Добірка наукової літератури з теми "Ductile fracture simulations"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Ductile fracture simulations".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Ductile fracture simulations"
Liu, HS, and MW Fu. "Prediction and analysis of ductile fracture in sheet metal forming—Part I: A modified Ayada criterion." International Journal of Damage Mechanics 23, no. 8 (June 30, 2014): 1189–210. http://dx.doi.org/10.1177/1056789514541559.
Повний текст джерелаAzizi, Muhammad Azim, Mohd Faiz Mohd Ridhuan, Mohd Zakiyuddin Mohd Zahari, Sharafiz Abdul Rahim, and Muhammad Amin Azman. "Peridynamic Model for Tensile Elongation and Fracture Simulations of Polymethyl Methacrylate Notched Specimens." Applied Mechanics and Materials 909 (September 28, 2022): 11–28. http://dx.doi.org/10.4028/p-2z0841.
Повний текст джерелаDzioba, Ihor, and Sebastian Lipiec. "Fracture Mechanisms of S355 Steel—Experimental Research, FEM Simulation and SEM Observation." Materials 12, no. 23 (November 29, 2019): 3959. http://dx.doi.org/10.3390/ma12233959.
Повний текст джерелаBanabic, Dorel, and Abdolvahed Kami. "Applications of the Gurson’s model in sheet metal forming." MATEC Web of Conferences 190 (2018): 01002. http://dx.doi.org/10.1051/matecconf/201819001002.
Повний текст джерелаWatanabe, Atsuo, Kunio Hayakawa, and Shinichiro Fujikawa. "An Anisotropic Damage Model for Prediction of Ductile Fracture during Cold-Forging." Metals 12, no. 11 (October 27, 2022): 1823. http://dx.doi.org/10.3390/met12111823.
Повний текст джерелаSimkins, D. C., and S. Li. "Meshfree simulations of thermo-mechanical ductile fracture." Computational Mechanics 38, no. 3 (November 25, 2005): 235–49. http://dx.doi.org/10.1007/s00466-005-0744-8.
Повний текст джерелаTong, Ying. "The Evaluation of Ductile Fracture Criteria (DFC) of 6061-T6 Aluminum Alloy." Applied Mechanics and Materials 44-47 (December 2010): 2837–41. http://dx.doi.org/10.4028/www.scientific.net/amm.44-47.2837.
Повний текст джерелаSun, Dong Zhi, Michael Krawiec, and Hariaokto Hooputra. "Characterization and Modelling of the Damage Behavior of Extruded Aluminum Profiles for Crash Simulations." Materials Science Forum 877 (November 2016): 674–79. http://dx.doi.org/10.4028/www.scientific.net/msf.877.674.
Повний текст джерелаKacem, Ahmed, Hervé Laurent, and Sandrine Thuillier. "Prediction of forming limit curve for AA6061-T6 at room and elevated temperatures." IOP Conference Series: Materials Science and Engineering 1238, no. 1 (May 1, 2022): 012044. http://dx.doi.org/10.1088/1757-899x/1238/1/012044.
Повний текст джерелаYuan, Huang, Guoyu Lin, and Alfred Cornec. "Verification of a Cohesive Zone Model for Ductile Fracture." Journal of Engineering Materials and Technology 118, no. 2 (April 1, 1996): 192–200. http://dx.doi.org/10.1115/1.2804886.
Повний текст джерелаДисертації з теми "Ductile fracture simulations"
Xenos, Sokratis. "Porous materials : constitutive modeling and computational issues." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX040.
