Добірка наукової літератури з теми "Données neuronales"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Données neuronales".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Données neuronales"
ASSIS, Y., A. NAFI, X. NI, A. SAMET, and G. GUARINO. "Analyse textuelle des RPQS pour la constitution de bases de connaissances." 3, no. 3 (March 22, 2021): 31–36. http://dx.doi.org/10.36904/tsm/202103031.
Повний текст джерелаValdez, Cristian, and María Lomeña Galiano. "Exploration de la traduction automatique neuronale espagnol-français : Pour une traductologie de corpus appliquée à l’analyse des outils de traduction." Traduction et Langues 20, no. 1 (August 31, 2021): 86–112. http://dx.doi.org/10.52919/translang.v20i1.307.
Повний текст джерелаLaïdi, Maamar, and Salah Hanini. "Approche neuronale pour l’estimation des transferts thermiques dans un fluide frigoporteur diphasique." Journal of Renewable Energies 15, no. 3 (October 23, 2023): 513–20. http://dx.doi.org/10.54966/jreen.v15i3.340.
Повний текст джерелаRutka, Roman, Anne Denis, Laurent Vercueil, and Pascal Hot. "Crises psychogènes non épileptiques : état des connaissances et apports de l’évaluation des traitements émotionnels." Santé mentale au Québec 41, no. 1 (July 5, 2016): 123–39. http://dx.doi.org/10.7202/1036968ar.
Повний текст джерелаAbidi, Fatma. "Performance des méthodes d’évaluation de la détection de détresse financière." La Revue des Sciences de Gestion N° 311, no. 5 (January 31, 2022): 101–10. http://dx.doi.org/10.3917/rsg.311.0105.
Повний текст джерелаBelaubre, Gilbert. "Approches méthodologiques et expérimentales des phénomènes complexes." Acta Europeana Systemica 4 (July 14, 2020): 143–64. http://dx.doi.org/10.14428/aes.v4i1.57343.
Повний текст джерелаAvoli, Massimo, and Krešimir Krnjević. "The Long and Winding Road to Gamma-Amino-Butyric Acid as Neurotransmitter." Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques 43, no. 2 (January 14, 2016): 219–26. http://dx.doi.org/10.1017/cjn.2015.333.
Повний текст джерелаOhmaid, Hicham, S. Eddarouich, A. Bourouhou, and M. Timouya. "Comparison between SVM and KNN classifiers for iris recognition using a new unsupervised neural approach in segmentation." IAES International Journal of Artificial Intelligence (IJ-AI) 9, no. 3 (September 1, 2020): 429. http://dx.doi.org/10.11591/ijai.v9.i3.pp429-438.
Повний текст джерелаBeividas, Waldir. "La nature du sens : Neuroception, perception ou sémioception ?" Semiotica 2020, no. 234 (October 25, 2020): 45–58. http://dx.doi.org/10.1515/sem-2018-0125.
Повний текст джерелаWils, Thierry, and Aziz Rhnima. "Taxonomie des conflits entre le travail et la famille : une analyse multidimensionnelle à l’aide de cartes auto-organisatrices." Articles 70, no. 3 (October 5, 2015): 432–56. http://dx.doi.org/10.7202/1033405ar.
Повний текст джерелаДисертації з теми "Données neuronales"
Werner, Thilo. "Réseaux de neurones impulsionnels basés sur les mémoires résistives pour l'analyse de données neuronales." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAS028/document.
Повний текст джерелаThe central nervous system of humankind is an astonishing information processing system in terms of its capabilities, versatility, adaptability and low energy consumption. Its complex structure consists of billions of neurons interconnected by trillions of synapses forming specialized clusters. Recently, mimicking those paradigms has attracted a strongly growing interest, triggered by the need for advanced computing approaches to tackle challenges related to the generation of massive amounts of complex data in the Internet of Things (IoT) era. This has led to a new research field, known as cognitive computing or neuromorphic engineering, which relies on the so-called non-von-Neumann architectures (brain-inspired) in contrary to von-Neumann architectures (conventional computers). In this thesis, we explore the use of resistive memory technologies such as oxide vacancy based random access memory (OxRAM) and conductive bridge RAM (CBRAM) for the design of artificial synapses that are a basic building block for neuromorphic networks. Moreover, we develop an artificial spiking neural network (SNN) based on OxRAM synapses dedicated to the analysis of spiking data recorded from the human brain with the goal of using the output of the SNN in a brain-computer interface (BCI) for the treatment of neurological disorders. The impact of reliability issues characteristic to OxRAM on the system performance is studied in detail and potential ways to mitigate penalties related to single device uncertainties are demonstrated. Besides the already well-known spike-timing-dependent plasticity (STDP) implementation with OxRAM and CBRAM which constitutes a form of long term plasticity (LTP), OxRAM devices were also used to mimic short term plasticity (STP). The fundamentally different functionalities of LTP and STP are put in evidence
Merlin, Paul. "Des techniques neuronales dans l'alternatif." Phd thesis, Université Panthéon-Sorbonne - Paris I, 2009. http://tel.archives-ouvertes.fr/tel-00450649.
