Добірка наукової літератури з теми "Duct aero-acoustics"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Duct aero-acoustics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Duct aero-acoustics"

1

Drabek, Pavel, and Martin Zalesak. "CAA Approaches for Duct Elements of HVAC Systems." MATEC Web of Conferences 328 (2020): 01015. http://dx.doi.org/10.1051/matecconf/202032801015.

Повний текст джерела
Анотація:
In recent years there has been a significant increase in computing performance. This has allowed companies to make more use of numerical simulation methods during the development phase, even for areas that until recently were almost unfeasible. This article presents the fundamental aspects related to Computational Aero-Acoustics for internal flow with a focus on HVAC elements. The aim was to answer questions about the computational mesh, computational models and boundary conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

JEGO, Laurie, Mikaël GRONDEAU, Jean-Max SANCHEZ, Sylvain GUILLOU, Christophe BAILLY, and Margaux REGNIEZ. "Numerical simulation of the flow-induced noise of a ducted diaphragm using the Lattice Boltzmann Method." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 270, no. 6 (October 4, 2024): 5864–74. http://dx.doi.org/10.3397/in_2024_3655.

Повний текст джерела
Анотація:
Acoustic discretion is of prime importance for submarines while operating, in order not to be detected. One of the submarine acoustic sources is the noise induced by water flows passing through singularities in pipes ending at the hull, thus radiating acoustic waves in the vessel surroundings. Predicting the noise induced by singularities in pipes is then fundamental to determine the acoustic signature of an underwater ship. Several Computational Aero-Acoustics methods have been implemented in order to predict the sound induced by singularities such as diaphragms and perforated plates. In this study, the Lattice Boltzmann Method (LBM) coupled to Large Eddy Simulation (LES) is used to simulate the flow passing through a diaphragm and to predict the induced noise. The method is first implemented for an airflow in a rectangular duct, with the final objective of being applied to confined water flows encountered in circular or rectangular ducts.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tang, Y. J., L. Gan, C. Liang, J. L. Gao, and S. Z. Zhang. "Aero-acoustics study of coupled cavities in close proximity along a rectangular flow duct at low Mach number." Journal of Physics: Conference Series 2746, no. 1 (May 1, 2024): 012023. http://dx.doi.org/10.1088/1742-6596/2746/1/012023.

Повний текст джерела
Анотація:
Abstract In present study, a series of flow induced noise experiments were investigated by a coupled cavity with low Mach number flow. A new signal processing method was derived to analyze the turbulence sound field and its propagation inside the coupled cavity region. In order to investigate the sound field in the presence of flow throughout the coupled cavity regions, a transfer function technique for transducer signals was developed. Experimental result and analysis show that the significant sound attenuation effect is caused by the pressure fluctuation that gives rise to canceling waves along the main duct section. In the presence of the acoustic excitation and the duct flow, the Rossiter type of feedback is the dominant mechanism responsible for the sound amplification effect. This type of feedback mechanism also results in relatively tonal sound generations at various frequencies within the working bandwidth of the coupled cavities.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Astley, R. J., R. Sugimoto, and P. Mustafi. "Computational aero-acoustics for fan duct propagation and radiation. Current status and application to turbofan liner optimisation." Journal of Sound and Vibration 330, no. 16 (August 2011): 3832–45. http://dx.doi.org/10.1016/j.jsv.2011.03.022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bashir, Imran, and Michael Carley. "Development of 3D boundary element method for the simulation of acoustic metamaterials/metasurfaces in mean flow for aerospace applications." International Journal of Aeroacoustics 19, no. 6-8 (September 3, 2020): 324–46. http://dx.doi.org/10.1177/1475472x20954423.