Повний текст джерелаThis work is concerned with the development, calibration, and numerical implementation of a novel fully explicit isotropic, rate-independent, elasto-plastic model for porous metallic materials. The microstructure is assumed to consist of a random, with uniform probability, distribution of randomly oriented spheroidal voids of the same shape. The proposed model is based on earlier homogenization estimates that use a Linear Comparison Composite (LCC) theory. The resulting expressions exhibit the simplicity of the well known Gurson model and, thus, its numerical implementation in a finite element code is straightforward. To assess the accuracy of the analytical model, we carry out detailed finite-strain, three-dimensional finite element (FE) simulations ofrepresentative volume elements (RVEs) with the corresponding microstructures. Properparameter calibration of the model leads to fairly accurate agreement of the analytical predictions with the corresponding FE average stresses and porosity evolution. We show, both analytically and numerically, that the initial aspect ratio of the voids has a significant effect on the homogenized effective response of the porous material leading to extremely soft responses for flat oblate voids (e.g., aspect ratio less than 0.5) especially at high stress triaxialities.Next, we examine the computational issues related to the numerical implementation of rate-independent constitutive models that lead to softening behavior. It is shown analytically that elastic-plastic models based on ``local'' continuum formulations that do not incorporate a characteristic length scale may lead to loss of ellipticity of the governing partial differential equations (PDEs) and mesh-dependent numerical solutions. To remedy the associated numerical problems, we propose an implicit non-local version of the porous model developed in this work which is based on the introductionof a non-local porosity variable determined from the solution of an additional PDE. We show both analytically and numerically that the regularized version of the model allows for preservation of the elliptic properties of the governing equations yielding mesh-independent, converged solutions in the post-bifurcation regime. The bifurcation point (i.e., strain-to-localization) is found to be highly dependent on the micro-void's shape, with very flat voids (e.g., aspect ratio less than 0.3) leading to lower localization strains. The material length introduced by the non-local formulation is found tohave minimal effect on the predicted bifurcation point, only affecting the post-bifurcation gradient of the macroscopic stress-strain curve and the size of the highly strained zone in the structure.In the last part of this study, both the local and the non-local versions of the model are efficiently implemented in a commercial finite element code (ABAQUS). The models are used for the numerical solution of boundary value problems (BVPs) related to forming and ductile fracture processes under both quasi-static and dynamic conditions. In particular, the industrially relevant problems of Hole expansion (HET) and Charpy impact (CVN) test, the cup-and-cone fracture phenomenon as well as ductile fracture of a specimen with complex geometry and comparison with corresponding experimentalresults are analyzed in detail. Numerical predictions in all cases indicate that ductility is an increasing function of the void shape parameter and materials comprising flat oblate voids of low aspect ratio exhibit early macroscopic crack initiation and propagation compared to materials with spherical/almost spherical voids. Finally, the model's capability to reproduce experimental results with sufficient accuracy suggests that it can be utilized to provide predictions with only a small amount of parameters that may be calibrated from either micromechanics calculations or experimental data
Davaze, Valentin. "Modélisation numérique de l'amorçage et la propagation des fissures dans les tôles métalliques ductiles pour les simulations de crash." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEM060.
Повний текст джерелаIn the event of a car crash, parts made of metal sheets are subjected to failure. Failure of ductile materials is currentlynot reliably predicted in an industrial context, involving additional costs and delays in the design process. This issue isthen addressed in this Ph.D thesis work of the PSA Group carried out in collaboration with Onera and the Centre des Matériaux. The aim of this work is to develop and implement a reliable numerical strategy for crack prediction using the Finite Element Method (FE) in automotive crash simulations. A first part of this work consists in characterizing and then modelling the plastic and fracture behavior of a representative ductile material: the DP450 steel sheets. To do so, tests are performed over a wide range of loading rates, stress triaxialities, and at different temperatures. From the obtained results,a numerical constitutive model is built by taking into account the different observed phenomena influencing crack initiationand propagation: plasticity, strain-rate effects and damage. The constitutive model thus enables to take into account mostof the observed phenomena. However, the use of softening models for modelling damage and thermal effects at highloading rate leads to a pathological dependence of the results on the mesh size and the mesh orientation. This problem issolved by the implementation of a non-local regularization method adapted to dynamic explicit computations. A non-localvariable is then computed through the enrichment of finite elements (continuum and shell). It is therefore treated as a new degree of freedom, which facilitates the exchange of data between the elements while preserving the parallelizationof the code. This variable is then introduced into the constitutive equations, allowing to obtain mesh independent results.The validation of the proposed approach is finally realized through the simulation of experimental results
Ren, Sicong. "Mesures de champs et simulations par élément finis de l'interaction entre vieillissement dynamique et endommagement dans les alliages métalliques." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEM001/document.
Повний текст джерелаRecently, in-situ observations by X-ray laminography (at synchrotron) show that the multiple localization bands are the precursors of damage and possibly the slant fracture. These bands can be related to the strain ageing effect (L"uders or Portevin-Le Chatelier (PLC)) whose influence on the fracture is still poorly understood. These effects are observed in many industrial alloys such as 2000 or 5000 series aluminium alloys, or, for example, in the C-Mn steels for which a ductility drop is observed in the temperature range where these effects are most pronounced.The aim of the thesis is to characterize the PLC effect and to evaluate its influence on the development of ductile damage and therefore on the final fracture. Firstly, the influence of strain ageing on strain hardening was introduced in a model based on the dislocation density using results from the literature. Secondly, several 2000 series aluminium alloys and a C-Mn steel were investigated by mechanical tests combined with Digital Image Correlation. The premature triggering of localization bands was observed in tensile tests involving relaxation, unloading and strain rate jump for certain aluminium alloys. The bands around the notch in the specimens of C-Mn steel were observed at high temperature. Two different modes of fracture were observed at the two temperatures. These results are compared with those produced with the KEMC model. Thirdly, a constitutive model combining the strain ageing (type KEMC) and damage (type Rousselier) was developed in order to explain the experimentally observed interactions between these two phenomena
Mbarek, Imen Asma. "Étude dynamique pour définition d'aciers de blindage innovants contre les explosions." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0189.
Повний текст джерелаThe main aim of this PhD thesis is to develop a comprehensive study of the dynamic behavior of three armor steels subjected to ballistic impact. In order to have better understanding of the phenomena which take place during the thin targets perforation process, characterization experiments allowing to describe of the thermo-viscoplastic behavior and fracture were carried out. The identification of the constitutive relations and the failure criteria parameters allow to establish a numerical model simulating the perforation test. The ballistic response of armor steels subjected to the impact of conical projectiles was then assessed using perforation testing. This experimental investigation aims at endorsing the implementation of the behavior and fracture models in the calculation software. An experimental set-up for perforation forces measurements was specially developed during the thesis. It has been found that this dynamic force measurement is not intrinsic to the target material. It is rather dependent on the structural response of the used set-up support-target during impact and perforation. The numerical results from the Finite Elements Analysis (FEA) were compared to the experimental data and good agreement was found in terms of ballistic curves, failure patterns, impact forces and energy balance. Numerical investigations show that only an accurate description of the mechanical behavior and the fracture allows a good prediction of the ballistic performances of armor steels. Close attention was paid to the influence of local stress triaxiality induced by the projectile nose shape, strain rate and temperature on the strain to fracture threshold. In the future, these investigations can be used in the behavior analysis of armor steels subjected to blast loading
Bude, Jérémie. "Ductile fracture simulation using the strong discontinuity method." Thesis, Compiègne, 2015. http://www.theses.fr/2015COMP2243/document.
Повний текст джерелаIn the context of loadings criticality analysis, the thesis work have the following objectives : to take into account the underlying phenomena to ductile fracture : the volumetrie (plasticity and damage) and surfacic (fracture) dissipativ mechanisms. We also aim at regularizing the solution with regards to meshing, predicting the transition from a straigh crack propagation to a slant fracture mode observed for certain tests. The chosen method relies on the stron discontinuity method. One of the major challenges of this work is to extend its framework to the ductile fractur modeling framework, by accounting for plasticity and damage in the bulk. The first part of this work is dedicated to th establ'ishment of a model in small strain hypothesis, with a material model that takes into account coupied plasticity an damage in the QUik and a damageable model for the cohesive surfacic behavior. Both modes 1 and Il have been taken int) account in thnumerical examples. Results attesting the regularizing capabilities of the method are presented fo different tests. The second part of this work is dedicated to the formulation of a finite strain mode!, and results showin the good regularizing capabilities of the method are also shown. Both elements have been implemented in FEAP (Finit Element Analysis Program), an academie software developed at UC Berkeley by Taylor, and more recently in the finit element software Abaqus
Emerson, Tonya Lynn. "Ductile fracture mechanics : modeling, experiments, and computational simulation /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2002. http://uclibs.org/PID/11984.
Повний текст джерелаWang, Li. "Ductile fracture simulation of structural steel using the local approach method." Thesis, University of the West of England, Bristol, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271053.
Повний текст джерелаMyers, Andrew T. "Testing and probabilistic simulation of ductile fracture initiation in structural steel components and weldments /." May be available electronically:, 2009. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Повний текст джерелаHůlka, Jiří. "Aplikace modelů tvárného porušování při výpočtové simulaci technologických operací." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2008. http://www.nusl.cz/ntk/nusl-227954.
Повний текст джерелаHütter, Geralf. "Multi-scale simulation of crack propagation in the ductile-brittle transition region." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2013. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-121281.
Повний текст джерелаIn der vorliegenden Arbeit wird die Rissausbreitung im spröd-duktilen Übergangsbereich auf zwei Skalen mittels deterministischer Modelle untersucht. Das duktile Versagen wird im makroskopischen Modell durch ein nichtlokales Gurson-Modell beschrieben, während im mikroskopischen Modell die Porenmikrostruktur im Bereich um die Rissspitze diskret aufgelöst wird. Das mögliche Versagen durch Spaltbruch wird nicht, wie üblich, nachträglich durch ein spannungsbasiertes Kriterium bewertet. Stattdessen wird der Spaltbruch auf beiden Skalen durch ein Kohäsivzonenmodell abgebildet. Somit wird die Spaltbruchinitiierung nicht a priori mit instabiler Rissausbreitung gleichgesetzt. Vielmehr ist die Stabilität der Rissausbreitung ein Ergebnis der Simulationen. Außerdem wird das Problem der der Handhabung vollständig ausgefallenen Materials im Rahmen nichtlokaler Schädigungsmodelle herausgestellt. Es wird eine Methode vorgestellt, dieses Problem zu behandeln und erfolgreich angewendet. In den Simulationen wird der Fall vollständig eingebetteten, plastischen Fließens untersucht. Die Simulationen mit dem makroskopischen Modell geben viele Effekte wieder, die aus Experimenten bekannt sind. Dazu zählen die Ausbildung von Stretchzonen, die Spaltbruchinitiierung nach anfänglichem, duktilem Reißen oder lokale Instabilitäten mit Rissarrest. Die mikroskopischen Simulationen tragen zum Verständnis des makroskopisch beobachteten Verhaltens bei. In der vorliegenden Arbeit werden systematische Parameterstudien durchgeführt. Zunächst werden Grenzfälle wie das rein duktile Versagens oder der Spaltbruch in Abwesenheit der Mikroporen untersucht, um die Einflüsse der einzelnen Materialparameter abzugrenzen. Ausgehend von diesen Ergebnissen wird eine Prozedur vorgeschlagen, die Materialparameter des makroskopischen Modells Schritt für Schritt aus Experimenten zu bestimmen. Diese Prozedur wird erfolgreich auf experimentelle Daten aus der Literatur angewendet. Die Ergebnisse zeigen, dass es das entwickelte Modell erlaubt, das Verhalten einer Bruchmechanikprobe mit geringer Dehnungsbehinderung an der Rissspitze mit denjenigen Materialparametern vorherzusagen, die an Proben mit einer hohen Dehnungsbehinderung ermittelt wurden
Книги з теми "Ductile fracture simulations"
Komori, Kazutake. Ductile Fracture in Metal Forming: Modelling and Simulation. Elsevier Science & Technology, 2019.
Знайти повний текст джерелаKomori, Kazutake. Ductile Fracture in Metal Forming: Modeling and Simulation. Elsevier Science & Technology Books, 2019.
Знайти повний текст джерелаЧастини книг з теми "Ductile fracture simulations"
Gerke, S., M. Schmidt, M. Dirian, and M. Brünig. "Damage and Fracture of Ductile Sheet Metals: Experiments and Numerical Simulations with New Biaxial Specimens." In Advanced Structured Materials, 99–116. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70563-7_5.
Повний текст джерелаYoon, D. H., and J. Choung. "Collision simulations between a floating offshore wind turbine and a tanker considering ductile fracture and hydrodynamics of FOWT." In Advances in the Collision and Grounding of Ships and Offshore Structures, 461–68. London: CRC Press, 2023. http://dx.doi.org/10.1201/9781003462170-56.
Повний текст джерелаSpaniel, M. "Numerical Simulation of Ductile Fracture." In The Latest Methods of Construction Design, 277–82. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-22762-7_41.
Повний текст джерелаKikuchi, Masanori. "Numerical Simulation of Ductile Fracture Process Including Shear-Lip Fracture." In The Mechanical Behavior of Materials X, 839–44. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-440-5.839.
Повний текст джерелаHello, Gaëtan, Hocine Kebir, and Laurent Chambon. "Numerical Simulation of the Ductile Fracture Growth Using the Boundary Element Method." In Damage and Fracture Mechanics, 455–61. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2669-9_48.