Повний текст джерелаFuchs, Robin. "Méthodes neuronales et données mixtes : vers une meilleure résolution spatio-temporelle des écosystèmes marins et du phytoplancton." Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0295.
Повний текст джерелаPhytoplankton are one of the first links in the food web and generate up to 50% of the world's primary production. The study of phytoplankton and their physical environment requires observations with a resolution of less than a day and a kilometer, as well as the consideration of the heterogeneous types of data involved and the spatio-temporal dependency structures of marine ecosystems.This thesis aims to develop statistical methods in this context by using technologies such as automated flow cytometry. Theoretical developments focused on Deep Gaussian Mixture Models (DGMM) introduced by Viroli and McLachlan (2019). To better characterize phytoplankton ecological niches, we extended these models to mixed data (exhibiting continuous and non-continuous variables) often found in oceanography. A clustering method has been proposed as well as an algorithm for generating synthetic mixed data.Regarding the high-frequency study itself, convolutional neural networks have been introduced to process flow cytometry outputs and to study six functional groups of phytoplankton in the littoral zone and the open ocean. Differentiated and reproducible responses of these groups were identified following wind-induced pulse events, highlighting the importance of the coupling between physics and biology. In this regard, a change-point detection method has been proposed to delineate epipelagic and mesopelagic zones, providing a new basis for the calculation of mesopelagic carbon budgets
Martinez, Herrera Miguel. "Inference of non-linear or imperfectly observed Hawkes processes." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS273.
Повний текст джерелаThe Hawkes point process is a popular statistical tool to analyse temporal patterns.Modern applications propose extensions of this model to account for specificities in each field of study, which in turn complexifies the task of inference.In this thesis, we advance different approaches for the parametric estimation of two submodels of the Hawkes process in univariate and multivariate settings.Motivated by the modelling of complex neuronal interactions observed from spike train data,our first study focuses on accounting for both inhibition and excitation effects between neurons, modelled by the non-linear Hawkes process.We derive a closed-form expression of the log-likelihood in order to implement a maximum likelihood procedure.As a consequence of our approach, we gain access to a goodness-of-fit scheme allowing us to establish ad hoc model selection methods to estimate the interaction network in the multivariate setting.The second part of this thesis focuses on studying Hawkes process data noised by two different alterations: adding or removing points.The absence of knowledge on the noise dynamics makes classical inference procedures intractable or computationally expensive.Our solution is to leverage the spectral analysis of point processes to establish an estimator obtained by maximising the spectral log-likelihood.By deriving the spectral densities of the noised processes and by establishing identifiability conditions on our model, we show that the spectral inference method does not necessitate any information on the structure of the noise, effectively circumventing this issue.An additional result of the study of Hawkes processes with missing points is that it gives access to a subsampling paradigm to enhance the estimation methods by introducing a penalisation parameter.We illustrate the efficiency of all of our methods through reproducible numerical implementations
Dora, Matteo. "Mathematical models and signal processing methods to explore biological mechanisms across multiple scales : from intracellular dynamics to neural time series." Electronic Thesis or Diss., Université Paris sciences et lettres, 2022. http://www.theses.fr/2022UPSLE033.
Повний текст джерелаThis dissertation is an investigation of biological phenomena related to the brain by means of mathematical models and quantitative methods. The leitmotiv of this work is the analysis of spatiotemporal series which naturally arise in biological systems at different scales. In the first part of the thesis, we study the finest of such scales. I analyse intracellular protein dynamics in the endoplasmic reticulum (ER), an organelle of eukaryotic cells formed by a network of tubular membrane structures. The ER plays a key role in protein transport, and its dysfunction has been associated with numerous diseases, including, in particular, neurodegenerative disorders. Previous experimental observations suggested a possible deviation of ER luminal transport compared to classical diffusion. Based on this hypothesis, I introduce a graph model to describe ER protein dynamics. I analyse the model and develop numerical simulations, revealing a possible mechanism of aggregated protein transport that deviates from purely diffusive motion. Then, to further test the predictions of the model, we turn to the analysis of experimental data. While protein mobility has been traditionally characterized by fluorescence imaging, the morphological characteristics of the ER pose new challenges to a quantitative analysis of such small scale dynamics. To address these issues, I introduce a novel image processing method to analyse ER dynamics based on photoactivatable fluorescent proteins. By joining analysis and reduction of noise with automatic segmentation of the ER, the technique can provide a robust estimation of the timescale of transport. Moreover, it allows us to characterize the spatial heterogeneity of the protein mixing process. I present and compare results for luminal, membrane, and misfolded proteins in the ER. In the second part of the dissertation, we study neuronal signals at coarser scales. First, at the scale of the single neuron, I present a denoising method suitable for optical recording of single-cell activity in awake, behaving mice via fluorescent voltage indicators. I show how it is possible to reduce instrumental and photon-counting noise in such time series, allowing us to extract spike patterns at lower acquisition frequency. Such results enable simultaneous recording of multiple cells, thus allowing to explore the correlation of spikes and voltage oscillations within ensembles of neurons. Finally, in the last chapters, we reach the coarsest scale with the study of electroencephalograms (EEG) which record the activity of the entire brain. Motivated by the applications of EEG in clinical monitoring, I introduce a new wavelet-based method that can attenuate undesired artefacts which contaminate the recording of the physiological EEG signal. The method is based on the remapping of the wavelet coefficients according to a reference distribution extracted from clean portions of the EEG signal. This technique can provide a flexible alternative to traditional approaches such as wavelet thresholding in the context of real-time clinical monitoring. In conclusion, this thesis illustrates how an interdisciplinary approach combining experimental data with mathematical modelling and signal processing can provide new tools for the understanding of a wide variety of biological mechanisms, ranging from protein transport to EEG monitoring
Leclerc, Gabriel. "Apprendre de données positives et non étiquetées : application à la segmentation et la détection d'évènements calciques." Master's thesis, Université Laval, 2021. http://hdl.handle.net/20.500.11794/69813.
Повний текст джерелаTwo types of neurotransmission occur in brain’s neurons: evoked transmission and spontaneous transmission. Unlike the former, the role of spontaneous transmission on synaptic plasticity –a mechanism used to endow the brain learning and memory abilities – remain unclear. Spontaneous neurotransmissions are localized and randomly happening in neuron’s synapses. When such spontaneous events happen, so-called miniature synaptic Ca²⁺ transients(mSCT), second messenger calcium ions entered the spine, activating downstream signaling pathways of synaptic plasticity. Using calcium imaging of in vitro neuron enable spatiotemporal visual-ization of the entry of calcium ions. Resulting calcium videos enable quantitative study of mSCT’s impact on synaptic plasticity. However, mSCT localization in calcium imaging can be challenging due to their small size, their low intensity compared with the imaging noise and their inherent randomness. In this master’s thesis, we present a method for quantitative high-through put analysis of calcium imaging videos that limits the variability induced by human interventions to obtain evidence for characterizing the impact of mSCTs on synaptic plasticity. Based on a semi-automatic intensity thresholded detection (ITD) tool, we are able to generate data to train a fully convolutional neural network (FCN) to rapidly and automaticaly detect mSCT from calcium videos. Using ITD noisy segmentations as training data combine with a positive and unlabeled (PU) training schema, we leveraged FCN performances and could even detect previously undetected low instensity mSCTs missed by ITD. The FCN also provide better segmentation than ITD. We then characterized the impact of PU parameters such as the number of P and the ratio P:U. The trained FCN is bundled in a all-in-one pipeline to permit a high-thoughtput analysis of mSCT. The pipeline offers detection, segmentation,characterization and visualization of mSCTs as well as a software solution to manage multiple videos with different metadatas.
Lurton, Dominique. "Mécanismes de la mort neuronale lors de l'ischémie cérébrale/substances neuroprotectrices : recueil de données bibliographiques." Bordeaux 2, 1993. http://www.theses.fr/1993BOR23047.
Повний текст джерелаCarrara, Igor. "Méthodes avancées de traitement des BCI-EEG pour améliorer la performance et la reproductibilité de la classification." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ4033.
Повний текст джерелаElectroencephalography (EEG) non-invasively measures the brain's electrical activity through electromagnetic fields generated by synchronized neuronal activity. This allows for the collection of multivariate time series data, capturing a trace of the brain electrical activity at the level of the scalp. At any given time instant, the measurements recorded by these sensors are linear combinations of the electrical activities from a set of underlying sources located in the cerebral cortex. These sources interact with one another according to a complex biophysical model, which remains poorly understood. In certain applications, such as surgical planning, it is crucial to accurately reconstruct these cortical electrical sources, a task known as solving the inverse problem of source reconstruction. While intellectually satisfying and potentially more precise, this approach requires the development and application of a subject-specific model, which is both expensive and technically demanding to achieve.However, it is often possible to directly use the EEG measurements at the level of the sensors and extract information about the brain activity. This significantly reduces the data analysis complexity compared to source-level approaches. These measurements can be used for a variety of applications, including monitoring cognitive states, diagnosing neurological conditions, and developing brain-computer interfaces (BCI). Actually, even though we do not have a complete understanding of brain signals, it is possible to generate direct communication between the brain and an external device using the BCI technology. This work is centered on EEG-based BCIs, which have several applications in various medical fields, like rehabilitation and communication for disabled individuals or in non-medical areas, including gaming and virtual reality.Despite its vast potential, BCI technology has not yet seen widespread use outside of laboratories. The primary objective of this PhD research is to try to address some of the current limitations of the BCI-EEG technology. Autoregressive models, even though they are not completely justified by biology, offer a versatile framework to effectively analyze EEG measurements. By leveraging these models, it is possible to create algorithms that combine nonlinear systems theory with the Riemannian-based approach to classify brain activity. The first contribution of this thesis is in this direction, with the creation of the Augmented Covariance Method (ACM). Building upon this foundation, the Block-Toeplitz Augmented Covariance Method (BT-ACM) represents a notable evolution, enhancing computational efficiency while maintaining its efficacy and versatility. Finally, the Phase-SPDNet work enables the integration of such methodologies into a Deep Learning approach that is particularly effective with a limited number of electrodes.Additionally, we proposed the creation of a pseudo online framework to better characterize the efficacy of BCI methods and the largest EEG-based BCI reproducibility study using the Mother of all BCI Benchmarks (MOABB) framework. This research seeks to promote greater reproducibility and trustworthiness in BCI studies.In conclusion, we address two critical challenges in the field of EEG-based brain-computer interfaces (BCIs): enhancing performance through advanced algorithmic development at the sensor level and improving reproducibility within the BCI community
Carlier, Florent. "Nouvelle technique neuronale de détection multi-utilisateurs : Applications aux systèmes MC-CDMA." Rennes, INSA, 2003. http://www.theses.fr/2003ISAR0019.
Повний текст джерелаLagacherie, Hervé. "L'analyse des données cliniques et biologiques par les réseaux neuronaux." Bordeaux 2, 1997. http://www.theses.fr/1997BOR2P091.
Повний текст джерелаЧастини книг з теми "Données neuronales"
BRÜCKERHOFF-PLÜCKELMANN, Frank, Johannes FELDMANN, and Wolfram PERNICE. "Les puces photoniques." In Au-delà du CMOS, 395–422. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9127.ch9.
Повний текст джерелаAbadine, Yamina. "Méthodologie des ateliers thérapeutiques auprès des patients atteints de la maladie d'Alzheimer et maladies apparentées." In Méthodologie des ateliers thérapeutiques auprès des patients atteints de la maladie d'Alzheimer et maladies apparentées, 71–77. In Press, 2016. http://dx.doi.org/10.3917/pres.engas.2016.01.0072.
Повний текст джерелаRossi, Caroline, and Aurelien Talbot. "Traduction automatique et traduction institutionnelle : le modèle neuronal a-t-il changé la donne ?" In Human Translation and Natural Language Processing Towards a New Consensus? Venice: Fondazione Università Ca’ Foscari, 2023. http://dx.doi.org/10.30687/978-88-6969-762-3/010.
Повний текст джерелаAriole, Victor C. "Le français québécois et le français africain : une analyse des valeurs neuro-psycholinguistiques des parties d’un ensemble." In Les parlers urbains africains au prisme du plurilinguisme : description sociolinguistique, 337–51. Observatoire européen du plurilinguisme, 2020. http://dx.doi.org/10.3917/oep.kosso.2020.01.0337.
Повний текст джерела