Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Doubling algorithm.

Статті в журналах з теми "Doubling algorithm"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Doubling algorithm".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Chawla, M. M., K. Passi, and R. A. Zalik. "A recursive doubling algorithm for inverting tridiagonal matrices." International Journal of Computer Mathematics 37, no. 3-4 (January 1990): 213–20. http://dx.doi.org/10.1080/00207169008803949.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

KIMURA, MORISHIGE. "Doubling algorithm for continuous-time algebraic Riccati equation." International Journal of Systems Science 20, no. 2 (February 1989): 191–202. http://dx.doi.org/10.1080/00207728908910119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Poloni, Federico, and Timo Reis. "A structure-preserving doubling algorithm for Lur'e equations." Numerical Linear Algebra with Applications 23, no. 1 (October 14, 2015): 169–86. http://dx.doi.org/10.1002/nla.2019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Katsikopoulos, Konstantinos V., and Özgür Şimşek. "Optimal doubling strategy against a suboptimal opponent." Journal of Applied Probability 42, no. 3 (September 2005): 867–72. http://dx.doi.org/10.1239/jap/1127322034.

Повний текст джерела
Анотація:
For two-person zero-sum games, where the probability of each player winning is a continuous function of time and is known to both players, the mutually optimal strategy for proposing and accepting a doubling of the game value is known. We present an algorithm for deriving the optimal doubling strategy of a player who is aware of the suboptimal strategy followed by the opponent. We also present numerical results about the magnitude of the benefits; the results support the claim that repeated application of the algorithm by both players leads to the mutually optimal strategy.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Katsikopoulos, Konstantinos V., and Özgür Şimşek. "Optimal doubling strategy against a suboptimal opponent." Journal of Applied Probability 42, no. 03 (September 2005): 867–72. http://dx.doi.org/10.1017/s002190020000084x.

Повний текст джерела
Анотація:
For two-person zero-sum games, where the probability of each player winning is a continuous function of time and is known to both players, the mutually optimal strategy for proposing and accepting a doubling of the game value is known. We present an algorithm for deriving the optimal doubling strategy of a player who is aware of the suboptimal strategy followed by the opponent. We also present numerical results about the magnitude of the benefits; the results support the claim that repeated application of the algorithm by both players leads to the mutually optimal strategy.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Qu, Hui Yan, and Wei Zhao. "Fast Collision Detection Algorithm Based on Parallel Doubling Technology." Applied Mechanics and Materials 519-520 (February 2014): 824–27. http://dx.doi.org/10.4028/www.scientific.net/amm.519-520.824.

Повний текст джерела
Анотація:
This paper presents a doubling technology of fast traverse of the list .When parallel call recursively, distance of the division between data gradually doubled after completion of the operation, it was completed the operation of all the data the distance of 2M after calculation of M times. The experiment results show that the proposed method has higher efficiency compared with the normal stand-alone computing and parallel computing so it achieved real-time of CD.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Patel, Santosh C., David S. Friedman, Parna Varadkar, and Alan L. Robin. "Algorithm for interpreting the results of frequency doubling perimetry." American Journal of Ophthalmology 129, no. 3 (March 2000): 323–27. http://dx.doi.org/10.1016/s0002-9394(99)00399-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Guo, Zhen-Chen, Eric King-Wah Chu, and Wen-Wei Lin. "Doubling algorithm for the discretized Bethe-Salpeter eigenvalue problem." Mathematics of Computation 88, no. 319 (January 9, 2019): 2325–50. http://dx.doi.org/10.1090/mcom/3398.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lainiotis, D. G., N. D. Assimakis, and S. K. Katsikas. "New doubling algorithm for the discrete periodic Riccati Equation." Applied Mathematics and Computation 60, no. 2-3 (February 1994): 265–83. http://dx.doi.org/10.1016/0096-3003(94)90109-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Stabrowski, Marek. "Parallel real-world LU decomposition: Gauss vs. Crout algorithm." Open Computer Science 8, no. 1 (December 1, 2018): 210–17. http://dx.doi.org/10.1515/comp-2018-0020.

