Статті в журналах з теми "Drug Side Effect Prediction"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Drug Side Effect Prediction".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.
Hu, Baofang, Hong Wang, and Zhenmei Yu. "Drug Side-Effect Prediction Via Random Walk on the Signed Heterogeneous Drug Network." Molecules 24, no. 20 (October 11, 2019): 3668. http://dx.doi.org/10.3390/molecules24203668.
Повний текст джерелаSeo, Sukyung, Taekeon Lee, Mi-hyun Kim, and Youngmi Yoon. "Prediction of Side Effects Using Comprehensive Similarity Measures." BioMed Research International 2020 (February 28, 2020): 1–10. http://dx.doi.org/10.1155/2020/1357630.
Повний текст джерелаKim, Jinwoo, and Miyoung Shin. "A Knowledge Graph Embedding Approach for Polypharmacy Side Effects Prediction." Applied Sciences 13, no. 5 (February 22, 2023): 2842. http://dx.doi.org/10.3390/app13052842.
Повний текст джерелаArshed, Muhammad Asad, Shahzad Mumtaz, Omer Riaz, Waqas Sharif, and Saima Abdullah. "A Deep Learning Framework for Multi Drug Side Effects Prediction with Drug Chemical Substructure." Vol 4 Issue 1 4, no. 1 (January 22, 2022): 19–31. http://dx.doi.org/10.33411/ijist/2022040102.
Повний текст джерелаMohd Ali, Yousoff Effendy, Kiam Heong Kwa, and Kurunathan Ratnavelu. "Predicting new drug indications from network analysis." International Journal of Modern Physics C 28, no. 09 (September 2017): 1750118. http://dx.doi.org/10.1142/s0129183117501182.
Повний текст джерелаZhao, Xian, Lei Chen, Zi-Han Guo, and Tao Liu. "Predicting Drug Side Effects with Compact Integration of Heterogeneous Networks." Current Bioinformatics 14, no. 8 (December 13, 2019): 709–20. http://dx.doi.org/10.2174/1574893614666190220114644.
Повний текст джерелаDuffy, Áine, Marie Verbanck, Amanda Dobbyn, Hong-Hee Won, Joshua L. Rein, Iain S. Forrest, Girish Nadkarni, Ghislain Rocheleau, and Ron Do. "Tissue-specific genetic features inform prediction of drug side effects in clinical trials." Science Advances 6, no. 37 (September 2020): eabb6242. http://dx.doi.org/10.1126/sciadv.abb6242.
Повний текст джерелаChen, Lei, Tao Huang, Jian Zhang, Ming-Yue Zheng, Kai-Yan Feng, Yu-Dong Cai, and Kuo-Chen Chou. "Predicting Drugs Side Effects Based on Chemical-Chemical Interactions and Protein-Chemical Interactions." BioMed Research International 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/485034.
Повний текст джерелаZhou, Mengshi, Yang Chen, and Rong Xu. "A Drug-Side Effect Context-Sensitive Network approach for drug target prediction." Bioinformatics 35, no. 12 (November 14, 2018): 2100–2107. http://dx.doi.org/10.1093/bioinformatics/bty906.
Повний текст джерелаShaked, Itay, Matthew A. Oberhardt, Nir Atias, Roded Sharan, and Eytan Ruppin. "Metabolic Network Prediction of Drug Side Effects." Cell Systems 2, no. 3 (March 2016): 209–13. http://dx.doi.org/10.1016/j.cels.2016.03.001.
Повний текст джерелаLiang, Haiyan, Lei Chen, Xian Zhao, and Xiaolin Zhang. "Prediction of Drug Side Effects with a Refined Negative Sample Selection Strategy." Computational and Mathematical Methods in Medicine 2020 (May 9, 2020): 1–16. http://dx.doi.org/10.1155/2020/1573543.
Повний текст джерелаSeo, Sukyung, Taekeon Lee, and Youngmi Yoon. "Prediction of Drug Side Effects Based on Drug-Related Information." Journal of Korean Institute of Information Technology 17, no. 12 (December 31, 2019): 21–28. http://dx.doi.org/10.14801/jkiit.2019.17.12.21.
Повний текст джерелаChen, Y. H., Y. T. Shih, C. S. Chien, and C. S. Tsai. "Predicting adverse drug effects: A heterogeneous graph convolution network with a multi-layer perceptron approach." PLOS ONE 17, no. 12 (December 14, 2022): e0266435. http://dx.doi.org/10.1371/journal.pone.0266435.
Повний текст джерелаZheng, Yi, Wentao Zhao, Chengcheng Sun, and Qian Li. "Drug Side-Effect Prediction Using Heterogeneous Features and Bipartite Local Models." Computers, Materials & Continua 60, no. 2 (2019): 481–96. http://dx.doi.org/10.32604/cmc.2019.05536.
Повний текст джерелаNiu, Yanqing, and Wen Zhang. "Quantitative prediction of drug side effects based on drug-related features." Interdisciplinary Sciences: Computational Life Sciences 9, no. 3 (May 17, 2017): 434–44. http://dx.doi.org/10.1007/s12539-017-0236-5.
Повний текст джерелаLounkine, Eugen, Michael J. Keiser, Steven Whitebread, Dmitri Mikhailov, Jacques Hamon, Jeremy L. Jenkins, Paul Lavan, et al. "Large-scale prediction and testing of drug activity on side-effect targets." Nature 486, no. 7403 (June 2012): 361–67. http://dx.doi.org/10.1038/nature11159.
Повний текст джерелаPancino, Niccolò, Yohann Perron, Pietro Bongini, and Franco Scarselli. "Drug Side Effect Prediction with Deep Learning Molecular Embedding in a Graph-of-Graphs Domain." Mathematics 10, no. 23 (December 1, 2022): 4550. http://dx.doi.org/10.3390/math10234550.
Повний текст джерелаGuney, Emre. "Revisiting Cross-Validation of Drug Similarity Based Classifiers Using Paired Data." Genomics and Computational Biology 4, no. 1 (December 6, 2017): 100047. http://dx.doi.org/10.18547/gcb.2018.vol4.iss1.e100047.
Повний текст джерелаHuang, Wei, Chunyan Li, Ying Ju, and Yan Gao. "The Next Generation of Machine Learning in DDIs Prediction." Current Pharmaceutical Design 27, no. 23 (September 9, 2021): 2728–36. http://dx.doi.org/10.2174/1381612827666210127122312.
Повний текст джерелаLim, Seungsoo, Hayon Lee, and Youngmi Yoon. "Prediction of New Drug-Side Effect Relation using Word2Vec Model-based Word Similarity." Journal of Korean Institute of Information Technology 18, no. 11 (November 30, 2020): 25–33. http://dx.doi.org/10.14801/jkiit.2020.18.11.25.
Повний текст джерелаYamanishi, Yoshihiro, Edouard Pauwels, and Masaaki Kotera. "Drug Side-Effect Prediction Based on the Integration of Chemical and Biological Spaces." Journal of Chemical Information and Modeling 52, no. 12 (December 4, 2012): 3284–92. http://dx.doi.org/10.1021/ci2005548.
Повний текст джерелаZhou, Mengshi, Chunlei Zheng, and Rong Xu. "Combining phenome-driven drug-target interaction prediction with patients’ electronic health records-based clinical corroboration toward drug discovery." Bioinformatics 36, Supplement_1 (July 1, 2020): i436—i444. http://dx.doi.org/10.1093/bioinformatics/btaa451.
Повний текст джерелаChe, Jingang, Lei Chen, Zi-Han Guo, Shuaiqun Wang, and Aorigele. "Drug Target Group Prediction with Multiple Drug Networks." Combinatorial Chemistry & High Throughput Screening 23, no. 4 (May 19, 2020): 274–84. http://dx.doi.org/10.2174/1386207322666190702103927.
Повний текст джерелаMohanapriya, D., and Dr R. Beena. "Predicting Drug Indications and Side Effects Using Deep Learning and Transfer Learning." Alinteri Journal of Agriculture Sciences 36, no. 1 (May 17, 2021): 281–89. http://dx.doi.org/10.47059/alinteri/v36i1/ajas21042.
Повний текст джерелаMower, Justin, Devika Subramanian, and Trevor Cohen. "Learning predictive models of drug side-effect relationships from distributed representations of literature-derived semantic predications." Journal of the American Medical Informatics Association 25, no. 10 (July 11, 2018): 1339–50. http://dx.doi.org/10.1093/jamia/ocy077.
Повний текст джерелаYao, Yuanzhe, Zeheng Wang, Liang Li, Kun Lu, Runyu Liu, Zhiyuan Liu, and Jing Yan. "An Ontology-Based Artificial Intelligence Model for Medicine Side-Effect Prediction: Taking Traditional Chinese Medicine as an Example." Computational and Mathematical Methods in Medicine 2019 (October 1, 2019): 1–7. http://dx.doi.org/10.1155/2019/8617503.
Повний текст джерелаDykeman, J., M. Lowerison, P. Faris, N. Jette, N. Pillay, B. Klassen, A. Hanson, W. Murphy, P. Federico, and S. Wiebe. "Prediction of Antiepileptic Drug Side Effects in Patients with Epilepsy (S06.007)." Neurology 78, Meeting Abstracts 1 (April 22, 2012): S06.007. http://dx.doi.org/10.1212/wnl.78.1_meetingabstracts.s06.007.
Повний текст джерелаKanji, Rakesh, Abhinav Sharma, and Ganesh Bagler. "Phenotypic side effects prediction by optimizing correlation with chemical and target profiles of drugs." Molecular BioSystems 11, no. 11 (2015): 2900–2906. http://dx.doi.org/10.1039/c5mb00312a.
Повний текст джерелаWilson, Jennifer L., Alessio Gravina, and Kevin Grimes. "From random to predictive: a context-specific interaction framework improves selection of drug protein–protein interactions for unknown drug pathways." Integrative Biology 14, no. 1 (January 2022): 13–24. http://dx.doi.org/10.1093/intbio/zyac002.
Повний текст джерелаWang, Chen, and Lukasz Kurgan. "Review and comparative assessment of similarity-based methods for prediction of drug–protein interactions in the druggable human proteome." Briefings in Bioinformatics 20, no. 6 (August 8, 2018): 2066–87. http://dx.doi.org/10.1093/bib/bby069.
Повний текст джерелаPaiman, Arif, Ahmad Mohammad, and Mubashar Rehman. "Role of Computer Aided Drug Design in Modern Drug Discovery and Pharmacokinetic Prediction." Global Drug Design & Development Review II, no. I (December 30, 2017): 1–8. http://dx.doi.org/10.31703/gdddr.2017(ii-i).01.
Повний текст джерелаHwang, Youhyeon, Min Oh, and Youngmi Yoon. "Extraction of specific common genetic network of side effect pair, and prediction of side effects for a drug based on PPI network." Journal of the Korea Society of Computer and Information 21, no. 1 (January 30, 2016): 115–23. http://dx.doi.org/10.9708/jksci.2016.21.1.115.
Повний текст джерелаPauwels, Edouard, Véronique Stoven, and Yoshihiro Yamanishi. "Predicting drug side-effect profiles: a chemical fragment-based approach." BMC Bioinformatics 12, no. 1 (2011): 169. http://dx.doi.org/10.1186/1471-2105-12-169.
Повний текст джерелаYu, Liyi, Meiling Cheng, Wangren Qiu, Xuan Xiao, and Weizhong Lin. "idse-HE: Hybrid embedding graph neural network for drug side effects prediction." Journal of Biomedical Informatics 131 (July 2022): 104098. http://dx.doi.org/10.1016/j.jbi.2022.104098.
Повний текст джерелаLee, Chun Yen, and Yi‐Ping Phoebe Chen. "Descriptive prediction of drug side‐effects using a hybrid deep learning model." International Journal of Intelligent Systems 36, no. 6 (March 2021): 2491–510. http://dx.doi.org/10.1002/int.22389.
Повний текст джерелаJahid, Md Jamiul, and Jianhua Ruan. "Structure-based prediction of drug side effects using a novel classification algorithm." International Journal of Computational Biology and Drug Design 9, no. 1/2 (2016): 87. http://dx.doi.org/10.1504/ijcbdd.2016.074985.
Повний текст джерелаCHEN, Y. Z., Z. R. LI, and C. Y. UNG. "COMPUTATIONAL METHOD FOR DRUG TARGET SEARCH AND APPLICATION IN DRUG DISCOVERY." Journal of Theoretical and Computational Chemistry 01, no. 01 (July 2002): 213–24. http://dx.doi.org/10.1142/s0219633602000166.
Повний текст джерелаIslam, Sk Mazharul, Sk Md Mosaddek Hossain, and Sumanta Ray. "DTI-SNNFRA: Drug-target interaction prediction by shared nearest neighbors and fuzzy-rough approximation." PLOS ONE 16, no. 2 (February 19, 2021): e0246920. http://dx.doi.org/10.1371/journal.pone.0246920.
Повний текст джерелаSun, Yifan, Yi Xiong, Qian Xu, and Dongqing Wei. "A Hadoop-Based Method to Predict Potential Effective Drug Combination." BioMed Research International 2014 (2014): 1–5. http://dx.doi.org/10.1155/2014/196858.
Повний текст джерелаXuan, Ping, Yangkun Cao, Tiangang Zhang, Xiao Wang, Shuxiang Pan, and Tonghui Shen. "Drug repositioning through integration of prior knowledge and projections of drugs and diseases." Bioinformatics 35, no. 20 (March 13, 2019): 4108–19. http://dx.doi.org/10.1093/bioinformatics/btz182.
Повний текст джерелаLiang, Siqi, and Haiyuan Yu. "Revealing new therapeutic opportunities through drug target prediction: a class imbalance-tolerant machine learning approach." Bioinformatics 36, no. 16 (May 12, 2020): 4490–97. http://dx.doi.org/10.1093/bioinformatics/btaa495.
Повний текст джерелаJaundoo, Rajeev, and Travis J. A. Craddock. "DRUGPATH: A New Database for Mapping Polypharmacology." Alberta Academic Review 2, no. 3 (October 15, 2019): 4. http://dx.doi.org/10.29173/aar92.
Повний текст джерелаSachdev, Kanica, and Manoj K. Gupta. "A comprehensive review of computational techniques for the prediction of drug side effects." Drug Development Research 81, no. 6 (April 20, 2020): 650–70. http://dx.doi.org/10.1002/ddr.21669.
Повний текст джерелаSamizadeh, Mina, and Behrouz Minaei-Bidgoli. "Drug-target Interaction Prediction by Metapath2vec Node Embedding in Heterogeneous Network of Interactions." International Journal on Artificial Intelligence Tools 29, no. 01 (February 2020): 2050001. http://dx.doi.org/10.1142/s0218213020500013.
Повний текст джерелаKulemina, Lidia V., and David A. Ostrov. "Prediction of Off-Target Effects on Angiotensin-Converting Enzyme 2." Journal of Biomolecular Screening 16, no. 8 (August 22, 2011): 878–85. http://dx.doi.org/10.1177/1087057111413919.
Повний текст джерелаWang, Meng, Haofen Wang, Xing Liu, Xinyu Ma, and Beilun Wang. "Drug-Drug Interaction Predictions via Knowledge Graph and Text Embedding: Instrument Validation Study." JMIR Medical Informatics 9, no. 6 (June 24, 2021): e28277. http://dx.doi.org/10.2196/28277.
Повний текст джерелаGao, Yu-Fei, Lei Chen, Guo-Hua Huang, Tao Zhang, Kai-Yan Feng, Hai-Peng Li, and Yang Jiang. "Prediction of Drugs Target Groups Based on ChEBI Ontology." BioMed Research International 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/132724.
Повний текст джерелаB, Nithya, and Anitha G. "Drug Side-effects Prediction using Hierarchical Fuzzy Deep Learning for Diagnosing Specific Disease." International Journal of Engineering Trends and Technology 70, no. 8 (August 31, 2022): 140–48. http://dx.doi.org/10.14445/22315381/ijett-v70i8p214.
Повний текст джерелаZhao, Xian, Lei Chen, and Jing Lu. "A similarity-based method for prediction of drug side effects with heterogeneous information." Mathematical Biosciences 306 (December 2018): 136–44. http://dx.doi.org/10.1016/j.mbs.2018.09.010.
Повний текст джерелаDomingo-Fernández, Daniel, Yojana Gadiya, Abhishek Patel, Sarah Mubeen, Daniel Rivas-Barragan, Chris W. Diana, Biswapriya B. Misra, David Healey, Joe Rokicki, and Viswa Colluru. "Causal reasoning over knowledge graphs leveraging drug-perturbed and disease-specific transcriptomic signatures for drug discovery." PLOS Computational Biology 18, no. 2 (February 25, 2022): e1009909. http://dx.doi.org/10.1371/journal.pcbi.1009909.
Повний текст джерела