Повний текст джерелаBora, Dipankar, Manoj Kumar, and Sachin S. Gautam. "Continuum Damage Mechanics Based Simulation of Ductile Fracture of Cylindrical Tubes." In Lecture Notes in Mechanical Engineering, 65–71. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6469-3_6.
Повний текст джерелаArfaoui, Latifa, Amel Samet, and Amna Znaidi. "Ductile Fracture Characterization of an IF Steel Tensile Test by Numerical Simulation." In Lecture Notes in Mechanical Engineering, 318–27. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-27146-6_34.
Повний текст джерелаMu, Lei, Zhe Jia, Ben Guan, and Yong Zang. "Finite Element Simulation of Edge Fracture by Mapping the Shear-Induced Ductile Damage into Hole-Expansion Simulation." In Forming the Future, 1633–41. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75381-8_137.
Повний текст джерелаUrata, Shingo, and Shaofan Li. "Simulation of Ductile Fracture in Amorphous and Polycrystalline Materials by Multiscale Cohesive Zone Model." In Mathematical Analysis of Continuum Mechanics and Industrial Applications II, 39–50. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6283-4_4.
Повний текст джерелаAlves, José, Hazem Eldahshan, Ugo Ripert, Richard Ducloux, Daniel Pino Munoz, and Pierre-Olivier Bouchard. "Advancements in the Simulation of 3D Ductile Damage Transition to Fracture with FORGE®." In Lecture Notes in Mechanical Engineering, 275–83. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-42093-1_27.
Повний текст джерелаТези доповідей конференцій з теми "Ductile fracture simulations"
Li, J. "Meshless Analysis of Ductile Failure." In ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57134.
Повний текст джерелаDeng, Xiaomin, and Michael A. Sutton. "Experiments, Analysis and Simulation of Mixed Mode Ductile Fracture." In ASME 2005 Pressure Vessels and Piping Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pvp2005-71384.
Повний текст джерелаDing, Huafeng, Caichao Zhu, Zhong Zhou, and Dong Qian. "Ductile Failure in Processed Thin Sheet Metals." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-65584.
Повний текст джерелаNonn, Aida, Marcelo Paredes, Vincent Keim, and Tomasz Wierzbicki. "Comparison of Fracture Models to Quantify the Effects of Material Plasticity on the Ductile Fracture Propagation in Pipelines." In 2018 12th International Pipeline Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/ipc2018-78366.
Повний текст джерелаFonzo, Andrea, Andrea Meleddu, Giuseppe Demofonti, Michele Tavassi, and Brian Rothwell. "Ductile Fracture Control for High Strength Steel Pipelines." In 2006 International Pipeline Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/ipc2006-10331.
Повний текст джерелаKane, Alexandre, Sigmund Ås, and Erling Østby. "3D Fracture Simulations of SENT Specimens Including Welding Residual Stresses." In ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/omae2012-84057.
Повний текст джерелаSuga, Kazuhiro, Katsumasa Miyazaki, Ryotaro Senda, and Masanori Kikuchi. "Interaction Effect Evaluation of Plural Surface Cracks in Ductile Fracture Process." In ASME 2012 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/pvp2012-78132.
Повний текст джерелаMiyajima, Yuuki, Masanori Kikuchi, and Akiyuki Takahashi. "Ductile Fracture Simulation of a Pipe of Steam Generator in PWR." In ASME 2013 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/pvp2013-97582.
Повний текст джерелаRyu, Ho-Wan, Hune-Tae Kim, Jae-Jun Han, Yun-Jae Kim, Jong-Sung Kim, Myung-Rak Choi, and Jin-Weon Kim. "Effects of Side Groove on Fracture Toughness." In ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/pvp2015-45731.
Повний текст джерелаDybwad, Jacob, Rikard To¨rnqvist, Erling O̸stby, and Christian Thaulow. "Simulations of Ductile Tearing at Large Strains of Biaxially Loaded Pipes." In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-79631.
Повний текст джерелаЗвіти організацій з теми "Ductile fracture simulations"
Kanninen, M. F. L51718 Development and Validation of a Ductile Fracture Analysis Model. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), May 1994. http://dx.doi.org/10.55274/r0010321.
Повний текст джерела