Повний текст джерела
Анотація:
Low-cost airlines have significantly increased air transport, thus an increase in aviation noise. Therefore, predicting aircraft noise is an important component for designing an aircraft to reduce its impact on environmental noise along with the cost of testing and certification. The aim of this work is to develop a three-dimensional Boundary Element Method (BEM), which can predict the sound propagation and scattering over metamaterials and metasurfaces in mean flow. A methodology for the implementation of metamaterials and metasurfaces in BEM as an impedance patch is presented here. A three-dimensional BEM named as BEM3D has been developed to solve the aero-acoustics problems, which incorporates the Fast Multipole Method to solve large scale acoustics problems, Taylor’s transformation to account for uniform and non-uniform mean flow, impedance and non-local boundary conditions for the implementation of metamaterials. To validate BEM3D, the predictions have been benchmarked against the Finite Element Method (FEM) simulations and experimental data. It has been concluded that for no flow case BEM3D gives identical acoustics potential values against benchmarked FEM (COMSOL) predictions. For Mach number of 0.1, the BEM3D and FEM (COMSOL) predictions show small differences. The difference between BEM3D and FEM (COMSOL) predictions increases further for higher Mach number of 0.2 and 0.3. The increase in difference with Mach number is because Taylor’s Transformation gives an approximate solution for the boundary integral equation. Nevertheless, it has been concluded that Taylor’s transformation gives reasonable predictions for low Mach number of up to 0.3. BEM3D predictions have been validated against experimental data on a flat plate and a duct. Very good agreement has been found between the measured data and BEM3D predictions for sound propagation without and with the mean flow at low Mach number.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Okhovatian, Sogand, and Viken Koukounian. "Using empirical data to validate the role of computational fluid dynamics in various stages of aero-acoustic simulations." Journal of the Acoustical Society of America 155, no. 3_Supplement (March 1, 2024): A62—A63. http://dx.doi.org/10.1121/10.0026809.

Повний текст джерела
Анотація:
The purpose of utilizing higher level of understanding techniques is to improve the overall outcome of any process. As a full-service provider of complex engineering solutions to environmental noise problems, there is a need to house specialized knowledge to design and deliver bespoke solutions that are compatible with various constraints that implicate numerous subjects (acoustics, aerodynamics, structural, materials/chemical compatibility). The physics associated with seemingly simple products, such as an industrial acoustic silencer, is often complex. More specifically, its study should be described as aero-vibro-acoustical—whereby (1) airflow causes vibrations in the structure of the silencer, (2) the vibrations generate airborne and structureborne noise, and (3) components of the silencer (i.e., baffles) attenuate noise propagating through the duct. Motivated to expand our understanding of our products’ performances, we are using Siemens software to circumvent exhaustive laboratory testing that is cost-prohibitive, and which is, generally, limited to common geometries and parameters. A systematic approach is necessary to validate correlations between simulated results with empirical data. This is accomplished by, first, correlating the aerodynamic performance of products using computational fluid dynamics (CFD) to predict pressure drop values and the distribution of forces on the structure, to then leverage additional solvers to assess the vibro-acoustical stage of the analysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Guo, Jingwen, Xiangtian Li, Chenyu Ren, and Xin Zhang. "Recognizing the aeroacoustic information of noise radiated by an unflanged duct based on convolutional neural networks." Journal of the Acoustical Society of America 152, no. 5 (November 2022): 2531–42. http://dx.doi.org/10.1121/10.0015003.

Повний текст джерела
Анотація:
Accurately recognizing the aeroacoustic information of noise propagating into and radiating out of an aero-engine duct is of both fundamental and practical interest. The aeroacoustic information includes (1) the acoustic properties of the noise source, such as the frequency ( f) and the circumferential and radial mode numbers ( m, n), and (2) the flight conditions, including the ambient flow speed ( M0) and the jet flow speed ( M1). In this study, a data-driven model is developed to predict the aeroacoustic information of a simplified aero-engine duct noise from the far-field sound pressure level directivity. The model is constructed by the integration of one-dimensional convolutional layers and fully connected layers. The training and validation datasets are calculated from the analytical model for noise radiation from a semi-infinite unflanged duct based on the Wiener–Hopf method. For a single-spinning mode source, a regression model is established for f, M0, and M1 prediction, and a classification model is built up for m and n prediction. Additionally, for a multi-spinning mode source, the regression model is used to predict the coefficient of each mode. Results show that the proposed data-driven model can effectively and robustly predict the acoustic characteristics of noise propagation in and radiation out of an aero-engine bypass duct.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Van Hirtum, A., R. Blandin, and X. Pelorson. "A setup to study aero-acoustics for finite length ducts with time-varying shape." Applied Acoustics 105 (April 2016): 83–92. http://dx.doi.org/10.1016/j.apacoust.2015.11.019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lacombe, R., S. Föller, G. Jasor, W. Polifke, Y. Aurégan, and P. Moussou. "Identification of aero-acoustic scattering matrices from large eddy simulation: Application to whistling orifices in duct." Journal of Sound and Vibration 332, no. 20 (September 2013): 5059–67. http://dx.doi.org/10.1016/j.jsv.2013.04.036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lu, Zhengli, Weichen Pan, and Yiheng Guan. "Numerical studies of transmission loss performances of asymmetric Helmholtz resonators in the presence of a grazing flow." Journal of Low Frequency Noise, Vibration and Active Control 38, no. 2 (December 11, 2018): 244–54. http://dx.doi.org/10.1177/1461348418817914.

