervate microdroplets assembled from oppositely charged polyions in water are used to emulate these bio-inspired LLPS processes. Coacervation has been extensively studied at thermodynamic equilibrium, but experimental investigations of dynamic coacervates remain scarce. Given its spatiotemporal resolution, light is particularly interesting to trigger dynamic behaviors in coacervate droplets. The recent design of light-responsive coacervates based on azobenzene photoswitches has opened avenues for dynamically controlling the dissolution and formation of coacervates with light. The dynamics of these processes are yet poorly understood. The main objective of this thesis is to investigate the dynamics of light-actuated DNA/azobenzene coacervate decay, growth and deformations using droplet-based microfluidics. After characterizing the azobenzene photoisomerisation kinetics, we produce photoswitchable coacervates within water-in-oil droplets using microfluidics. We study the relationship between coacervate size, azobenzene concentration and isomerization to build the phase diagram of DNA/azobenzene coacervation. We then investigate the kinetics of coacervate dissolution and reformation under UV and visible light, respectively, at varying coacervate sizes and light intensities to decipher the mechanism of the two processes. Ultimately, we demonstrate complex non-equilibrium coacervate deformations under optimal co-illumination conditions
Частини книг з теми "Dynamic coacervates"
Reber, Arthur S., František Baluška, and William B. Miller. "The Structural and Bioelectrical Basis of Cells." In The Sentient Cell, 67–76. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/oso/9780198873211.003.0005.
Повний текст джерела