Повний текст джерела
Анотація:
Abstract This paper presents numerical experiments with assorted versions of parallel LU matrix decomposition algorithms (Gauss and Crout algorithm). The tests have been carried out on the hardware platform with fourcore Skylake processor featuring hyperthreading technology doubling virtually core number. Parallelization algorithms have been implemented with the aid of classic POSIX threads library. Experiments have shown that basic 4-thread acceleration of all parallel implementations is almost equal to the number of threads/processors. Both algorithms are worth considering in real-world applications (Florida University collection). Gauss algorithm is a better performer, with respect to timing, in the case of matrices with lower density of nonzeros, as opposed to higher density matrices. The latter are processed more efficiently with the aid of Crout algorithm implementation.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Wang, Wei-guo, Wei-chao Wang, and Ren-Cang Li. "Alternating-directional Doubling Algorithm for M-Matrix Algebraic Riccati Equations." SIAM Journal on Matrix Analysis and Applications 33, no. 1 (January 2012): 170–94. http://dx.doi.org/10.1137/110835463.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Millikan, Randall E., Lori Jackson, and Kim-Anh Do. "1424: A Robust Algorithm for Calculating PSA Doubling Time (PSADT)." Journal of Urology 177, no. 4S (April 2007): 470. http://dx.doi.org/10.1016/s0022-5347(18)31625-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Guo, Xiao-Xia, Wen-Wei Lin, and Shu-Fang Xu. "A structure-preserving doubling algorithm for nonsymmetric algebraic Riccati equation." Numerische Mathematik 103, no. 3 (April 7, 2006): 393–412. http://dx.doi.org/10.1007/s00211-005-0673-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Yu, Bo, Chengxu Jiang, and Ning Dong. "Structured Doubling Algorithm for a Class of Large-Scale Discrete-Time Algebraic Riccati Equations with High-Ranked Constant Term." Fractal and Fractional 7, no. 2 (February 14, 2023): 193. http://dx.doi.org/10.3390/fractalfract7020193.

Повний текст джерела
Анотація:
Consider the computation of the solution for a class of discrete-time algebraic Riccati equations (DAREs) with the low-ranked coefficient matrix G and the high-ranked constant matrix H. A structured doubling algorithm is proposed for large-scale problems when A is of lowrank. Compared to the existing doubling algorithm of O(2kn) flops at the k-th iteration, the newly developed version merely needs O(n) flops for preprocessing and O((k+1)3m3) flopsfor iterations and is more proper for large-scale computations when m≪n. The convergence and complexity of the algorithm are subsequently analyzed. Illustrative numerical experiments indicate that the presented algorithm, which consists of a dominant time-consuming preprocessing step and a trivially iterative step, is capable of computing the solution efficiently for large-scale DAREs.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Ding, Hu, and Mingquan Ye. "On Geometric Alignment in Low Doubling Dimension." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 1460–67. http://dx.doi.org/10.1609/aaai.v33i01.33011460.

Повний текст джерела
Анотація:
In real-world, many problems can be formulated as the alignment between two geometric patterns. Previously, a great amount of research focus on the alignment of 2D or 3D patterns, especially in the field of computer vision. Recently, the alignment of geometric patterns in high dimension finds several novel applications, and has attracted more and more attentions. However, the research is still rather limited in terms of algorithms. To the best of our knowledge, most existing approaches for high dimensional alignment are just simple extensions of their counterparts for 2D and 3D cases, and often suffer from the issues such as high complexities. In this paper, we propose an effective framework to compress the high dimensional geometric patterns and approximately preserve the alignment quality. As a consequence, existing alignment approach can be applied to the compressed geometric patterns and thus the time complexity is significantly reduced. Our idea is inspired by the observation that high dimensional data often has a low intrinsic dimension. We adopt the widely used notion “doubling dimension” to measure the extents of our compression and the resulting approximation. Finally, we test our method on both random and real datasets; the experimental results reveal that running the alignment algorithm on compressed patterns can achieve similar qualities, comparing with the results on the original patterns, but the running times (including the times cost for compression) are substantially lower.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Tomanič, Tadej, Luka Rogelj, and Matija Milanič. "Robustness of diffuse reflectance spectra analysis by inverse adding doubling algorithm." Biomedical Optics Express 13, no. 2 (January 21, 2022): 921. http://dx.doi.org/10.1364/boe.443880.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Chu, E. K. W., H. Y. Fan, and W. W. Lin. "A structure-preserving doubling algorithm for continuous-time algebraic Riccati equations." Linear Algebra and its Applications 396 (February 2005): 55–80. http://dx.doi.org/10.1016/j.laa.2004.10.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Guo, Chun-Hua, Bruno Iannazzo, and Beatrice Meini. "On the Doubling Algorithm for a (Shifted) Nonsymmetric Algebraic Riccati Equation." SIAM Journal on Matrix Analysis and Applications 29, no. 4 (January 2008): 1083–100. http://dx.doi.org/10.1137/060660837.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Liu, Hongming, Yujie Zhou, and Nianhao Zhu. "A Novel Elliptic Curve Scalar Multiplication Algorithm against Power Analysis." Mathematical Problems in Engineering 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/862508.