Повний текст джерела
Анотація:
As a typical noise-attenuating device, Helmholtz resonators are widely implemented in aero-engines and gas turbines to decrease the transmission of acoustic noise. However, an asymmetric Helmholtz resonator could be designed and implemented due to the limited space available in the engines. To examine and optimize the noise-attenuating performances of the asymmetric resonator, comparison studies are performed. For this, a two-dimensional frequency-domain model of a cylindrical duct with a grazing flow is developed. An asymmetric Helmholtz resonator is attached as a side branch. The model containing the linearized Navier–Stokes equations is validated first by comparing the predicted results with the experimental ones available in the literature. Further validation is conducted by comparing the results of an asymmetric resonator with the analytical ones available in the literature. The effects of (1) neck offset distance from the center of the resonator cavity denoted by [Formula: see text] and (2) the grazing flow Mach number [Formula: see text] are evaluated. It is shown that as the grazing flow Mach number is increased, the resonant frequencies and the maximum transmission losses are dramatically varied for a given [Formula: see text]. As [Formula: see text] is increased from 0 to 0.5 and [Formula: see text], the resonant frequencies and the maximum transmission losses are increased. However, when [Formula: see text] is lower than 0.07, i.e. [Formula: see text], the transmission loss performances are almost unchanged with [Formula: see text] increased. The optimum design of the asymmetric resonator is shown to give rise to the resonant frequency being shifted by 10% and 2–5 dB more transmission loss at higher Mach number. Finally, visualization of vortex shedding formed at the neck of the asymmetric resonator confirms that acoustical energy is transformed into kinetic energy and absorbed by the surrounding air. This study opens up a numerical design approach to optimize an asymmetric resonator.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Duct aero-acoustics"

1

Alenius, Emma. "Flow Duct Acoustics : An LES Approach." Doctoral thesis, KTH, MWL Strömningsakustik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-104777.

Повний текст джерела
Анотація:
The search for quieter internal combustion engines drives the quest for a better understanding of the acoustic properties of engine duct components. Simulations are an important tool for enhanced understanding; they give insight into the flow-acoustic interaction in components where it is difficult to perform measurements. In this work the acoustics is obtained directly from a compressible Large Eddy Simulation (LES). With this method complex flow phenomena can be captured, as well as sound generation and acoustic scattering. The aim of the research is enhanced understanding of the acoustics of engine gas exchange components, such as the turbocharger compressor.In order to investigate methods appropriate for such studies, a simple constriction, in the form of an orifice plate, is considered. The flow through this geometry is expected to have several of the important characteristics that generate and scatter sound in more complex components, such as an unsteady shear layer, vortex generation, strong recirculation zones, pressure fluctuations at the plate, and at higher flow speeds shock waves. The sensitivity of the scattering to numerical parameters, and flow noise suppression methods, is investigated. The most efficient method for reducing noise in the result is averaging, both in time and space. Additionally, non-linear effects were found to appear when the amplitude of the acoustic velocity fluctuations became larger than around 1~\% of the mean velocity, in the orifice. The main goal of the thesis has been to enhance the understanding of the flow and acoustics of a thick orifice plate, with a jet Mach number of 0.4 to 1.2. Additionally, we evaluate different methods for analysis of the data, whereby better insight into the problem is gained. The scattering of incoming waves is compared to measurements with in general good agreement. Dynamic Mode Decomposition (DMD) is used in order to find significant frequencies in the flow and their corresponding flow structures, showing strong axisymmetric flow structures at frequencies where a tonal sound is generated and incoming waves are amplified.The main mechanisms for generating plane wave sound are identified as a fluctuating mass flow at the orifice openings and a fluctuating force at the plate sides, for subsonic jets. This study is to the author's knowledge the first numerical investigation concerning both sound generation and scattering, as well as coupling sound to a detailed study of the flow.With decomposition techniques a deeper insight into the flow is reached. It is shown that a feedback mechanism inside the orifice leads to the generation of strong coherent axisymmetric fluctuations, which in turn generate a tonal sound.

QC 20121113

Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yang, Jinyue. "Impedance eduction of acoustic liners with complex sound fields and shear flows." Electronic Thesis or Diss., Le Mans, 2024. http://www.theses.fr/2024LEMA1023.

Повний текст джерела
Анотація:
Les traitements acoustiques sont largement utilisés pour réduire les émissions sonores des moteurs d'avions. Pour leur développement, il est essentiel de pouvoir mesurer l’impédance acoustique de ces traitements et d'étudier leur comportement en présence d’écoulement. Cette thèse vise à évaluer la performance de la méthode directe de mesure dans des conditions réalistes, en particulier lorsque l'on considère de grands conduits, des modes acoustiques d'ordres élevés et des vitesses d'écoulement représentatives des nacelles d'aéronefs. L'étude est d'abord basée sur des simulations numériques avec une méthode multimodale. Ensuite, le banc d’essai, MAINE Flow, permet de valider et de démontrer expérimentalement les méthodes proposées et les conclusions.Dans les grands conduits, le champ acoustique est plus complexe que dans les petits, pour la même gamme de fréquences. Ainsi, la mesure d'impédance est un défi, qui est également perturbé par le bruit dû à la présence de l'écoulement. Ce travail conçoit d’abord la configuration expérimentale et des antennes de microphones, pour réaliser une mesure d'impédance précise dans de grands conduits. Ensuite, la validité de l'hypothèse d'écoulement uniforme qui est souvent appliquée est évaluée, et l’effet d’un écoulement cisaillé est étudié, en particulier dans le cas de conduits de grandes tailles. Finalement, différentes ondes incidentes entraînent des comportements différents de la méthode de mesure. Par conséquent, l'influence du champ acoustique incident est aussi étudiée
Acoustic liners are widely used to reduce noise emissions in aircraft engines. The investigation of liners behavior is essential for their development. Impedance eduction is thus commonly implemented to measure its acoustic impedance in presence of flow. The work in this thesis aims to study the performance of the direct eduction method under realistic conditions, especially when considering large ducts, high-order acoustic modes and flow velocities representative of aircraft nacelles. The study is first based on numerical simulations with a multimodal method. Then the MAINE Flow facility is used for experimental validation and demonstration of the proposed methods and conclusions.In large ducts, the sound field is more complex compared to small ducts in the same frequency range. Therefore, the impedance eduction is challenging, and also because it is also perturbed by the background noise due to the presence of flow. The first task is to design microphone arrays for the experimental facility with the aim of performing accurate impedance eduction in large ducts. The second objective is to investigate the effects of shear flow. Impedance eduction is commonly implemented under the hypothesis of uniform mean flow. However, it is reasonable to question the validity of the uniform flow hypothesis, especially when considering large ducts. The third task is to study the influence of the incident sound field. In large ducts, the sound field contains higher-order modes, and different incident waves result in different behavior of the impedance eduction. It is thus necessary to study how the incident acoustic field affects the eduction results in the presence of flow
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hugues, Florian. "Modelling the vibrations generated by turbulent flows in ducts." Thesis, Compiègne, 2018. http://www.theses.fr/2018COMP2470/document.

Повний текст джерела
Анотація:
La prédiction des vibrations induites par un écoulement est essentielle dans la conception des conduits de nombreuses installations industrielles, en particulier dans l’industrie du gaz. Notre étude concerne la prévision du bruit et la vibration des conduits soumis à un écoulement turbulent à faible nombre de Mach. Notre objectif est de présenter une étude numérique et expérimentale permettant aux ingénieurs de mieux comprendre le couplage entre l’excitation aléatoire et le conduit pour deux géométries (circulaire ou rectangulaire). Une approche expérimentale est développée et utilisée pour valider les prévisions numériques. Deux cas sont étudiés : (i) un conduit droit sans singularité, où les modes acoustiques du conduit sont excités par une couche limite turbulente (TBL) et (ii) un conduit droit avec un diaphragme inséré en amont qui génère une source acoustique localisée. La contribution acoustique est déterminée soit par des méthodes de mesure d’interspectres, soit à l’aide des outils de mécanique des fluides numérique (CFD) et d’analogies aéroacoustiques. La réponse de la structure est estimée par une approche dite de « couplage faible » qui utilise des fonctions de transfert modale d’un conduit fini simplement appuyé. Les mesures conduiront à évaluer et suggérer des améliorations de modèles empiriques existants de densité interspectrale de puissance (CPSD) dans un contexte d’écoulements internes turbulents. Une analyse modale expérimentale d’un conduit rectangulaire finie est confrontée à des méthodes de calcul pour évaluer l’effet des conditions aux limites, du rayonnement acoustique et de l’amortissement aérodynamique. Le couplage fluide structure est analysé par la fonction de « joint acceptance » à la fois dans le domaine spatial et dans le domaine des nombres d’onde. L’excitation comprend à la fois les contributions acoustiques et hydrodynamiques à l’aide des CPSD exprimées sur la base des fonctions de cohérence de type Corcos, champ diffus et modes acoustiques d’ordre élevé. Enfin, les études numériques et expérimentales de cette thèse ont été utilisées pour développer un cadre d’étude et de modélisation du bruit et des vibrations dans les conduites, qui relie la dynamique des fluides, les modèles analytiques et empiriques à des techniques efficaces d’analyse aléatoire
Pipeline and duct vibrations can cause a range of issues from unplanned shutdownsto decreased equipment life time. Thus, the prediction of flow-induced vibrations is essential in piping design in many industrial plants, especially, for Gas industry. This study deals with the prediction of pipe flow noise and vibration at low Mach number. We aim to present a numerical and experimental study which can offer engineers a better understanding of the coupling between random excitation and duct section for two geometries (circular or rectangular). An experimental facility and measurement approach is developed and used to validate numerical predictions. Two cases are investigated: (i) a straight duct with no singularity, duct acoustic modes are excited by the Turbulent Boundary Layer (TBL) and (ii) a straight duct with a diaphragm inserted upstream generating a localized acoustic source. The acoustic contribution is either measured via cross-spectra based methods or calculated using Computational Fluid Dynamics (CFD) and aeroacoustic analogies. The response of the structure is estimated via a ‘blocked’ approach using analytical modal Frequency Response Functions (FRFs) of a simply supported finite duct. Measurements will lead to evaluate and suggest improvements to existing Cross Power Spectral Density (CPSD) empirical models in a context of internal turbulent flows. Experimental modalanalysis of a finite rectangular duct are confronted to computational methods to assess the effect of the Boundary Conditions (BCs), the resistive damping from coupling with the internal acoustic medium and aerodynamic damping. The fluid-structure coupling is analyzed through the joint acceptance function both in the spatial and wave number domain. The excitation includes both the acoustic and hydrodynamic contributions using CPSD written on the basis of Corcos, Diffuse Acoustic Field (DAF) and acoustic duct mode coherence functions. Finally, the numerical and experimental studies in this thesis were used to develop a framework for studying and modelling pipe flow noise and vibration which links CFD, analytical and empirical models to efficient random analysis techniques
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Duct aero-acoustics"

1

Auger, J. M., and J. M. Ville. "Flow Effects on Measurement of the Modal Decomposition of Acoustic Field in a Hard Wall Cylindrical Duct." In Aero- and Hydro-Acoustics, 437–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82758-7_41.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Welsh, M. C., and A. N. Stokes. "Transient Vortex Modelling of Flow Induced Acoustic Resonances Near Cavities or Obstructions in Ducts." In Aero- and Hydro-Acoustics, 499–505. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82758-7_46.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Duct aero-acoustics"

1

Abom, Mats, Sabry Allam, and Susann Boij. "Aero-Acoustics of Flow Duct Singularities at Low Mach Numbers." In 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-2687.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Defoe, J. J., and Z. S. Spakovszky. "Effects of Boundary Layer Ingestion on the Aero-Acoustics of Transonic Fan Rotors." In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68503.

Повний текст джерела
Анотація:
The use of boundary-layer-ingesting, embedded propulsion systems can result in inlet flow distortions where the interaction of the boundary layer vorticity and the inlet lip causes horseshoe vortex formation and the ingestion of streamwise vortices into the inlet. A previously-developed body-force-based fan modeling approach was used to assess the change in fan rotor shock noise generation and propagation in a boundary-layer-ingesting, serpentine inlet. This approach is employed here in a parametric study to assess the effects of inlet geometry parameters (offset-to-diameter ratio and downstream-to-upstream area ratio) on flow distortion and rotor shock noise. Mechanisms related to the vortical inlet structures were found to govern changes in the rotor shock noise generation and propagation. The vortex whose circulation is in the opposite direction to the fan rotation (counter-swirling vortex) increases incidence angles on the fan blades near the tip, enhancing noise generation. The vortex with circulation in the direction of fan rotation (co-swirling vortex) creates a region of subsonic relative flow near the blade tip radius which decreases the sound power propagated to the far-field. The parametric study revealed that the overall sound power level at the fan leading edge is set by the ingested streamwise circulation, and that for inlet designs in which the streamwise vortices are displaced away from the duct wall, the sound power at the upstream inlet plane increased by as much as 9 dB. By comparing the far-field noise results obtained to those for a conventional inlet, it is deduced that the changes in rotor shock noise are predominantly due to the ingestion of streamwise vorticity.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії