Добірка наукової літератури з теми "Downconversion; solar cell; silicon"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Downconversion; solar cell; silicon".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Downconversion; solar cell; silicon"

1

Lau, Mei Kwan, and Jianhua Hao. "Broadband Near-Infrared Quantum Cutting in Metal-Ion Codoped Y3Al5O12Thin Films Grown by Pulsed-Laser Deposition for Solar Cell Application." Journal of Nanomaterials 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/587036.

Повний текст джерела
Анотація:
We have deposited thin films of yttrium aluminum garnet (YAG) doped with Ce3+and Yb3+on quartz and silicon substrates by pulsed laser deposition. Near-infrared (NIR) quantum cutting which involves the emission of NIR photons through the downconversion from Ce3+to Yb3+is realized. Upon the broadband excitation of Ce3+ions with a visible photon at the peak wavelength of 450 nm, NIR photons are generated by Yb3+ions, with an emission wavelength centered at 1030 nm. The luminescent decay curves of Ce3+were recorded as a supporting evidence corresponding to the energy transfer. This work offers a better and more convenient approach compatible with crystalline silicon solar cell compared to conventional bulk phosphors.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lau, M. K., and Jian-Hua Hao. "Near-infrared Quantum Cutting in Eu3+-Yb3+ co-doped YAG through Downconversion for Silicon Solar Cell." Energy Procedia 15 (2012): 129–34. http://dx.doi.org/10.1016/j.egypro.2012.02.015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sun, Jia Yue, Yi Ning Sun, Ji Cheng Zhu, Jun Hui Zeng, and Hai Yan Du. "Downconversion for Solar Cells in Sr3Gd(PO4)3:Tb, Yb Phosphors." Advanced Materials Research 502 (April 2012): 136–39. http://dx.doi.org/10.4028/www.scientific.net/amr.502.136.

Повний текст джерела
Анотація:
An efficient near-infrared (NIR) quantum cutting (QC) Tb3+ and Yb3+ co-doped phosphor Sr3Gd(PO4)3 has been synthesized by conventional high temperature solid technique. Upon excitation of Tb3+ with a visible photon at 485 nm, two NIR photons could be emitted by Yb3+ through cooperative energy transfer (CTE) from Tb3+ to two Yb3+ ions. Excitation and emission spectra as well as fluorescence decay measurements have been carried out to examine the occurrence of cooperative energy transfer (CET ) from Tb3+ to Yb3+ ions. The result indicates Tb3+ and Yb3+ co-doped Sr3Gd(PO4)3 is potentially used as down-converter layer in silicon-based solar cell.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Li, Jianming, Shaoan Zhang, Haoming Luo, Zhongfei Mu, Zhenzhang Li, Qingping Du, Junqin Feng, and Fugen Wu. "Efficient near ultraviolet to near infrared downconversion photoluminescence of La2GeO5: Bi3+, Nd3+ phosphor for silicon-based solar cells." Optical Materials 85 (November 2018): 523–30. http://dx.doi.org/10.1016/j.optmat.2018.09.024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cheng, Chin-Lung, and Jung-Yen Yang. "Hydrothermal Synthesis of $\hbox{Eu}^{3+}$-Doped $\hbox{Y}(\hbox{OH})_{3}$ Nanotubes as Downconversion Materials for Efficiency Enhancement of Screen-Printed Monocrystalline Silicon Solar Cells." IEEE Electron Device Letters 33, no. 5 (May 2012): 697–99. http://dx.doi.org/10.1109/led.2012.2187771.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Elleuch, R., R. Salhi, J. L. Deschanvres, and R. Maalej. "Antireflective downconversion ZnO:Er3+,Yb3+ thin film for Si solar cell applications." Journal of Applied Physics 117, no. 5 (February 7, 2015): 055301. http://dx.doi.org/10.1063/1.4906976.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lakshminarayana, G., Hucheng Yang, Song Ye, Yin Liu, and Jianrong Qiu. "Cooperative downconversion luminescence in Pr3+/Yb3+:SiO2–Al2O3–BaF2–GdF3 glasses." Journal of Materials Research 23, no. 11 (November 2008): 3090–95. http://dx.doi.org/10.1557/jmr.2008.0372.

Повний текст джерела
Анотація:
Oxyfluoride aluminosilicate glasses with compositions of 50SiO2–20Al2O3–20BaF2–10GdF3–0.5PrF3–xYbF3(x = 0, 1.0, 2.5, 5, 7.5, 10, 15, 20, 25, and 30 mol%) have been prepared to study their thermal and optical properties. From the differential thermal analysis (DTA) measurement, glass-transition temperatures and onset crystallization temperatures have been evaluated and from them, glass-stability factors against crystallization were calculated. Glass stabilities were decreased gradually with fluoride content increment in all the studied glasses. The photoluminescence and decay measurements have also been carried out for these glasses. In these glasses, an efficient near-infrared (NIR) quantum cutting with optimal quantum efficiency approaching 160% have been demonstrated, by exploring the cooperative downconversion mechanism from Pr3+ to Yb3+ with 481 nm (3P0 → 3H4) excitation wave length. These glasses are promising materials to achieve high-efficiency silicon-base solar cells by means of downconversion in the visible part of the solar spectrum.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gao, Yong Chao, Bai Tong Zhao, and Wen Xiu Gao. "Solar Grade Silicon Materials and Poly-Silicon Solar Cell." Materials Science Forum 685 (June 2011): 119–22. http://dx.doi.org/10.4028/www.scientific.net/msf.685.119.

Повний текст джерела
Анотація:
In this paper, we should analyze the characteristic of the solar grade poly-silicon up-graded by physical process and make comparison with silicon made by Siemens process in wafer and solar cell, also we make a analysis for the degradation of the solar cell module. From the result we find that the silicon block have no obvious drawback such as crack detected by GT infrared and the average minority carrier lifetime is 3.86μs, the minority lifetime and resistivity of the wafer is better than the standard, solar cell prepared using the solar grade silicon wafer by physical process has an average conversion efficiency of 15.78% which is 0.12% higher than the Siemens wafer mainly due to high open circuit voltage. Efficiency degradation of the solar cell made by physical process is less than 3% after half an year which met the international standard. So we come to the conclusion that solar grade silicon prepared by physical process is a promising alternative material for PV industry and become main solar grade poly-silicon in the future.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ranjan, S., S. Balaji, Rocco A. Panella, and B. Erik Ydstie. "Silicon solar cell production." Computers & Chemical Engineering 35, no. 8 (August 2011): 1439–53. http://dx.doi.org/10.1016/j.compchemeng.2011.04.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Blakers, Andrew W., Aihua Wang, Adele M. Milne, Jianhua Zhao, and Martin A. Green. "22.8% efficient silicon solar cell." Applied Physics Letters 55, no. 13 (September 25, 1989): 1363–65. http://dx.doi.org/10.1063/1.101596.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Downconversion; solar cell; silicon"

1

Lu, Meijun. "Silicon heterojunction solar cell and crystallization of amorphous silicon." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 295 p, 2009. http://proquest.umi.com/pqdweb?did=1654494651&sid=3&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Park, Jihong. "Electrical properties of polycrystalline solar cell silicon." Case Western Reserve University School of Graduate Studies / OhioLINK, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=case1061389017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tobail, Osama. "Porous silicon for thin solar cell fabrication." Aachen Shaker, 2008. http://d-nb.info/992052904/04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Schnabel, Manuel. "Silicon nanocrystals embedded in silicon carbide for tandem solar cell applications." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:da5bbb64-0bcd-4807-a9f3-4ff63a9ca98d.

Повний текст джерела
Анотація:
Tandem solar cells are potentially much more efficient than the silicon solar cells that currently dominate the market but require materials with different bandgaps. This thesis presents work on silicon nanocrystals (Si-NC) embedded in silicon carbide (SiC), which are expected to have a higher bandgap than bulk Si due to quantum confinement, with a view to using them in the top cell of a tandem cell. The strong photoluminescence (PL) of precursor films used to prepare Si-NC in SiC (Si-NC/SiC) was markedly reduced upon Si-NC formation due to simultaneous out-diffusion of hydrogen that passivated dangling bonds. This cannot be reversed by hydrogenation and leads to weak PL that is due to, and limited by, non-paramagnetic defects, with an estimated quantum yield of ≤5×10-7. Optical interference was identified as a substantial artefact and a method proposed to account for this. Majority carrier transport was found to be Ohmic at all temperatures for a wide range of samples. Hydrogenation decreases dangling bond density and increases conductivity up to 1000 times. The temperature-dependence of conductivity is best described by a combination of extended-state and variable-range hopping transport where the former takes place in the Si nanoclusters. Furthermore, n-type background doping by nitrogen and/or oxygen was identified. In the course of developing processing steps for Si-NC-based tandem cells, a capping layer was developed to prevent oxidation of Si-NC/SiC, and diffusion of boron and phosphorus in nanocrystalline SiC was found to occur via grain boundaries with an activation energy of 5.3±0.4 eV and 4.4±0.7 eV, respectively. Tandem cells with a Si-NC/SiC top cell and bulk Si bottom cell were prepared that exhibited open-circuit voltages Voc of 900 mV and short-circuit current densities of 0.85 mAcm-2. Performance was limited by photocurrent collection in the top cell; however, the Voc obtained demonstrates tandem cell functionality.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Skarpeteig, Jon. "Cryogenic micro-photoluminescence of silicon solar cell materials." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elektronikk og telekommunikasjon, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-11106.

Повний текст джерела
Анотація:
A literature review of relevant luminescence spectra for silicon solar cell materials has been performed. Three multi crystalline silicon samples in particular has been the focus of attention, one electronic grade sample R6, and two solar grade samples ES1, and MH2, where MH2 has added chromium. A list of relevant luminescence spectra has been compiled, and can be found in the appendix.The samples was measured using low temperature micro photoluminescence. They where cooled down by liquid helium in a cryostat, and excited using a laser. Photoluminescence was captured by a camera mounted on a spectrometer. Noise components was measured and removed, but are subject to changes in between measurements, causing some unwanted artifacts to appear in the end result.Luminescence due to P and B doping atoms are identified in ES1, and MH2 as expected, and a weak boron bound exciton line is also present in the clean sample R6. R6 also show signs of having a carbon-carbon complex impurity forming at grain boundaries. Lines attributed to chromium boron pairs where not observed in MH2, presumably due to the lack of such pairs. ES1 exhibits a luminescence attributed to a higher quality material, than both MH2, and R6. Expected behavior is for R6 to have such traits, but this is not the case. The reason for ES1 to show this enhanced luminescence is not known. Lines attributed to dislocations are observed in all the samples, but consist of less intense peaks than expected.Local heating is a severe problem using micro photoluminescence. Bound excitons, impurity lines, and dislocation related lines, all loose intensity at higher temperatures. The intrinsic TO line also have a substantial broadening with respect to energies, suggesting that local temperatures are as much as 70K higher than the sample holder temperature, when exciting with 128 mW using a 2 µm spot diameter.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wu, Min. "Mechanical deformation of polycrystalline silicon for solar cell production." Thesis, University of Oxford, 2014. https://ora.ox.ac.uk/objects/uuid:68986f4a-f744-4936-a147-79b261863560.

Повний текст джерела
Анотація:
This thesis presents a feasibility study for producing silicon sheet for photovoltaic applications via traditional hot deformation in clean conditions using high purity materials. A special deformation rig has been designed and constructed for the compression tests. The cleanliness of the deformation conditions has been characterized and determined to be at a satisfactory level. Deformation of Czochralski, dislocation-free, single crystalline silicon along the < 100 > axis has been conducted to determine a suitable and achievable deformation condition. It has been found that single crystalline silicon can be uniaxially compressed by 30 % without severe cracking at temperatures above 1050 °C using a low average strain rate of ~10-5 s-1, the most uniform deformed microstructure has been obtained using an average stain rate of 1.67 x ~10-5 s-1. A dislocation density of order 1013 m-2 has been revealed by etch pit counting in an SEM. Dislocations with ½ < 110 > screw characters have been found using the TEM diffraction contrast technique. The most favourable post-annealing temperature has been determined to be 1400 °C. High purity polycrystalline, chemical vapor deposition (CVD) grown silicon has been successfully deformed at 1150 °C by 10 % at an average strain rate of 6.94 x 10-6 s-1. The as-received material has been found to have a strong < 110 > fiber texture as revealed by EBSD. Recrystallization occurs during pre-annealing at 1400 °C for 30 minutes. Approximately 90 % of the material recrystallizes with a complete disappearance of the fiber texture. Stacking faults have been mainly observed in the recrystallized material by TEM. It has been observed that the deformed polycrystalline material develops a second recrystallization texture when subjected to post-annealing at 1400 °C for 15 min, resulting in large grains up to several hundred microns in size and a low dislocation concentration of 5 x 1010 m-2. The HR-EBSD cross-correlation method has been employed to quantitatively investigate the GND density distribution in polycrystalline silicon. It has been found that the as-received material has a GND concentration up to 1015 m-2 and recrystallization during pre-annealing reduces the value to 1013 m-2. The minority carrier lifetime of the polycrystalline sample deformed at 1150 °C by 10 % followed by subsequent annealing at 1400 °C for 120 min has been measured using the QSS-PC method. A value of 1.9 μs at an injection level of 1 x 1012 cm-3 has been obtained, which corresponds to a minority carrier diffusion length of approximately 100 μm for electrons and 50 μm for holes. H-passivation has been found to be effective in improving the measured minority carrier lifetime. The results presented in this thesis suggest that producing silicon sheets for photovoltaic applications by conventional hot-deformation may be possible and should be a topic for further investigation.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tobail, Osama [Verfasser]. "Porous Silicon for Thin Solar Cell Fabrication / Osama Tobail." Aachen : Shaker, 2009. http://d-nb.info/1161311378/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hudelson, George David Stephen III. "High temperature investigations of crystalline silicon solar cell materials." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/50568.

Повний текст джерела
Анотація:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009.
Includes bibliographical references (p. 74-78).
Crystalline silicon solar cells are a promising candidate to provide a sustainable, clean energy source for the future. In order to bring about widespread adoption of solar cells, much work is needed to reduce their cost. Herein, I discuss the development of a new experimental technique to investigate solar cell materials under simulated processing conditions. I present the first applications and results using this technique, including observations of novel impurity interactions at elevated temperatures, and discuss their importance to the solar cell manufacturing process. One of the key drivers for reducing solar cell cost is developing a fundamental understanding of the behavior of defect and impurities in solar cell materials. Since solar cell processing occurs at high temperatures, experiments are needed that allow characterization of solar cell materials at high temperatures representative of manufacturing conditions, at the length-scales of the defects that are present. To achieve this, I have developed a novel in situ high temperature sample stage for measuring samples via synchrotron-based X-ray microprobe. This technique allows for mapping and chemical state determination of metal impurity clusters on the order of 100 nm to 100 [mu]m, over sample areas of several square millimeters, at temperatures in excess of 1200°C and under controlled ambient atmosphere. The application of this technique has yielded novel insights concerning the behavior of metal impurities at high temperature.
(cont.) For the first time, the phenomenon of retrograde melting (i.e. melting on cooling) has been observed in a semiconductor material. Internal gettering of dissolved metal to liquid metal-silicon droplets within the silicon matrix is observed. Understanding of this phenomenon provides the potential to improve solar cell devices by reducing the more-detrimental dissolved metal content within the material by concentrating it into precipitates. Finally, I provide results and a model that explains the formation and resulting morphology of mixed-metal silicide precipitates in multicrystalline silicon.
by George David Stephen Hudelson, III.
S.M.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Alderman, N. "Improving solar cell performance through surface modification of silicon." Thesis, University of Southampton, 2013. https://eprints.soton.ac.uk/351353/.

Повний текст джерела
Анотація:
This project sets out to improve the efficiency of thin crystalline silicon solar cells by enhancing the photoexcitation through light harvesting, and by developing a novel surface passivation technique via the covalent attachment of organic molecules to the surface. To aid the characterisation of these novel structures, we have developed a new measurement technique for surface recombination using the Kelvin prove. A passivation method through the attachment of alkyl monolayers to the silicon surface has been developed. These layers were shown to have good passivation properties whilst retaining excellent resilience to oxidation. The passivation effect was determined to be caused by the generation of surface charge, as measured by the Kelvin probe. Further functionalisation of the organic monolayers was undertaken to attach fluorescent chromophores. A novel method for measurement of the surface recombination velocity was developed utilising the Kelvin probe. Changing the incident photon flux, and thus the photogenerated current, allows measurement of the surface recombination current through the change in surface photovoltage. This dependence can then be used to extract the value of the surface recombination velocity. Furthermore, we have shown that this method can be developed further into a mapping technique for surface recombination lifetime, of potentially significant industrial interest. The effect of the silicon surface charge on the passivation observed has been investigated through the attachment of charged monolayers. It was found that through the attachment of a positive charge, the observed recombination lifetime in n-type silicon decreased whilst a negative charge (through the attachment of carboxylic acid groups to the surface) was found to improve the surface passivation. The carboxylic acid functional groups were charged through immersion in triethylamine (base) and returned to the neutral, starting state through immersion in acetic acid. We have found that the recombination lifetime decreases linearly with decreasing charge-surface distance. This technique allows an in-depth study of surface passivation to be carried out by separating the two principal causes for passivation – the removal of surface states and charge attachment to the surface. Fluorescent chromophores were attached to the silicon surface by two different techniques – through the reaction of an alcohol-terminated monolayer with an acyl chloride porphyrin and by palladium-catalysed cross-coupling of an allyl-terminated surface with a cyanine dye. The fluorescence quenching was investigated at various chromophore-silicon distances by varying the length of the alkyl chain spacer. We find that the fluorescence lifetime decreases with decreasing chromophore-silicon distance, and follows a logarithmic trend. Further work is required, however, to combine sensitisation with surface passivation as incorporation of a sensitisation layer by the palladium cross coupling of an allyl-terminated surface results in metal contamination to the surface, reducing recombination lifetime.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gold, Scott Alan. "Nitrogen incorporation in thin silicon oxide films for passivation of silicon solar cell surfaces." Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/11101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Downconversion; solar cell; silicon"

1

Flückiger, Roger Sylvain. Microcrystalline silicon thin films deposited by VHF plasmas for solar cell applications. Konstanz: Hartung-Gorre Verlag, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dullweber, Thorsten, and Loic Tous, eds. Silicon Solar Cell Metallization and Module Technology. Institution of Engineering and Technology, 2021. http://dx.doi.org/10.1049/pbpo174e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Silicon Solar Cell Metallization and Module Technology. Institution of Engineering & Technology, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Greer, Michael R. A 6% efficient MIS particulate silicon solar cell. 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

van, Overstraeten R., and Commission of the European Communities. Directorate-General for Science, Research and Development., eds. The use of screen printing in silicon solar cell fabrication. Luxembourg: Commission of the European Communities Directorate-General Information Market and Innovation, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Materials for Solar Cell Technologies I. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901090.

Повний текст джерела
Анотація:
The book reviews recent research and new trends in the area of solar cell materials. Topics include fabrication methods, solar cell design, energy efficiency and commercialization of next-generation materials. Special focus is placed on graphene and carbon nanomaterials, graphene in dye-sensitized solar cells, perovskite solar cells and organic photovoltaic cells, as well as on transparent conducting electrode (TCE) materials, hollow nanostructured photoelectrodes, monocrystalline silicon solar cells (MSSC) and BHJ organic solar cells. Also discussed is the use of graphene, sulfides, and metal nanoparticle-based absorber materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

E, Jacobsen S., and United States. National Aeronautics and Space Administration, eds. "Optimization methods and silicon solar cell numerical models": Final report / by K. Girardini, S.E. Jacobsen. [Washington, DC: National Aeronautics and Space Administration, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

P, Dumas J., and Commission of the European Communities. Directorate-General for Science, Research and Development., eds. Growth and solar cell aspects in relation to polycrystalline silicon ribbons grown by the RAD process. Luxembourg: Commission of the European Communities, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

United States. National Aeronautics and Space Administration., ed. Laser ann[e]aling of amorphous/poly silicon solar cell material flight experiment: Final technical report. [Washington, DC: National Aeronautics and Space Administration, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

News, World Spaceflight. 21st Century Complete Guide to Solar Energy and Photovoltaics - Solar Power, Solar Cell Research, Silicon and Solid State Materials Research, Department ... Renewable Energy Laboratory NREL (CD-ROM). Progressive Management, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Downconversion; solar cell; silicon"

1

Wronski, Christopher R., and Nicolas Wyrsch. "Silicon Solar Cells silicon solar cell , Thin-film silicon solar cell thin-film." In Solar Energy, 270–322. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5806-7_462.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Martinuzzi, Santo, Abdelillah Slaoui, Jean-Paul Kleider, Mustapha Lemiti, Christian Trassy, Claude Levy-Clement, Sébastien Dubois, et al. "Silicon Solar Cells silicon solar cell , Crystalline." In Solar Energy, 226–69. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5806-7_461.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Martinuzzi, Santo, Abdelillah Slaoui, Jean-Paul Kleider, Mustapha Lemiti, Christian Trassy, Claude Levy-Clement, Sébastien Dubois, et al. "Silicon Solar Cells silicon solar cell , Crystalline." In Encyclopedia of Sustainability Science and Technology, 9196–240. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_461.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wronski, Christopher R., and Nicolas Wyrsch. "Silicon Solar Cells silicon solar cell , Thin-film silicon solar cell thin-film." In Encyclopedia of Sustainability Science and Technology, 9240–92. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_462.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zaidi, Saleem Hussain. "Solar Cell Characterization." In Crystalline Silicon Solar Cells, 213–51. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73379-7_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zaidi, Saleem Hussain. "Solar Cell Processing." In Crystalline Silicon Solar Cells, 29–70. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73379-7_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Goetzberger, Adolf, Joachim Knobloch, and Bernhard Voß. "Si Solar Cell Technology." In Crystalline Silicon Solar Cells, 133–62. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781119033769.ch7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Goetzberger, Adolf, Joachim Knobloch, and Bernhard Voß. "Selected Solar Cell Types." In Crystalline Silicon Solar Cells, 163–200. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781119033769.ch8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zaidi, Saleem Hussain. "Metallization in Solar Cell." In Crystalline Silicon Solar Cells, 125–200. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73379-7_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Green, Martin A. "Developments in Crystalline Silicon Solar Cells." In Solar Cell Materials, 65–84. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118695784.ch4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Downconversion; solar cell; silicon"

1

Liu, Chien-Wei, Chin-Lung Cheng, and Jung-Yen Yang. "Hydrothermal synthesis of Eu3+-doped NaYF4 downconversion materials for silicon-based solar cells applications." In 2015 22nd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD). IEEE, 2015. http://dx.doi.org/10.1109/am-fpd.2015.7173238.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Killam, Alex, Tim Reblitz, Andre Augusto, and Stuart Bowden. "All silicon tandem solar cell." In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). IEEE, 2016. http://dx.doi.org/10.1109/pvsc.2016.7750082.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cheng, Chih-Hsien, and Gong-Ru Lin. "All silicon rich silicon carbide based solar cell." In 2015 International Symposium on Next-Generation Electronics (ISNE). IEEE, 2015. http://dx.doi.org/10.1109/isne.2015.7131992.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yeh, Benjamin, Russell Huang, Kevin Chung, Alan Chang, and Chih-Hsun Chu. "EMMI analysis on silicon solar cell." In 2008 15th International Symposium on the Physical and Failure Analysis of Integrated Circuits. IEEE, 2008. http://dx.doi.org/10.1109/ipfa.2008.4588180.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhao, J. H., A. Wang, E. Abbaspour-Sani, F. Yun, M. A. Green, and D. L. King. "22.3% efficient silicon solar cell module." In Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996. IEEE, 1996. http://dx.doi.org/10.1109/pvsc.1996.564347.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kroll, Matthias, Martin Otto, Thomas Käsebier, Kevin Füchsel, Ralf Wehrspohn, Ernst-Bernhard Kley, Andreas Tünnermann, and Thomas Pertsch. "Black silicon for solar cell applications." In SPIE Photonics Europe, edited by Ralf Wehrspohn and Andreas Gombert. SPIE, 2012. http://dx.doi.org/10.1117/12.922380.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pei, Zingway, Subramani Thiyagu, and Ming-Sian Jhong. "Amorphous silicon nanocone array solar cell." In 2011 IEEE 4th International Nanoelectronics Conference (INEC). IEEE, 2011. http://dx.doi.org/10.1109/inec.2011.5991685.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yi-Hao Chen, Shoou-Jinn Chang, and Ting-Jen Hsueh. "CIGS solar cell on silicon substrate." In 2015 IEEE 42nd Photovoltaic Specialists Conference (PVSC). IEEE, 2015. http://dx.doi.org/10.1109/pvsc.2015.7355908.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zeman, M., G. Yang, P. P. Moya, G. Limodio, Y. Zhao, A. Weeber, and O. Isabella. "High-Efficiency Crystalline Silicon Solar Cell Architectures." In 2018 12th International Conference on Advanced Semiconductor Devices and Microsystems (ASDAM). IEEE, 2018. http://dx.doi.org/10.1109/asdam.2018.8544475.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Johan, N., M. Mohamad Shahimin, and S. Shaari. "Texturisation of single crystalline silicon solar cell." In 2010 Student Conference on Research and Development (SCOReD). IEEE, 2010. http://dx.doi.org/10.1109/scored.2010.5704043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Downconversion; solar cell; silicon"

1

Green, M. A., J. Zhao, A. Wang, X. Dai, A. Milne, S. Cai, A. Aberle, and S. R. Wenham. Silicon concentrator solar cell research. Office of Scientific and Technical Information (OSTI), June 1993. http://dx.doi.org/10.2172/10176414.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Green, M., Zhao Jianhua, Wang Aihua, and A. Blakers. Silicon concentrator solar cell development. Office of Scientific and Technical Information (OSTI), May 1990. http://dx.doi.org/10.2172/7122289.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Green, M. A., S. R. Wenham, J. Zhao, A. Wang, X. Dai, A. Milne, M. Taouk, et al. One-sun silicon solar cell research. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/10129983.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Schroder, D. K., S. H. Park, I. G. Hwang, J. B. Mohr, and M. P. Hanly. Defect behavior of polycrystalline solar cell silicon. Office of Scientific and Technical Information (OSTI), May 1993. http://dx.doi.org/10.2172/10176410.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Smokler, M. User handbook for Block V silicon solar cell modules. Office of Scientific and Technical Information (OSTI), May 1985. http://dx.doi.org/10.2172/5701724.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sopori, Bhushan, and Daniel J. Friedman. Improving Silicon Solar Cell Efficiency Through Advanced Cell Processing, Highly Uniform Texturing, and Thinner Cells. Office of Scientific and Technical Information (OSTI), February 2019. http://dx.doi.org/10.2172/1496856.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Basore, P. A. Crystalline-silicon solar cell development sponsored by the US Department of Energy. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/10107245.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ridgeway, R. G., S. S. Hegedus, and N. J. Podraza. ENHANCED GROWTH RATE AND SILANE UTILIZATION IN AMORPHOUS SILICON AND NANOCRYSTALLINE-SILICON SOLAR CELL DEPOSITION VIA GAS PHASE ADDITIVES. Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1049689.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Maruska, P. High-performance porous silicon solar cell development. Final report, October 1, 1993--September 30, 1995. Office of Scientific and Technical Information (OSTI), September 1996. http://dx.doi.org/10.2172/378853.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hren, J. Investigation of selected electrically active defects in polycrystalline silicon solar cell materials: Final subcontract report, 30 May 1986. Office of Scientific and Technical Information (OSTI), March 1987. http://dx.doi.org/10.2172/6889508.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії