Добірка наукової літератури з теми "Dualité de Pontryagin"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Dualité de Pontryagin".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Dualité de Pontryagin"
Lim, Johnny. "Analytic Pontryagin duality." Journal of Geometry and Physics 145 (November 2019): 103483. http://dx.doi.org/10.1016/j.geomphys.2019.103483.
Повний текст джерелаChasco, M. J., and E. Mart�n-Peinador. "Binz-Butzmann duality versus Pontryagin duality." Archiv der Mathematik 63, no. 3 (September 1994): 264–70. http://dx.doi.org/10.1007/bf01189829.
Повний текст джерелаBanaszczyk, Wojciech, María Jesús Chasco, and Elena Martin-Peinador. "Open subgroups and Pontryagin duality." Mathematische Zeitschrift 215, no. 1 (January 1994): 195–204. http://dx.doi.org/10.1007/bf02571709.
Повний текст джерелаChasco, M. J. "Pontryagin duality for metrizable groups." Archiv der Mathematik 70, no. 1 (January 1, 1998): 22–28. http://dx.doi.org/10.1007/s000130050160.
Повний текст джерелаShtern, A. I. "Duality between compactness and discreteness beyond pontryagin duality." Proceedings of the Steklov Institute of Mathematics 271, no. 1 (December 2010): 212–27. http://dx.doi.org/10.1134/s0081543810040164.
Повний текст джерелаMelnikov, Alexander. "Computable topological groups and Pontryagin duality." Transactions of the American Mathematical Society 370, no. 12 (May 3, 2018): 8709–37. http://dx.doi.org/10.1090/tran/7355.
Повний текст джерелаHern�ndez, Salvador. "Pontryagin duality for topological Abelian groups." Mathematische Zeitschrift 238, no. 3 (November 1, 2001): 493–503. http://dx.doi.org/10.1007/s002090100263.
Повний текст джерелаVan Daele, A., and Shuanhong Wang. "Pontryagin duality for bornological quantum hypergroups." manuscripta mathematica 131, no. 1-2 (November 18, 2009): 247–63. http://dx.doi.org/10.1007/s00229-009-0318-8.
Повний текст джерелаHernández, Salvador, and Vladimir Uspenskij. "Pontryagin Duality for Spaces of Continuous Functions." Journal of Mathematical Analysis and Applications 242, no. 2 (February 2000): 135–44. http://dx.doi.org/10.1006/jmaa.1999.6627.
Повний текст джерелаGabriyelyan, S. S. "Groups of quasi-invariance and the Pontryagin duality." Topology and its Applications 157, no. 18 (December 2010): 2786–802. http://dx.doi.org/10.1016/j.topol.2010.08.018.
Повний текст джерелаДисертації з теми "Dualité de Pontryagin"
Artusa, Marco. "Sur des théorèmes de dualité pour la cohomologie condensée du groupe de Weil d'un corps p-adique." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0228.
Повний текст джерелаThe goal of this thesis is twofold. First, we build a topological cohomology theory for the Weil group of p-adic fields. Secondly, we use this theory to prove duality theorems for such fields, which manifest as Pontryagin duality between locally compact abelian groups. These results improve existing duality theorems and give them a topological flavour. Condensed Mathematics allow us to reach these objectives, providing a framework where it is possible to do algebra with topological objects. We define and study a cohomology theory for condensed groups and pro-condensed groups, and we apply it to the Weil group of a p-adic field, considered as a pro-condensed group. The resulting cohomology groups are proved to be locally compact abelian groups of finite ranks in some special cases. This allows us to enlarge the local Tate duality to a more general category of non-necessarily discrete coefficients, where it takes the form of a Pontryagin duality between locally compact abelian groups. In the last part of the thesis, we use the same framework to recover a Weil-version of the Tate duality with coefficients in abelian varieties and more generally in 1-motives, expressing those dualities as perfect pairings between condensed abelian groups. To do this, we associate to every algebraic group, resp. 1-motive, a condensed abelian group, resp. a complex of condensed abelian groups, with an action of the (pro-condensed) Weil group. We call this association the condensed Weil-´etale realisation. We show the existence of a condensed Poincar´e pairing for abelian varieties and we prove a condensed-Weil version of the Tate duality with coefficients in abelian varieties, which improves the correspondent result of Karpuk. Lastly, we exhibit a condensed Poincar´e pairing for 1-motives. We show that this pairing is compatible with the weight filtration and we prove a duality theorem with coefficients in 1-motives, which improves a result of Harari-Szamuely
Del, Gatto Davide. "Analisi di Fourier sui Gruppi." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18784/.
Повний текст джерелаChis, Cristina. "Bounded sets in topological groups." Doctoral thesis, Universitat Jaume I, 2010. http://hdl.handle.net/10803/10502.
Повний текст джерелаIn the second part of the paper, we apply duality methods in order to obtain estimations of the size of a local base for an important class of groups. This translation, which has been widely exhibited in the Pontryagin-van Kampen duality theory of locally compact abelian groups, is often very relevant and has been extended by many authors to more general classes of topological groups. In this work we follow basically the pattern and terminology given by Vilenkin in 1998.
Lim, Johnny. "Analytic Pontryagin Duality." Thesis, 2019. http://hdl.handle.net/2440/124554.
Повний текст джерелаThesis (Ph.D.) -- University of Adelaide, School of Mathematical Sciences, 2019
Černohorská, Eva. "Homotopické struktury v algebře, geometrii a matematické fyzice." Master's thesis, 2011. http://www.nusl.cz/ntk/nusl-313715.
Повний текст джерелаКниги з теми "Dualité de Pontryagin"
Außenhofer, Lydia, Dikran Dikranjan, and Anna Giordano Bruno. Topological Groups and the Pontryagin-van Kampen Duality. De Gruyter, 2021. http://dx.doi.org/10.1515/9783110654936.
Повний текст джерелаDikranjan, Dikran, Anna Giordano Bruno, and Lydia Außenhofer. Topological Groups and the Pontryagin-Van Kampen Duality: An Introduction. de Gruyter GmbH, Walter, 2021.
Знайти повний текст джерелаStralka, A., M. Mislove, and K. H. Hofmann. Pontryagin Duality of Compact o-Dimensional Semilattices and Its Applications. Springer London, Limited, 2006.
Знайти повний текст джерелаDikranjan, Dikran, Anna Giordano Bruno, and Lydia Außenhofer. Topological Groups and the Pontryagin-Van Kampen Duality: An Introduction. de Gruyter GmbH, Walter, 2021.
Знайти повний текст джерелаDikranjan, Dikran, Anna Giordano Bruno, and Lydia Außenhofer. Topological Groups and the Pontryagin-Van Kampen Duality: An Introduction. de Gruyter GmbH, Walter, 2021.
Знайти повний текст джерелаMorris, Sidney A. Pontryagin Duality and the Structure of Locally Compact Abelian Groups. Cambridge University Press, 2009.
Знайти повний текст джерелаMorris, Sidney A. Pontryagin Duality and the Structure of Locally Compact Abelian Groups. Cambridge University Press, 2011.
Знайти повний текст джерелаZhang, Xu, and Qi Lü. General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions. Springer London, Limited, 2014.
Знайти повний текст джерелаGeneral Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions. Springer, 2014.
Знайти повний текст джерелаЧастини книг з теми "Dualité de Pontryagin"
Banaszczyk, Wojciech. "Pontryagin duality." In Lecture Notes in Mathematics, 132–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0089152.
Повний текст джерелаVourdas, Apostolos. "Partial Orders and Pontryagin Duality." In Quantum Science and Technology, 7–10. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59495-8_2.
Повний текст джерелаJayakumar, S., S. S. Iyengar, and Naveen Kumar Chaudhary. "Sensor Fusion and Pontryagin Duality." In Lecture Notes in Electrical Engineering, 123–37. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-5091-1_10.
Повний текст джерелаLisica, Yu T. "The alexander-pontryagin duality theorem for coherent homology and cohomology with coefficients in sheaves of modules." In Lecture Notes in Mathematics, 148–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0081425.
Повний текст джерелаGamkrelidze, R. V. "Topological Duality Theorems." In L. S. Pontryagin Selected Works, 347–74. CRC Press, 2019. http://dx.doi.org/10.1201/9780367813758-25.
Повний текст джерела"13 The Pontryagin-van Kampen duality." In Topological Groups and the Pontryagin-van Kampen Duality, 201–28. De Gruyter, 2021. http://dx.doi.org/10.1515/9783110654936-013.
Повний текст джерелаGamkrelidze, R. V. "The General Topological Theorem of Duality for Closed Sets *." In L. S. Pontryagin Selected Works, 137–50. CRC Press, 2019. http://dx.doi.org/10.1201/9780367813758-9.
Повний текст джерела"14 Applications of the duality theorem." In Topological Groups and the Pontryagin-van Kampen Duality, 229–62. De Gruyter, 2021. http://dx.doi.org/10.1515/9783110654936-014.
Повний текст джерела"7 Completeness and completion." In Topological Groups and the Pontryagin-van Kampen Duality, 97–114. De Gruyter, 2021. http://dx.doi.org/10.1515/9783110654936-007.
Повний текст джерела"11 The Følner theorem." In Topological Groups and the Pontryagin-van Kampen Duality, 159–86. De Gruyter, 2021. http://dx.doi.org/10.1515/9783110654936-011.
Повний текст джерелаТези доповідей конференцій з теми "Dualité de Pontryagin"
Akbarov, Sergei S. "Pontryagin duality and topological algebras." In Topological Algebras, their Applications, and Related Topics. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2005. http://dx.doi.org/10.4064/bc67-0-5.
Повний текст джерелаGauthier, Jean Paul. "Hypoelliptic diffusion, Chu duality and human vision." In International Conference "Optimal Control and Differential Games" dedicated to the 110th anniversary of L. S. Pontryagin. Moscow: Steklov Mathematical Institute, 2018. http://dx.doi.org/10.4213/proc22841.
Повний текст джерела