Зміст
Добірка наукової літератури з теми "Données Transactionnelles"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Données Transactionnelles".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Données Transactionnelles"
Boisvert, Yves. "L'analyse des risques éthiques : une recherche exploratoire dans le domaine de la gouvernance municipale." Canadian Journal of Political Science 51, no. 2 (April 10, 2018): 305–34. http://dx.doi.org/10.1017/s0008423918000173.
Повний текст джерелаLe Pape, Cécile, and Stéphane Gançarski. "Fraîcheur et validité de données répliquées dans des environnements transactionnels." Ingénierie des systèmes d'information 9, no. 5-6 (December 24, 2004): 163–83. http://dx.doi.org/10.3166/isi.9.5-6.163-183.
Повний текст джерелаGiardina, Max, Denis Harvey, and Martine Mottet. "L’évaluation des SAMI (système d’apprentissage multimédia interactif) : de la théorie à la pratique." Articles 24, no. 2 (April 30, 2008): 335–53. http://dx.doi.org/10.7202/502015ar.
Повний текст джерелаStrain, Laurel A. "Russell A. Ward, Mark LaGory and Susan R. Sherman. The Environment for Aging: Interpersonal, Social, and Spatial Contexts. Tuscaloosa, Alabama: The University of Alabama Press, 1988, pp. 256, U.S. $26.95." Canadian Journal on Aging / La Revue canadienne du vieillissement 9, no. 3 (1990): 304–6. http://dx.doi.org/10.1017/s0714980800010734.
Повний текст джерелаMarlot, Corinne. "Le processus de double sémiotisation au cœur des stratégies didactiques du professeur. Une étude de cas en découverte du monde vivant au cycle 2." Swiss Journal of Educational Research 36, no. 2 (September 20, 2018): 307–32. http://dx.doi.org/10.24452/sjer.36.2.4938.
Повний текст джерелаQMICHCHOU, Mohammed. "qualité de formation." Journal of Quality in Education 4, no. 5 (May 5, 2014): 16. http://dx.doi.org/10.37870/joqie.v4i5.59.
Повний текст джерелаWillemsma, Kaylie, Lindsay Barton, Rochelle Stimpson, Irene Pickell, Venessa Ryan, Amanda Yu, Ann Pederson, Gina Ogilvie, Troy Grennan, and Jason Wong. "Caractérisation des cas de syphilis infectieuse féminine en Colombie-Britannique afin de déterminer les possibilités d’optimisation des soins." Relevé des maladies transmissibles au Canada 48, no. 2-3 (February 24, 2022): 76–84. http://dx.doi.org/10.14745/ccdr.v48i23a03f.
Повний текст джерелаDixon, Melanie Rose, Isabelle Giroux, Christian Jacques, and Philippe Grégoire. "What Characterizes Excessive Online Stock Trading? A Qualitative Study." Journal of Gambling Issues, no. 38 (January 26, 2018). http://dx.doi.org/10.4309/jgi.2018.38.2.
Повний текст джерелаDixon, Melanie Rose, Isabelle Giroux, Christian Jacques, and Philippe Grégoire. "What Characterizes Excessive Online Stock Trading? A Qualitative Study." Journal of Gambling Issues, no. 38 (January 26, 2018). http://dx.doi.org/10.4309/jgi.v0i38.3996.
Повний текст джерелаGao, Yijun. "Analyzing News Website from Publicly Accessible Data." Proceedings of the Annual Conference of CAIS / Actes du congrès annuel de l'ACSI, October 21, 2013. http://dx.doi.org/10.29173/cais559.
Повний текст джерелаДисертації з теми "Données Transactionnelles"
Crain, Tyler. "Faciliter l'utilisation des mémoires transactionnelles logicielles." Phd thesis, Université Rennes 1, 2013. http://tel.archives-ouvertes.fr/tel-00861274.
Повний текст джерелаKirchgessner, Martin. "Fouille et classement d'ensembles fermés dans des données transactionnelles de grande échelle." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAM060/document.
Повний текст джерелаThe recent increase of data volumes raises new challenges for itemset mining algorithms. In this thesis, we focus on transactional datasets (collections of items sets, for example supermarket tickets) containing at least a million transactions over hundreds of thousands items. These datasets usually follow a "long tail" distribution: a few items are very frequent, and most items appear rarely. Such distributions are often truncated by existing itemset mining algorithms, whose results concern only a very small portion of the available items (the most frequents, usually). Thus, existing methods fail to concisely provide relevant insights on large datasets. We therefore introduce a new semantics which is more intuitive for the analyst: browsing associations per item, for any item, and less than a hundred associations at once.To address the items' coverage challenge, our first contribution is the item-centric mining problem. It consists in computing, for each item in the dataset, the k most frequent closed itemsets containing this item. We present an algorithm to solve it, TopPI. We show that TopPI computes efficiently interesting results over our datasets, outperforming simpler solutions or emulations based on existing algorithms, both in terms of run-time and result completeness. We also show and empirically validate how TopPI can be parallelized, on multi-core machines and on Hadoop clusters, in order to speed-up computation on large scale datasets.Our second contribution is CAPA, a framework allowing us to study which existing measures of association rules' quality are relevant to rank results. This concerns results obtained from TopPI or from jLCM, our implementation of a state-of-the-art frequent closed itemsets mining algorithm (LCM). Our quantitative study shows that the 39 quality measures we compare can be grouped into 5 families, based on the similarity of the rankings they produce. We also involve marketing experts in a qualitative study, in order to discover which of the 5 families we propose highlights the most interesting associations for their domain.Our close collaboration with Intermarché, one of our industrial partners in the Datalyse project, allows us to show extensive experiments on real, nation-wide supermarket data. We present a complete analytics workflow addressing this use case. We also experiment on Web data. Our contributions can be relevant in various other fields, thanks to the genericity of transactional datasets.Altogether our contributions allow analysts to discover associations of interest in modern datasets. We pave the way for a more reactive discovery of items' associations in large-scale datasets, whether on highly dynamic data or for interactive exploration systems
Alchicha, Élie. "Confidentialité Différentielle et Blowfish appliquées sur des bases de données graphiques, transactionnelles et images." Thesis, Pau, 2021. http://www.theses.fr/2021PAUU3067.
Повний текст джерелаDigital data is playing crucial role in our daily life in communicating, saving information, expressing our thoughts and opinions and capturing our precious moments as digital pictures and videos. Digital data has enormous benefits in all the aspects of modern life but forms also a threat to our privacy. In this thesis, we consider three types of online digital data generated by users of social media and e-commerce customers: graphs, transactional, and images. The graphs are records of the interactions between users that help the companies understand who are the influential users in their surroundings. The photos posted on social networks are an important source of data that need efforts to extract. The transactional datasets represent the operations that occurred on e-commerce services.We rely on a privacy-preserving technique called Differential Privacy (DP) and its generalization Blowfish Privacy (BP) to propose several solutions for the data owners to benefit from their datasets without the risk of privacy breach that could lead to legal issues. These techniques are based on the idea of recovering the existence or non-existence of any element in the dataset (tuple, row, edge, node, image, vector, ...) by adding respectively small noise on the output to provide a good balance between privacy and utility.In the first use case, we focus on the graphs by proposing three different mechanisms to protect the users' personal data before analyzing the datasets. For the first mechanism, we present a scenario to protect the connections between users (the edges in the graph) with a new approach where the users have different privileges: the VIP users need a higher level of privacy than standard users. The scenario for the second mechanism is centered on protecting a group of people (subgraphs) instead of nodes or edges in a more advanced type of graphs called dynamic graphs where the nodes and the edges might change in each time interval. In the third scenario, we keep focusing on dynamic graphs, but this time the adversaries are more aggressive than the past two scenarios as they are planting fake accounts in the dynamic graphs to connect to honest users and try to reveal their representative nodes in the graph. In the second use case, we contribute in the domain of transactional data by presenting an existed mechanism called Safe Grouping. It relies on grouping the tuples in such a way that hides the correlations between them that the adversary could use to breach the privacy of the users. On the other side, these correlations are important for the data owners in analyzing the data to understand who might be interested in similar products, goods or services. For this reason, we propose a new mechanism that exposes these correlations in such datasets, and we prove that the level of privacy is similar to the level provided by Safe Grouping.The third use-case concerns the images posted by users on social networks. We propose a privacy-preserving mechanism that allows the data owners to classify the elements in the photos without revealing sensitive information. We present a scenario of extracting the sentiments on the faces with forbidding the adversaries from recognizing the identity of the persons. For each use-case, we present the results of the experiments that prove that our algorithms can provide a good balance between privacy and utility and that they outperform existing solutions at least in one of these two concepts
Amo, Sandra De. "Contraintes dynamiques et schémas transactionnels." Paris 13, 1995. http://www.theses.fr/1995PA132002.
Повний текст джерелаBogo, Gilles. "Conception d'applications pour systèmes transactionnels coopérants." S.l. : Université Grenoble 1, 2008. http://tel.archives-ouvertes.fr/tel-00315574.
Повний текст джерелаBogo, Gilles. "Conception d'applications pour systèmes transactionnels coopérants." Habilitation à diriger des recherches, Grenoble INPG, 1985. http://tel.archives-ouvertes.fr/tel-00315574.
Повний текст джерелаFritzke, Jr Udo. "Les systèmes transactionnels répartis pour données dupliquées fondés sur la communication de groupes." Rennes 1, 2001. http://www.theses.fr/2001REN10002.
Повний текст джерелаFournié, Laurent Henri. "Stockage et manipulation transactionnels dans une base de données déductives à objets : techniques et performances." Versailles-St Quentin en Yvelines, 1998. http://www.theses.fr/1998VERS0017.
Повний текст джерелаBillard, David. "La reprise dans les systèmes transactionnels exploitant la sémantique des opérations typées." Montpellier 2, 1995. http://www.theses.fr/1995MON20056.
Повний текст джерелаMalta, Carmelo. "Les systèmes transactionnels pour environnements d'objets : principes et mise en oeuvre." Montpellier 2, 1993. http://www.theses.fr/1993MON20154.
Повний текст джерела