Повний текст джерела
Анотація:
Nowadays, power analysis attacks are becoming more and more sophisticated. Through power analysis attacks, an attacker can obtain sensitive data stored in smart cards or other embedded devices more efficiently than with any other kind of physical attacks. Among power analysis, simple power analysis (SPA) is probably the most effective against elliptic curve cryptosystem, because an attacker can easily distinguish between point addition and point doubling in a single execution of scalar multiplication. To make elliptic curve scalar multiplication secure against SPA attacks, many methods have been proposed using special point representations. In this paper, a simple but efficient SPA-resistant multiscalar multiplication is proposed. The method is to convert the scalar into a nonadjacent form (NAF) representation at first and then constitute it in a new signed digit representation. This new representation is undertaken at a small precomputation cost, as each representation needs just one doubling and 1/2 additions for each bit. In addition, when combined with randomization techniques, the proposed method can also guard against differential power analysis (DPA) attack.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Duemong, Fudailah, and Ladda Preechaveerakul. "A Large Scalar Multiplication Algorithm using Modified Pell Numbers for Key Generation." ECTI Transactions on Computer and Information Technology (ECTI-CIT) 15, no. 2 (May 5, 2021): 220–31. http://dx.doi.org/10.37936/ecti-cit.2021152.227427.

Повний текст джерела
Анотація:
Cryptographic algorithms consist of two parts, a key and an algorithm, to encrypt and decrypt data. The key is an essential part that works with the algorithm. The security of encryption schemes depends on the key size (key length) and the longer the key, the better the security it provides. Applying an elliptic curve has for key agreement provides a high-performance architecture and high security. The main process for calculating key points in Elliptic Curve Cryptography (ECC) is called scalar multiplication, which relates to point addition and point doubling. An efficient algorithm, proposed as the Large Scalar Multiplication Algorithm using Modified Pell Numbers (LSMA-MPN), was introduced to speed up the calculation of points on elliptic curves during large scalar multiplications. This system also reduced computation time by applying Modified Pell numbers in a 22 matrix representation. The experimental results showed that computation time was reduced by approximately 67% in comparison with the computation time required by a general algorithm.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Tang, Bo. "Doubling Algorithm for Nonsymmetric Algebraic Riccati Equations Based on a Generalized Transformation." Advances in Applied Mathematics and Mechanics 10, no. 6 (June 2018): 1327–43. http://dx.doi.org/10.4208/aamm.oa-2018-0012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Wang, Ziheng, Duo Li, Chao Guo, Shuqiao Zhou, and Liyun Tong. "APPLICATION OF WAVELET TRANSFORM IN THE RESEARCH OF REACTOR DOUBLING PERIOD ALGORITHM." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2019.27 (2019): 1717. http://dx.doi.org/10.1299/jsmeicone.2019.27.1717.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Guo, Chun-Hua, and Wen-Wei Lin. "Solving a Structured Quadratic Eigenvalue Problem by a Structure-Preserving Doubling Algorithm." SIAM Journal on Matrix Analysis and Applications 31, no. 5 (January 2010): 2784–801. http://dx.doi.org/10.1137/090763196.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Chu, Eric King-wah, and Peter Chang-Yi Weng. "Large-scale discrete-time algebraic Riccati equations— Doubling algorithm and error analysis." Journal of Computational and Applied Mathematics 277 (March 2015): 115–26. http://dx.doi.org/10.1016/j.cam.2014.09.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

KIMURA, MORISHIGE. "Convergence of the doubling algorithm for the discrete-time algebraic Riccati equation." International Journal of Systems Science 19, no. 5 (January 1988): 701–11. http://dx.doi.org/10.1080/00207728808967637.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Eǧecioǧlu, Ömer, Cetin K. Koc, and Alan J. Laub. "A recursive doubling algorithm for solution of tridiagonal systems on hypercube multiprocessors." Journal of Computational and Applied Mathematics 27, no. 1-2 (September 1989): 95–108. http://dx.doi.org/10.1016/0377-0427(89)90362-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Hwang *, T. M., E. K. W. Chu, and W. W. Lin. "A generalized structure-preserving doubling algorithm for generalized discrete-time algebraic Riccati equations." International Journal of Control 78, no. 14 (September 20, 2005): 1063–75. http://dx.doi.org/10.1080/00207170500155827.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Zhu, Wenbin, and Andrew Lim. "A new iterative-doubling Greedy–Lookahead algorithm for the single container loading problem." European Journal of Operational Research 222, no. 3 (November 2012): 408–17. http://dx.doi.org/10.1016/j.ejor.2012.04.036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Zhang, Juan, and Shifeng Li. "The structure-preserving doubling algorithm and convergence analysis for a nonlinear matrix equation." Automatica 113 (March 2020): 108822. http://dx.doi.org/10.1016/j.automatica.2020.108822.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Zhang, Juan, and Shifeng Li. "The Structure-preserving Doubling Numerical Algorithm of the Continuous Coupled Algebraic Riccati Equation." International Journal of Control, Automation and Systems 18, no. 7 (February 4, 2020): 1641–50. http://dx.doi.org/10.1007/s12555-019-0368-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Chen, Cairong. "A structure-preserving doubling algorithm for solving a class of quadratic matrix equation with $ M $-matrix." Electronic Research Archive 30, no. 2 (2022): 574–84. http://dx.doi.org/10.3934/era.2022030.

Повний текст джерела
Анотація:
<abstract><p>Consider the problem of finding the maximal nonpositive solvent $ \varPhi $ of the quadratic matrix equation (QME) $ X^2 + BX + C = 0 $ with $ B $ being a nonsingular $ M $-matrix and $ C $ an $ M $-matrix such that $ B^{-1}C\ge 0 $. Such QME arises from an overdamped vibrating system. Recently, under the condition that $ B - C - I $ is a nonsingular $ M $-matrix, Yu et al. (<italic>Appl. Math. Comput.</italic>, 218 (2011): 3303–3310) proved that $ \rho(\varPhi)\le 1 $ for this QME. In this paper, under the same condition, we slightly improve their result and prove that $ \rho(\varPhi) &lt; 1 $, which is important for the quadratic convergence of the structure-preserving doubling algorithm. Then, a new globally monotonically and quadratically convergent structure-preserving doubling algorithm for solving the QME is developed. Numerical examples are presented to demonstrate the feasibility and effectiveness of our method.</p></abstract>
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Szalai, Róbert, and Gábor Stépán. "Period Doubling Bifurcation and Center Manifold Reduction in a Time-periodic and Time-delayed Model of Machining." Journal of Vibration and Control 16, no. 7-8 (June 2010): 1169–87. http://dx.doi.org/10.1177/1077546309341133.

Повний текст джерела
Анотація:
A closed-form calculation is presented for the analysis of the period-doubling bifurcation in the time-periodic delay-differential equation model of interrupted machining processes such as milling where the nonlinearity is essentially nonsymmetric. We prove the subcritical sense of this period-doubling bifurcation and approximate the emerging period-two oscillations by the Lyapunov—Perron method for computing the center manifold and by calculating the Poincaré—Lyapunov constant of the bifurcation analytically at certain characteristic parameter values. The existence of the unstable period-two oscillations around the stable stationary cutting is confirmed using a numerical continuation algorithm developed for time-periodic delay-differential equations.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

QIU, KE. "ON A UNIFIED NEIGHBOURHOOD BROADCASTING SCHEME FOR INTERCONNECTION NETWORKS." Parallel Processing Letters 17, no. 04 (December 2007): 425–37. http://dx.doi.org/10.1142/s0129626407003137.

Повний текст джерела
Анотація:
The neighbourhood broadcasting problem in an interconnection network is defined as sending a fixed sized message from the source node to all its neighbours in a single-port model. Previously, this problem has been studied for several interconnection networks including the hypercube and the star. The objective of such works has been to minimize the total number of steps required for the neighbourhood broadcasting algorithms. Here, we first use a general neighbourhood broadcasting scheme to develop a neighbourhood broadcasting algorithm for the star interconnection network that is asymptotically optimal, conceptually simple, and easy to implement since routing for all nodes involved is uniform. It uses the cycle structures of the star graph as well as the standard technique of recursive doubling. We then show that the scheme for the star network is general enough to be applied to a broader family of interconnection networks such as the pancake interconnection network for which no previous neighbourhood broadcasting algorithm is known, resulting in asymptotically optimal algorithms. Finally, we use this scheme to develop neighbourhood broadcasting algorithms for multiple messages for several interconnection networks.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Dryło, Robert. "Compression on the Twisted Jacobi Intersection." Fundamenta Informaticae 181, no. 4 (August 4, 2021): 303–12. http://dx.doi.org/10.3233/fi-2021-2060.

Повний текст джерела
Анотація:
Formulas for doubling, differential addition and point recovery after compression were given for many standard models of elliptic curves, and allow for scalar multiplication after compression using the Montgomery ladder algorithm and point recovery on a curve after this multiplication. In this paper we give such formulas for the twisted Jacobi intersection au2 + v2 = 1, bu2 + w2 = 1. To our knowledge such formulas were not given for this model or for the Jacobi intersection. In projective coordinates these formulas have cost 2M +2S +6D for doubling and 5M + 2S + 6D for differential addition, where M; S; D are multiplication, squaring and multiplication by constants in a field, respectively, choosing suitable curve parameters cost of D may be small.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Shvachych G. G., Pobochii I. A., Barteniev H. M., Tkachenko O. G., and Tseluiko N. V. "NUMERICAL AND ANALYTICAL DIAGRAM OF A DISTRIBUTED SIMULATION OF DYNAMIC SYSTEMS." World Science 1, no. 3(43) (March 31, 2019): 4–9. http://dx.doi.org/10.31435/rsglobal_ws/31032019/6397.

Повний текст джерела
Анотація:
The work is dedicated to the construction of numerical-analytical method of designing efficient algorithms for the solution of problems in economics and engineering. Using a priori information about the smoothness of the solution, great attention is paid to the construction of high-accuracy solutions. The proposed approach eliminates recurrent structure calculations unknown vectors decisions, which leads to the accumulation of rounding errors. Parallel form of the algorithm is the maximum, and therefore has the shortest possible time the implementation on parallel computing systems. Most conventional algorithms for solving these problems (sweep techniques, decomposition of the matrix into a product of two diagonal matrices, doubling, etc.) when multiple processors work typically no faster than if a single processor. The reason for this is substantial sequence computations of these algorithms.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Assimakis, Nicholas, and Maria Adam. "Iterative and Algebraic Algorithms for the Computation of the Steady State Kalman Filter Gain." ISRN Applied Mathematics 2014 (May 4, 2014): 1–10. http://dx.doi.org/10.1155/2014/417623.

Повний текст джерела
Анотація:
The Kalman filter gain arises in linear estimation and is associated with linear systems. The gain is a matrix through which the estimation and the prediction of the state as well as the corresponding estimation and prediction error covariance matrices are computed. For time invariant and asymptotically stable systems, there exists a steady state value of the Kalman filter gain. The steady state Kalman filter gain is usually derived via the steady state prediction error covariance by first solving the corresponding Riccati equation. In this paper, we present iterative per-step and doubling algorithms as well as an algebraic algorithm for the steady state Kalman filter gain computation. These algorithms hold under conditions concerning the system parameters. The advantage of these algorithms is the autonomous computation of the steady state Kalman filter gain.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Chiang, Chun-Yueh, Hung-Yuan Fan, and Wen-Wei Lin. "STRUCTURED DOUBLING ALGORITHM FOR DISCRETE-TIME ALGEBRAIC RICCATI EQUATIONS WITH SINGULAR CONTROL WEIGHTING MATRICES." Taiwanese Journal of Mathematics 14, no. 3A (June 2010): 933–54. http://dx.doi.org/10.11650/twjm/1500405875.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Plevritis, Sylvia K. "A mathematical algorithm that computes breast cancer sizes and doubling times detected by screening." Mathematical Biosciences 171, no. 2 (June 2001): 155–78. http://dx.doi.org/10.1016/s0025-5564(01)00054-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Chen, Cairong, Ren-Cang Li, and Changfeng Ma. "Highly accurate doubling algorithm for quadratic matrix equation from quasi-birth-and-death process." Linear Algebra and its Applications 583 (December 2019): 1–45. http://dx.doi.org/10.1016/j.laa.2019.08.018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Guo, Pei-Chang, and Xiao-Xia Guo. "A modified structure-preserving doubling algorithm for nonsymmetric algebraic Riccati equations from transport theory." Journal of Computational and Applied Mathematics 261 (May 2014): 213–20. http://dx.doi.org/10.1016/j.cam.2013.09.058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Li, Tie-xiang, Eric King-wah Chu, and Wen-Wei Lin. "A structure-preserving doubling algorithm for quadratic eigenvalue problems arising from time-delay systems." Journal of Computational and Applied Mathematics 233, no. 8 (February 2010): 1733–45. http://dx.doi.org/10.1016/j.cam.2009.09.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Isaacson, D., E. L. Isaacson, D. Marchesin, and P. J. Paes-Leme. "Numerical Analysis of Spectral Properties of Coupled Oscillator Schrödinger Operators III. The Doubling Algorithm." SIAM Journal on Scientific and Statistical Computing 6, no. 1 (January 1985): 158–68. http://dx.doi.org/10.1137/0906013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Lu, Linzhang, Fei Yuan, and Ren-Cang Li. "A new look at the doubling algorithm for a structured palindromic quadratic eigenvalue problem." Numerical Linear Algebra with Applications 22, no. 3 (November 13, 2014): 393–409. http://dx.doi.org/10.1002/nla.1962.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

MEKHALLALATI, M. C., A. S. ASHUR, and M. K. IBRAHIM. "RADIX MODULAR MULTIPLICATION ALGORITHM." Journal of Circuits, Systems and Computers 06, no. 05 (October 1996): 547–67. http://dx.doi.org/10.1142/s0218126696000376.

Повний текст джерела
Анотація:
In this paper, the concept of a new Radix Modular Multiplication Algorithm (MMA) is proposed. The novelty of the new Radix-2n MMA is that the intermediate partial sums (IPSs) are not restricted to be less than the modulus M, but only to be represented by N bits, where N is the number of bits needed to represent the modulus M. Hence, the IPSs become redundant to the modulus M. Two new Radix-2n MMAs (for n=2 and 4) based on the proposed concept are considered in detail as well. It is shown that a parallel multiplier based on the new Radix-4 MMA achieves twice the speed of a parallel multiplier based on a recent Radix-2 MMA. This result becomes more significant when it is noted that doubling the speed was achieved without any increase in the hardware requirement. In addition, it is shown that the parallel multiplier based on the new Radix-16 MMA achieves four times the speed of that of the Radix-2 MMA with the same hardware requirement. When compared to the existing Radix-4 MMAs that are based on Carry Save format and Binary Signed Digit (BSD) representation, it is shown that the delay per step of the proposed Radix-4 multiplier is decreased by more than 40% when the intermediate steps are implemented using Carry Save Adders (CSAs).
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Pomarnacki, Raimondas. "PARALLEL SYSTEM FOR ANALYSIS OF MEANDER DELAY LINE." Mokslas - Lietuvos ateitis 2, no. 1 (February 28, 2010): 112–16. http://dx.doi.org/10.3846/mla.2010.025.

Повний текст джерела
Анотація:
Meander microstrip delay lines (MMDL) are widely used in electronic systems. The basic difficulty designing MMDL is the solution of the dispersion equation, which defines the relation between phase coefficient of electromagnetic wave in the free space and in the investigated MMDL. To shorten the time of solving the dispersion equation the parallel algorithm is offered. The algorithm has been implemented on 8 computers cluster МРICH2. Examination of the operation of the cluster has shown that each doubling of the number of nodes increments the efficiency of the cluster approximately by 40%.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Musa, Sirajo, G. N. Obunadike, and Muhammad Muntasir Yakubu. "AN IMPROVED HAUSA WORD STEMMING ALGORITHM." FUDMA JOURNAL OF SCIENCES 6, no. 1 (April 5, 2022): 291–95. http://dx.doi.org/10.33003/fjs-2022-0601-899.

Повний текст джерела
Анотація:
The explosion of scientific publications in different domains coupled with the introduction and socialization of the internet experienced in the last few decades has made information more available than ever before. Consequently, digital storage capacity has been consistently doubling to reflect this geometric increase in information. In view of this, Information Retrieval (IR), nowadays considered the dominant form of information access has become even more critical. However, the problem of using free text in indexing and retrieval arising from spelling mistake, alternative in spelling, affixes and abbreviations has continued to bedevil the field of IR. To mitigate this problem, Stemming Algorithm was introduced in the 1960s. Stemming is an automated process of stripping all word derivatives of their inflectional affixes in order to obtain stem of the word. Because stemming is language specific, there are stemming algorithms designed specifically for most of the major languages in the world. With a speaker population of about 150 million Hausa language stands in need of a better stemming algorithm. This research is an attempt to improve upon the existing Hausa word stemming algorithm. Affix stripping method of conflation with reference lookup was used. Using Sirsat’s evaluation method, this research achieved 96.9% as Correctly Stemmed Word Factor (CSWF), Index Compression Factor – 74.76%, Words Stemmed Factor (WSF) – 70.44% and Average Word Conflation Factor – 59.47%.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Menke, C. "Bifurcations of Numerically Simulated Marangoni Flows in Floating Zones." International Journal of Bifurcation and Chaos 07, no. 06 (June 1997): 1295–305. http://dx.doi.org/10.1142/s0218127497001035.

Повний текст джерела
Анотація:
Marangoni or thermocapillary convection in a two-dimensional cylindrical half zone configuration under microgravity is studied numerically. The time-dependent simulations take into account convection and conduction in the melt, heat transfer between the melt and the ambient, and deformations of the free melt/gas surface of the half zone. A modified Marker and Cell (MAC) method is used to compute the flow and the temperature fields. The algorithm is applied especially to silicon melts. Above a critical temperature difference in the melt, the steady state becomes unstable and oscillatory thermocapillary convection occurs. The relevant control parameter for the onset of oscillations is the Marangoni number. As the Marangoni number increases, the phenomenon of period doubling is observed in the simulations. After a sequence of period doubling bifurcations, the flow becomes turbulent.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Chiang, Chun-Yueh, Eric King-Wah Chu, Chun-Hua Guo, Tsung-Ming Huang, Wen-Wei Lin, and Shu-Fang Xu. "Convergence Analysis of the Doubling Algorithm for Several Nonlinear Matrix Equations in the Critical Case." SIAM Journal on Matrix Analysis and Applications 31, no. 2 (January 2009): 227–47. http://dx.doi.org/10.1137/080717304.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Mehrmann, Volker, and Federico Poloni. "A generalized structured doubling algorithm for the numerical solution of linear quadratic optimal control problems." Numerical Linear Algebra with Applications 20, no. 1 (March 12, 2012): 112–37. http://dx.doi.org/10.1002/nla.1828.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Sayadi, Fatma Ezzahra, Marwa Chouchene, Haithem Bahri, Randa Khemiri, and Mohamed Atri. "Parallel Full Search Algorithm for Motion Estimation on Graphic Processing Unit." Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering) 12, no. 4 (August 23, 2019): 317–23. http://dx.doi.org/10.2174/2352096511666180703114137.

Повний текст джерела
Анотація:
Background: Advances in video compression technology have been driven by everincreasing processing power available in software and hardware. Methods: The emerging High-Efficiency Video Coding (HEVC) standard aims to provide a doubling in coding efficiency with respect to the H.264/AVC high profile, delivering the same video quality at half the bit rate. Results: Thus, the results show high computational complexity. In both standards, the motion estimation block presents a significant challenge in clock latency since it consumes more than 40% of the total encoding time. For these reasons, we proposed an optimized implementation of this algorithm on a low-cost NVIDIA GPU developed with CUDA language. Conclusion: This optimized implementation can provide high-performance video encoder where the speed reaches about 85.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії