Добірка наукової літератури з теми "Dpann"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Dpann".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Dpann":

1

He, Christine, Ray Keren, Michael L. Whittaker, Ibrahim F. Farag, Jennifer A. Doudna, Jamie H. D. Cate, and Jillian F. Banfield. "Genome-resolved metagenomics reveals site-specific diversity of episymbiotic CPR bacteria and DPANN archaea in groundwater ecosystems." Nature Microbiology 6, no. 3 (January 25, 2021): 354–65. http://dx.doi.org/10.1038/s41564-020-00840-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractCandidate phyla radiation (CPR) bacteria and DPANN archaea are unisolated, small-celled symbionts that are often detected in groundwater. The effects of groundwater geochemistry on the abundance, distribution, taxonomic diversity and host association of CPR bacteria and DPANN archaea has not been studied. Here, we performed genome-resolved metagenomic analysis of one agricultural and seven pristine groundwater microbial communities and recovered 746 CPR and DPANN genomes in total. The pristine sites, which serve as local sources of drinking water, contained up to 31% CPR bacteria and 4% DPANN archaea. We observed little species-level overlap of metagenome-assembled genomes (MAGs) across the groundwater sites, indicating that CPR and DPANN communities may be differentiated according to physicochemical conditions and host populations. Cryogenic transmission electron microscopy imaging and genomic analyses enabled us to identify CPR and DPANN lineages that reproducibly attach to host cells and showed that the growth of CPR bacteria seems to be stimulated by attachment to host-cell surfaces. Our analysis reveals site-specific diversity of CPR bacteria and DPANN archaea that coexist with diverse hosts in groundwater aquifers. Given that CPR and DPANN organisms have been identified in human microbiomes and their presence is correlated with diseases such as periodontitis, our findings are relevant to considerations of drinking water quality and human health.
2

Williams, Tom A., Gergely J. Szöllősi, Anja Spang, Peter G. Foster, Sarah E. Heaps, Bastien Boussau, Thijs J. G. Ettema, and T. Martin Embley. "Integrative modeling of gene and genome evolution roots the archaeal tree of life." Proceedings of the National Academy of Sciences 114, no. 23 (May 22, 2017): E4602—E4611. http://dx.doi.org/10.1073/pnas.1618463114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A root for the archaeal tree is essential for reconstructing the metabolism and ecology of early cells and for testing hypotheses that propose that the eukaryotic nuclear lineage originated from within the Archaea; however, published studies based on outgroup rooting disagree regarding the position of the archaeal root. Here we constructed a consensus unrooted archaeal topology using protein concatenation and a multigene supertree method based on 3,242 single gene trees, and then rooted this tree using a recently developed model of genome evolution. This model uses evidence from gene duplications, horizontal transfers, and gene losses contained in 31,236 archaeal gene families to identify the most likely root for the tree. Our analyses support the monophyly of DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaea), a recently discovered cosmopolitan and genetically diverse lineage, and, in contrast to previous work, place the tree root between DPANN and all other Archaea. The sister group to DPANN comprises the Euryarchaeota and the TACK Archaea, including Lokiarchaeum, which our analyses suggest are monophyletic sister lineages. Metabolic reconstructions on the rooted tree suggest that early Archaea were anaerobes that may have had the ability to reduce CO2 to acetate via the Wood–Ljungdahl pathway. In contrast to proposals suggesting that genome reduction has been the predominant mode of archaeal evolution, our analyses infer a relatively small-genomed archaeal ancestor that subsequently increased in complexity via gene duplication and horizontal gene transfer.
3

Reinhardt, Astrid, and David Eisenberg. "DPANN: Improved sequence to structure alignments following fold recognition." Proteins: Structure, Function, and Bioinformatics 56, no. 3 (April 28, 2004): 528–38. http://dx.doi.org/10.1002/prot.20144.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Castelle, Cindy J., Christopher T. Brown, Karthik Anantharaman, Alexander J. Probst, Raven H. Huang, and Jillian F. Banfield. "Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations." Nature Reviews Microbiology 16, no. 10 (September 4, 2018): 629–45. http://dx.doi.org/10.1038/s41579-018-0076-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mathlouthi, Nour El Houda, Imen Belguith, Mariem Yengui, Hamadou Oumarou Hama, Jean-Christophe Lagier, Leila Ammar Keskes, Ghiles Grine, and Radhouane Gdoura. "The Archaeome’s Role in Colorectal Cancer: Unveiling the DPANN Group and Investigating Archaeal Functional Signatures." Microorganisms 11, no. 11 (November 10, 2023): 2742. http://dx.doi.org/10.3390/microorganisms11112742.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Background and Aims: Gut microbial imbalances are linked to colorectal cancer (CRC), but archaea’s role remains underexplored. Here, using previously published metagenomic data from different populations including Austria, Germany, Italy, Japan, China, and India, we performed bioinformatic and statistical analysis to identify archaeal taxonomic and functional signatures related to CRC. Methods: We analyzed published fecal metagenomic data from 390 subjects, comparing the archaeomes of CRC and healthy individuals. We conducted a biostatistical analysis to investigate the relationship between Candidatus Mancarchaeum acidiphilum (DPANN superphylum) and other archaeal species associated with CRC. Using the Prokka tool, we annotated the data focusing on archaeal genes, subsequently linking them to CRC and mapping them against UniprotKB and GO databases for specific archaeal gene functions. Results: Our analysis identified enrichment of methanogenic archaea in healthy subjects, with an exception for Methanobrevibacter smithii, which correlated with CRC. Notably, CRC showed a strong association with archaeal species, particularly Natrinema sp. J7-2, Ferroglobus placidus, and Candidatus Mancarchaeum acidiphilum. Furthermore, the DPANN archaeon exhibited a significant correlation with other CRC-associated archaea (p < 0.001). Functionally, we found a marked association between MvhB-type polyferredoxin and colorectal cancer. We also highlighted the association of archaeal proteins involved in the biosynthesis of leucine and the galactose metabolism process with the healthy phenotype. Conclusions: The archaeomes of CRC patients show identifiable alterations, including a decline in methanogens and an increase in Halobacteria species. MvhB-type polyferredoxin, linked with CRC and species like Candidatus Mancarchaeum acidiphilum, Natrinema sp. J7-2, and Ferroglobus placidus emerge as potential archaeal biomarkers. Archaeal proteins may also offer gut protection, underscoring archaea’s role in CRC dynamics.
6

Lipsewers, Yvonne A., Ellen C. Hopmans, Jaap S. Sinninghe Damsté, and Laura Villanueva. "Potential recycling of thaumarchaeotal lipids by DPANN Archaea in seasonally hypoxic surface marine sediments." Organic Geochemistry 119 (May 2018): 101–9. http://dx.doi.org/10.1016/j.orggeochem.2017.12.007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Makarova, Kira S., Yuri I. Wolf, and Eugene V. Koonin. "Towards functional characterization of archaeal genomic dark matter." Biochemical Society Transactions 47, no. 1 (February 1, 2019): 389–98. http://dx.doi.org/10.1042/bst20180560.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract A substantial fraction of archaeal genes, from ∼30% to as much as 80%, encode ‘hypothetical' proteins or genomic ‘dark matter'. Archaeal genomes typically contain a higher fraction of dark matter compared with bacterial genomes, primarily, because isolation and cultivation of most archaea in the laboratory, and accordingly, experimental characterization of archaeal genes, are difficult. In the present study, we present quantitative characteristics of the archaeal genomic dark matter and discuss comparative genomic approaches for functional prediction for ‘hypothetical' proteins. We propose a list of top priority candidates for experimental characterization with a broad distribution among archaea and those that are characteristic of poorly studied major archaeal groups such as Thaumarchaea, DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota and Nanohaloarchaeota) and Asgard.
8

Ortiz-Alvarez, Rudiger, and Emilio O. Casamayor. "High occurrence ofPacearchaeotaandWoesearchaeota(Archaea superphylum DPANN) in the surface waters of oligotrophic high-altitude lakes." Environmental Microbiology Reports 8, no. 2 (January 28, 2016): 210–17. http://dx.doi.org/10.1111/1758-2229.12370.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jaffe, Alexander L., Cindy J. Castelle, Christopher L. Dupont, and Jillian F. Banfield. "Lateral Gene Transfer Shapes the Distribution of RuBisCO among Candidate Phyla Radiation Bacteria and DPANN Archaea." Molecular Biology and Evolution 36, no. 3 (December 13, 2018): 435–46. http://dx.doi.org/10.1093/molbev/msy234.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Colombet, Jonathan, Maxime Fuster, Hermine Billard, and Télesphore Sime-Ngando. "Femtoplankton: What’s New?" Viruses 12, no. 8 (August 12, 2020): 881. http://dx.doi.org/10.3390/v12080881.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Since the discovery of high abundances of virus-like particles in aquatic environment, emergence of new analytical methods in microscopy and molecular biology has allowed significant advances in the characterization of the femtoplankton, i.e., floating entities filterable on a 0.2 µm pore size filter. The successive evidences in the last decade (2010–2020) of high abundances of biomimetic mineral–organic particles, extracellular vesicles, CPR/DPANN (Candidate phyla radiation/Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota and Nanohaloarchaeota), and very recently of aster-like nanoparticles (ALNs), show that aquatic ecosystems form a huge reservoir of unidentified and overlooked femtoplankton entities. The purpose of this review is to highlight this unsuspected diversity. Herein, we focus on the origin, composition and the ecological potentials of organic femtoplankton entities. Particular emphasis is given to the most recently discovered ALNs. All the entities described are displayed in an evolutionary context along a continuum of complexity, from minerals to cell-like living entities.

Дисертації з теми "Dpann":

1

Baker, Brittany. "Deep archaeal phylogeny and evolutionary dynamics of DPANNs." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASL007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les archées constituent l'un des trois grands domaines du vivant, avec les bactéries et les eucaryotes, et sont présentes dans presque tous les environnements terrestres connus. Néanmoins, l'arbre des archées n'est pas encore complètement résolu, limitant notre compréhension de l'évolution de ces organismes. Par exemple, on ne sait pas combien de fois les archées se sont adaptées aux environnements hypersalins. Selon la position phylogénétique des groupes d'halophiles actuellement connus, ce nombre peut aller de un à quatre. De même, les archées DPANN constituent l'un des quatre supergroupes majeurs d'archées avec les TACK, les Asgard et les Euryarchaeota, mais leur monophylie et leur position phylogénétique restent très débattues. Ces archées de taille nanométrique sont généralement considérées comme des épibiontes dont la croissance et la survie sont obligatoirement liées à une autre archée hôte. La position phylogénétique des DPANN a des implications importantes pour comprendre le rythme et le mode d'évolution de ces archées épisymbiotiques mais aussi des autres grands groupes d'archées.L'objectif principal de ma thèse était de mieux comprendre l'histoire évolutive des archées halophiles et DPANN avec des analyses phylogénétiques approfondies. Mes recherches ont révélé que les archées halophiles se sont adaptées indépendamment aux environnements hypersalins au moins quatre fois. Dans le cadre de ce projet, deux nouvelles familles halophiles extrêmes, les Afararchaeaceae et les Asbonarchaeaceae, ont été identifiées dans des lacs hypersalins de la dépression de Danakil (Éthiopie). Mes analyses ont également clarifié les incohérences phylogénétiques antérieures, soulignant que le contenu très biaisé en acides aminés chez les halophiles conduit à des artefacts phylogénétiques. En minimisant ces biais, j'ai obtenu des placements phylogénétiques plus fiables. J'ai également reconstruit l'histoire évolutive des familles de gènes d'archées en identifiant des événements tels que les duplications, les transferts, les origines et les pertes de gènes à l'aide de méthodes de réconciliation d'arbres. Je me suis concentrée sur les événements spécifiques aux branches menant aux différentes lignées halophiles. Ces résultats suggèrent que la duplication et le transfert horizontal de gènes ont joué un rôle important dans l'adaptation à l'halophilie, par exemple en propageant des gènes clés (tels que ceux codant pour les transporteurs de potassium) dans les différentes lignées halophiles extrêmes. En parallèle, j'ai cherché à élucider l'histoire évolutive des archées DPANN. Cela impliquait une étude complète de leur phylogénie, en utilisant un ensemble étendu de marqueurs protéiques conservés et un échantillonnage complet de taxons qui inclut des représentants des 11 phylums DPANN connus. Avec des méthodes pour atténuer l'impact potentiel des biais de composition et de l'attraction des longues branches, j'ai obtenu un soutien solide pour la monophylie des DPANN et leur placement au sein des Euryarchaeota. En outre, mes recherches ont révélé qu'au sein des DPANN, les Altiarchaeota, des organismes possiblement de vie libre, représentent la branche divergente la plus précoce. L'ensemble de ces résultats a montré que les archées DPANN sont un groupe monophylétique qui a évolué à partir d'un ancêtre Euryarchaeota de vie libre. Alors que les pipelines phylogénétiques automatisés sont capables de résoudre certaines questions phylogénétiques sur les archées, ce travail a montré que des analyses phylogénomiques approfondies sont encore nécessaires pour résoudre les principales branches de l'arbre des archées. Cette recherche a démontré que, malgré la connaissance de longue date des artefacts phylogénétiques tels que les biais de composition, il n'y a pas un seul biais qui puisse expliquer toutes les incohérences observées dans la phylogénie des archées
Archaea, one of life's three fundamental domains alongside Bacteria and Eucarya, thrive in nearly every habitat. Nevertheless, the precise structure of the archaeal tree of life remains unclear, clouding our understanding of the evolutionary history of this domain. For instance, it is unknown how many times archaea adapted to hypersaline environments. Depending on the phylogenetic placement of the currently known groups of halophiles, the number could range from one to four times. Similarly, the DPANN archaea are one of the four major archaeal supergroups along with the TACK, Asgard, and Euryarchaeota, yet their monophyly and phylogenetic placement in the archaeal tree remain unresolved. The DPANN archaea are typically classified as nano-sized archaea that grow obligately attached to another archaeon host for their growth and survival. Resolving the phylogenetic position of the DPANN has important implications to understanding the tempo and mode of the evolution of these episymbiotic archaea and other major archaeal clades.The primary goal of my PhD was to conduct a thorough phylogenomic analysis of halophilic and DPANN archaea to gain deeper insights into their evolutionary history. My research revealed that halophilic archaea independently adapted to hypersaline environments at least four times. As part of this project, two novel family-level lineages of extreme halophiles, Afararchaeaceae and Asbonarchaeaceae, were identified from hypersaline lakes in the Danakil Depression in North-Eastern Ethiopia. My findings also clarified previous phylogenetic inconsistencies, highlighting that unique amino acid compositions in halophiles led to phylogenetic artifacts. By filtering out these biased data points, I achieved more consistent and reliable phylogenetic placements. I also reconstructed the evolutionary history of archaeal gene families by mapping events such as gene duplications, transfers, originations, and losses using gene tree-species tree reconciliation methods. I specifically focused on events that were specific to the branches leading to the various halophilic lineages. These results suggested that gene duplication and horizontal gene transfer played an important role in the adaptation to halophily, for example, by spreading key genes (such as those encoding potassium transporters) across the various extremely halophilic lineages. In my second project, I aimed to elucidate the evolutionary history of the DPANN archaea. This involved a comprehensive study of their phylogeny, by using an extensive set of conserved protein markers and a thorough taxon sampling that included representatives from all 11 known DPANN phyla. By employing various methods to mitigate the potential impact of compositional biases and long-branch attraction (LBA), I obtained robust support for the monophyly of the DPANN and their placement within the Euryarchaeota. Additionally, my research revealed that within the DPANN, the Altiarchaeota, which are potentially free-living, represent the earliest diverging branch. All together these results showed that the DPANN archaea are in fact a monophyletic group that evolved from a free-living Euryarchaeota ancestor. While automated phylogenetic pipelines are able to resolve some archaeal phylogenetic questions, this work has shown that in-depth phylogenomic analyses are still needed to resolve major branches of the archaeal tree. This research has demonstrated that, despite the long-standing awareness of phylogenetic artifacts like compositional sequence biases, there isn't a single bias that can explain all inconsistencies in the archaeal tree
2

Cheng, Shih-Hsun, and 程士勳. "Studies of Fluorescence Relaxation Dynamics of Donor-Acceptor Molecules (DPBMN and DPAMN) in Solvents of Various Polarities." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/t52e5q.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
國立交通大學
應用化學系所
94
This thesis contains two subjects. The first subject is to study the phenomenon of charge transfer of 2-(4(diphenylamino)benzylidene)malononitrile(DPBMN) in the solvents of various polarities. The time-resolved fluorescence spectra of DPBMN in polar and non-polar solvents were measured using the techniques of Femtosecond fluorescence up-conversion and Time-Correlated Single Photon Counting(TCSPC). The results of DPBMN in n-hexane solution show that there are two non-radiative processes occurring in the local excited state. The decay time constants of ~4 ps and ~ 220 ps are due to vibration relaxation and intersystem crossing processes respectively. However, DPBMN in the polar solvent (THF) the relaxation dynamics were different with those in n-hexane. We observed triphasic fluorescence decay, the femtosecond component is attribured to the charge transfer rate from the LE state to the CT state , the picosecond component is attributed to the vibration relaxation in the CT state and the nanosecond component is attributed to the internal conversion from the CT state to S0¬ state. In DMSO, we observed the faster charge transfer rate and the faster internal conversion in the CT state because both the energy barrier between LE and CT state and the energy between CT and S0 state were decreased by the high polar solvent. For the second subject, we studied the fluorescence relaxation dynamics of the derivatives of DPBMN, 2-((10-(diphenylamino)anthracen-9-yl)-methylene)- Malononitrile (DPAMN) in different solutions. We measured the time-resolved fluorescence spectra with TCSPC. The results show that there is no CT state in DPAMN because similar time-resolved spectras of DPAMN in the polar and non-polar solvents were observed. We found the S2 fluorescence in the steady-state fluorescence specta in different excited wavelengths. We suggest that DPAMN is an example of anti-Kasha’s rule.
3

YANG, YAO-YU, and 楊燿宇. "Analysis and Design of 90nm dPNN Sub-threshold SRAM with new energy-efficient write-assist and level-converted sensing circuits." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/27374515201113143440.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Dpann":

1

Blo-gros-brtan-pa. Dpaṅ-lo-blo-gros-brtan-paʼi mṅon pa kun btus kyi ʼgrel pa =: The collected works of Dpang-lo-blo-gros-brten-pa. [Kathmandu]: Sa-skya rgyal yoṅs gsuṅ rab slob gñer khaṅ, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Thub-bstan-chos-dar, Rak-ra. Śoṅ-dpaṅ źal luṅ me loṅ rnam bśad. Dharamsala, H.P: Bod kyi dpe mdzod khaṅ, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

(China), Tibet. Btsan-byol Bod-miʼi Khrims-źib-khaṅ gi dpaṅ rtags rtsa ʼdzin khrims yig. [Dharamsala]: Bod-gźun śes rig par khaṅ nas par skrun byas pa, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dimitrov, Dragomir. Sabdalamkaradosavibhaga - die Unterscheidung der Lautfiguren und der Fehler: Kritische Ausgabe des dritten Kapitels von Dandins Poetik "Kavyadarsa" und der tibetischen Übertragung "Snan nag lon" samt dem Sanskrit-Kommentar des Ratnasrijnana, dem tibetischen Kommentar des Dpan Blo gros brtan pa und einer deutschen Übersetzung des Sanskrit-Grundtextes. Wiesbaden: Harrassowitz, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

guan, Xizang bo wu. Li shi de jian zheng: Xizang bo wu guan cang li dai zhong yang zheng fu zhi Zang wen wu ji cui = The Witness of History : A collection of cultural relics concerning the successive central governments governing Tibet preserved in Tibet Museum = Lo rgyus kyi dpang rtags : Bod-ljongs rten rdzas bshams mdzod khang nas nyar tshags byas paʼi krung dbyang srid gzhung rim byung gis Bod don ʼdzin skyong gnang baʼi skor gyi rig dngos gces btus. 8-ме вид. Chengdu: Sichuan mei shu chu ban she, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

rma rgyal dpang bstod. Pe cin: Mi rigs dpe skrun khang, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Starting Out Dpawn Attacks The Collezukertort Barry And 150 Attacks. Everyman Chess, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

gzhung dpang byed thabs skor gyi krung hwa mi dmangs spyi mthun rgyal khab kyi bca' khrims. Pe cin: Mi rigs dpe skrun khang, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jian zheng Xizang: Xizang Zizhiqu zheng fu li ren xian ren zhu xi zi shu = Bod Rdzoṅ kyi bden dpaṅ. 8th ed. Beijing Shi: Zhongguo Zang xue chu ban she, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dpan lo tsA ba blo gros brtan pa'i mdzad rjes las 'phros pa'i khong gi brda sprod dan snan nag yig sgyur skor gyi bsam blo la dpyad pa blo gsal rig pa'i dga' ston zes bya ba bzugs so. Lha-sa: Bod-ljongs mi dmangs dpe skrun khang, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Dpann":

1

Amils, Ricardo. "DPANN, Archaea." In Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-642-27833-4_5546-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Amils, Ricardo. "DPANN, Archaea." In Encyclopedia of Astrobiology, 838. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65093-6_5546.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Li, Yan-Jun, Hai-Jun Zhang, Wei-Min Pan, Ru-Jia Feng, and Zhong-Yue Zhou. "Microblog Rumor Detection Based on Bert-DPCNN." In Lecture Notes in Electrical Engineering, 524–30. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8599-9_60.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhang, Hu, Xin Wang, Hongye Tan, and Ru Li. "Applying Data Discretization to DPCNN for Law Article Prediction." In Natural Language Processing and Chinese Computing, 459–70. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32233-5_36.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Xiangyu, Deng, Zhang Huan, and Yang Yahan. "Ultrasonic Image Segmentation Algorithm of Thyroid Nodules Based on DPCNN." In Lecture Notes in Electrical Engineering, 163–74. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3880-0_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Xiao, Ning, Shichao Luo, Yan Qiang, Juanjuan Zhao, and Jianhong Lian. "DPACN: Dual Prior-Guided Astrous Convolutional Network for Adhesive Pulmonary Nodules Segmentation on CT Sequence." In Pattern Recognition and Computer Vision, 560–69. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88010-1_47.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cui, Bo, Jinling Li, and Wenhan Hou. "ATDG: An Automatic Cyber Threat Intelligence Extraction Model of DPCNN and BIGRU Combined with Attention Mechanism." In Web Information Systems Engineering – WISE 2023, 189–204. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-7254-8_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

"Figure 13 Model structure of CVT based upon DPNN method." In Mechatronics in Engineering Design and Product Development, 594–98. CRC Press, 1998. http://dx.doi.org/10.1201/9781482289862-150.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Dpann":

1

Zhang, MeiJiao, Jiacheng Pang, Jiahong Cai, Yingzi Huo, Ce Yang, and Huixuan Xiong. "DPCNN-based Models for Text Classification." In 2023 IEEE 10th International Conference on Cyber Security and Cloud Computing (CSCloud)/2023 IEEE 9th International Conference on Edge Computing and Scalable Cloud (EdgeCom). IEEE, 2023. http://dx.doi.org/10.1109/cscloud-edgecom58631.2023.00068.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Xian, Guangming, Qianling Guo, Zhifeng Zhao, Yongsheng Luo, and Haoyang Mei. "Short Text Classification Model Based on DeBERTa-DPCNN." In 2023 4th International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). IEEE, 2023. http://dx.doi.org/10.1109/icbaie59714.2023.10281320.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Li, Yonggang, Haiming Yin, Meihong Shi, and Guangxue Yue. "A Method of Color Image Segmentation Based on DPCNN." In 2008 International Conference on Cyberworlds (CW). IEEE, 2008. http://dx.doi.org/10.1109/cw.2008.142.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhu, Junzhe, Raymond A. Yeh, and Mark Hasegawa-Johnson. "Multi-Decoder Dprnn: Source Separation for Variable Number of Speakers." In ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021. http://dx.doi.org/10.1109/icassp39728.2021.9414205.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chen, Junhao. "Blogger Feature Extraction Optimization Algorithm Based on K-means and DPCNN." In ICITEE 2022: 5th International Conference on Information Technologies and Electrical Engineering. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3582935.3582955.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ghorbani, Ramin, and Sajad Haghzad Klidbary. "DPRNN-Former: An Efficient Way to Deal with Blind Source Separation." In 2023 13th International Conference on Computer and Knowledge Engineering (ICCKE). IEEE, 2023. http://dx.doi.org/10.1109/iccke60553.2023.10326221.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Huang, Huanhuan, Ke Yang, Lijun Zhang, Dawei Yin, and Dezhong Peng. "Intelligent Recommendation of Legal Articles Based on DPCNN with Capsule Model." In 2021 International Conference on Computer Information Science and Artificial Intelligence (CISAI). IEEE, 2021. http://dx.doi.org/10.1109/cisai54367.2021.00180.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Liu, Hongliang, Zhiyu Chen, Miao Yu, Wenbo Cui, Lin Zang, Wei Ren, and Yongfang Hou. "Evaluation of the Relevance of Adverse Drug Reactions Based on ERNIE-DPCNN." In 2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC). IEEE, 2023. http://dx.doi.org/10.1109/compsac57700.2023.00235.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yang, Yang, Xunde Dong, and Yupeng Qiang. "A Deep Learning Sentiment Analysis Method based on ERNIE and Modified DPCNN." In ICCPR 2023: 2023 12th International Conference on Computing and Pattern Recognition. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3633637.3633642.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dai, Wei, Yingmin Su, Xiaofeng Pan, Yufeng Wang, Zhenyu Zhu, Nan Xu, Chengjun Mao, and Bo Cao. "DPAN: Dynamic Preference-based and Attribute-aware Network for Relevant Recommendations." In CIKM '23: The 32nd ACM International Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3583780.3615218.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії