Статті в журналах з теми "Domain wall theory"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Domain wall theory.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Domain wall theory".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Smith, Ralph C., and Craig L. Hom. "Domain Wall Theory for Ferroelectric Hysteresis." Journal of Intelligent Material Systems and Structures 10, no. 3 (March 1999): 195–213. http://dx.doi.org/10.1177/1045389x9901000302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Allenspach, Rolf, and Pierre-Olivier Jubert. "Magnetic Domain Walls in Nanowires." MRS Bulletin 31, no. 5 (May 2006): 395–99. http://dx.doi.org/10.1557/mrs2006.100.

Повний текст джерела
Анотація:
AbstractFor many decades, it was assumed that the characteristics of magnetic domain walls were determined by material properties and the walls were moved by magnetic fields.In the past few years, it has been shown that domain walls behave differently on the nanometer scale.Domain walls in small elements exhibit complex spin arrangements that strongly deviate from the wall types commonly encountered in magnetic thin-film systems, and they can be modified by changing the geometry of the element.Domain walls in nanowires can also be moved by injecting electrical current pulses.Whereas wall propagation is qualitatively explained by a spin transfer from the conduction electrons to the spins of the domain wall, important aspects of the observations cannot be explained by present models.Examples include the observation of a drastic transformation of the wall structure upon current injection and domain wall velocities that tend to be orders of magnitude smaller than anticipated from theory.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

NAGASHIMA, TAKAYUKI. "DYNAMICS OF DOMAIN WALL NETWORKS." International Journal of Modern Physics A 23, no. 14n15 (June 20, 2008): 2269–71. http://dx.doi.org/10.1142/s0217751x08041049.

Повний текст джерела
Анотація:
Networks or webs of domain walls are admitted in Abelian or non-Abelian gauge theory coupled to fundamental Higgs fields with complex masses. We examine the dynamics of the domain wall loops by using the moduli space approximation. This talk is based on works in collaboration with M.Eto, T.Fujimori, M.Nitta, K.Ohashi, and N.Sakai1,2.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

CVETIČ, M. "DOMAIN WALL WORLD(S)." International Journal of Modern Physics A 16, no. 05 (February 20, 2001): 891–99. http://dx.doi.org/10.1142/s0217751x01003974.

Повний текст джерела
Анотація:
Gravitational properties of domain walls in fundamental theory and their implications for the trapping of gravity are reviewed. In particular, the difficulties to embed gravity trapping configurations within gauged supergravity is reviewed and the status of the domain walls obtained via the breathing mode of sphere reduced Type IIB supergravity is presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhang, Ruifeng, and Xiaojing Wang. "On generalized geometric domain-wall models." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 141, no. 4 (July 15, 2011): 881–95. http://dx.doi.org/10.1017/s0308210510001198.

Повний текст джерела
Анотація:
We study domain walls that are topological solitons in one dimension. We present an existence theory for the solutions of the basic governing equations of some extended geometrically constrained domain-wall models. When the cross-section and potential density are both even, we establish the existence of an odd domain-wall solution realizing the phase-transition process between two adjacent domain phases. When the cross-section satisfies a certain integrability condition, we prove that a domain-wall solution always exists that links two arbitrarily designated domain phases.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tatara, G., H. Kohno, and J. Shibata. "Theory of current-driven domain wall dynamics." Journal of Physics D: Applied Physics 40, no. 5 (February 16, 2007): 1257–60. http://dx.doi.org/10.1088/0022-3727/40/5/s09.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tatara, Gen, Hiroshi Kohno, and Junya Shibata. "Theory of Domain Wall Dynamics under Current." Journal of the Physical Society of Japan 77, no. 3 (March 15, 2008): 031003. http://dx.doi.org/10.1143/jpsj.77.031003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tatara, G., and N. Garcia. "Theory of domain wall resistance in nanocontacts." IEEE Transactions on Magnetics 36, no. 5 (2000): 2839–40. http://dx.doi.org/10.1109/20.908603.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lü, H., and C. N. Pope. "Domain Walls from M-Branes." Modern Physics Letters A 12, no. 15 (May 20, 1997): 1087–94. http://dx.doi.org/10.1142/s0217732397001102.

Повний текст джерела
Анотація:
We discuss the vertical dimensional reduction of M-sbranes to domain walls in D=7 and D=4, by dimensional reduction on Ricci-flat four-manifolds and seven-manifolds. In order to interpret the vertically-reduced five-brane as a domain wall solution of a dimensionally-reduced theory in D=7, it is necessary to generalize the usual Kaluza–Klein ansatz, so that the three-form potential in D=11 has an additional term that can generate the necessary cosmological term in D=7. We show how this can be done for general four-manifolds, extending previous results for toroidal compactifications. By contrast, no generalization of the Kaluza–Klein ansatz is necessary for the compactification of M-theory to a D=4 theory that admits the domain-wall solution coming from the membrane in D=11.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

BANERJEE, A., and TANWI GHOSH. "STATIC DOMAIN WALLS IN BRANS–DICKE THEORY." International Journal of Modern Physics D 07, no. 04 (August 1998): 581–85. http://dx.doi.org/10.1142/s0218271898000395.

Повний текст джерела
Анотація:
It is already known that the equations of General Relativity are not consistent with Static Domain Wall which is described by the energy momentum Tensor [Formula: see text] and [Formula: see text]. Here it is shown that even in Brans–Dicke Theory of Gravitation the static domain wall with either p = 0 or p = ∊ρ does not exist. In the latter case, we have used the property of reflection symmetry of the wall about x = 0 as well as a general relation between g00 and the Brans–Dicke scalar field and have shown that the metric component g00 changes sign somewhere as we move away from the symmetry plane.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

TATARA, GEN. "DOMAIN WALL RESISTIVITY BASED ON A LINEAR RESPONSE THEORY." International Journal of Modern Physics B 15, no. 04 (February 10, 2001): 321–71. http://dx.doi.org/10.1142/s0217979201002540.

Повний текст джерела
Анотація:
The resistivity due to a domain wall in a ferromagnetic metal is calculated based on a linear response theory. The scattering by impurities is taken into account. The electron-wall interaction is derived from the exchange interaction between the conduction electron and the magnetization by use of a local gauge transformation in the spin space. This interaction is treated perturbatively to the second order. The classical (Boltzmann) contribution from the wall scattering turns out to be negligiblly small if the wall is thick compared with the fermi wavelength. In small contacts a large classical domain wall resistance is expected due to a thin wall trapped in the constriction. In the dirty case, where quantum coherence among electrons becomes important at low temperature, spin flip scattering caused by the wall results in dephasing and hence suppresses weak localization. Thus the quantum correction due to the wall can lead to a decrease of resistivity. This effect grows rapidly at low temperature where the wall becomes the dominant source of dephasing. Conductance change in the quantum region caused by the motion of the wall is also calculated.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Cao, Wenwu. "The need of electron microscopy in the study of domains and domain walls in ferroelectrics." Proceedings, annual meeting, Electron Microscopy Society of America 52 (1994): 550–51. http://dx.doi.org/10.1017/s0424820100170487.

Повний текст джерела
Анотація:
Domain structures play a key role in determining the physical properties of ferroelectric materials. The formation of these ferroelectric domains and domain walls are determined by the intrinsic nonlinearity and the nonlocal coupling of the polarization. Analogous to soliton excitations, domain walls can have high mobility when the domain wall energy is high. The domain wall can be describes by a continuum theory owning to the long range nature of the dipole-dipole interactions in ferroelectrics. The simplest form for the Landau energy is the so called ϕ model which can be used to describe a second order phase transition from a cubic prototype,where Pi (i =1, 2, 3) are the components of polarization vector, α's are the linear and nonlinear dielectric constants. In order to take into account the nonlocal coupling, a gradient energy should be included, for cubic symmetry the gradient energy is given by,
Стилі APA, Harvard, Vancouver, ISO та ін.
13

How, H., R. C. O’Handley, and F. R. Morgenthaler. "Soliton theory for realistic magnetic domain-wall dynamics." Physical Review B 40, no. 7 (September 1, 1989): 4808–17. http://dx.doi.org/10.1103/physrevb.40.4808.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Tatara, Gen, and Hiroshi Kohno. "Microscopic theory of current-driven domain wall motion." Microscopy 54, suppl_1 (September 1, 2005): i69—i74. http://dx.doi.org/10.1093/jmicro/54.suppl_1.i69.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Ishibashi, Yoshihiro, and Ekhard Salje. "A Theory of Ferroelectric 90 Degree Domain Wall." Journal of the Physical Society of Japan 71, no. 11 (November 15, 2002): 2800–2803. http://dx.doi.org/10.1143/jpsj.71.2800.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Holman, R., T. W. Kephart, and D. B. Reiss. "Cosmological domain-wall problem in theE8×E8superstring theory." Physical Review D 38, no. 4 (August 15, 1988): 1141–43. http://dx.doi.org/10.1103/physrevd.38.1141.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Yang, Chao, Enwei Sun, Zhen Liu, Xingru Zhang, Xudong Qi, and Wenwu Cao. "Phase-field simulation on the interaction of oxygen vacancies with charged and neutral domain walls in hexagonal YMnO3." Journal of Physics: Condensed Matter 34, no. 16 (February 21, 2022): 165401. http://dx.doi.org/10.1088/1361-648x/ac50d8.

Повний текст джерела
Анотація:
Abstract A three-dimensional model of the interaction between the charged or neutral domain walls and oxygen vacancies in the hexagonal manganite YMnO3 was proposed, and simulated using Landau–Ginzburg–Devonshire (LGD) theory, dynamic diffusion equation and Maxwell’s equation. The calculation proves that stiffness anisotropic factors can adjust the domain wall state and ultimately affect the distribution of oxygen vacancies. The head-to-head domain wall corresponds to low oxygen vacancy density, and the tail-to-tail domain wall corresponds to high oxygen vacancy density. The electrostatic field generated by the bound charge is the key factor leading to the change of oxygen vacancy distribution. Finally, e-index law N d = ae b*dP/dz can fit the relationship between the oxygen vacancy concentration and the polarization gradient along z direction. Our theory provides a new way to modulate the distribution of oxygen vacancies through domain wall morphology in hexagonal YMnO3.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Lee, Bum-Hoon, Wonwoo Lee, and Masato Minamitsuji. "Domain wall universe in the Einstein–Born–Infeld theory." Physics Letters B 679, no. 2 (August 2009): 160–66. http://dx.doi.org/10.1016/j.physletb.2009.07.026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

KOH, EUNKYUNG. "DUALITY DOMAIN WALL INDEX ON S1 × S3." International Journal of Modern Physics: Conference Series 21 (January 2013): 182–83. http://dx.doi.org/10.1142/s2010194513009719.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

YUN, SANGHEON. "DOMAIN WALLS IN AdS-EINSTEIN-SCALAR GRAVITY." International Journal of Modern Physics A 26, no. 12 (May 10, 2011): 2075–85. http://dx.doi.org/10.1142/s0217751x11052931.

Повний текст джерела
Анотація:
In this paper, we show that the supergravity theory which is dual to ABJM field theory can be consistently reduced to scalar-coupled AdS-Einstein gravity and then consider the reflection symmetric domain wall and its small fluctuation. It is also shown that this domain wall solution is none other than dimensional reduction of M2-brane configuration.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

GHASSEMI, S., S. KHAKSHOURNIA, and R. MANSOURI. "THICK PLANAR DOMAIN WALL: ITS THIN WALL LIMIT AND DYNAMICS." International Journal of Modern Physics D 16, no. 04 (April 2007): 629–40. http://dx.doi.org/10.1142/s0218271807009395.

Повний текст джерела
Анотація:
We consider a planar gravitating thick domain wall of the λϕ4 theory as a space–time with finite thickness glued to two vacuum space–times on each side of it. Darmois junction conditions written on the boundaries of the thick wall with the embedding space–times reproduce the Israel junction condition across the wall in the limit of infinitesimal thickness. The thick planar domain wall located at a fixed position is then transformed to a new coordinate system in which its dynamics can be formulated. It is shown that the wall's core expands as if it were a thin wall. The thickness in the new coordinates is not constant anymore and its time dependence is given.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

SASAI, YUYA, and NAOKI SASAKURA. "DOMAIN WALL SOLITONS AND HOPF ALGEBRAIC TRANSLATIONAL SYMMETRIES IN NONCOMMUTATIVE FIELD THEORIES." International Journal of Modern Physics A 23, no. 14n15 (June 20, 2008): 2277–78. http://dx.doi.org/10.1142/s0217751x08041074.

Повний текст джерела
Анотація:
Domain wall solitons are the simplest topological objects in field theories. The conventional translational symmetry in a field theory is the generator of a one-parameter family of domain wall solutions, and induces a massless moduli field which propagates along a domain wall. We study similar issues in braided noncommutative field theories possessing Hopf algebraic translational symmetries. As a concrete example, we discuss a domain wall soliton in the scalar braided noncommutative field theory in Lie-algebraic noncommutative spacetime, which has a Hopf algebraic translational symmetry. We construct explicitly a one-parameter family of solutions in perturbation of the noncommutativity parameter. We then find the massless moduli field which propagates on the domain wall soliton. This work is based on arXiv:0711.3059.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

de Campos, Marcos Flavio, and Fernando José Gomes Landgraf. "Determination of Intrinsic Magnetic Parameters of SmCo5 Phase in Sintered Samples." Materials Science Forum 498-499 (November 2005): 129–33. http://dx.doi.org/10.4028/www.scientific.net/msf.498-499.129.

Повний текст джерела
Анотація:
SmCo5 magnets are usually produced by powder metallurgy route, including milling, compaction and orientation under magnetic field, sintering and heat treatment. The samples produced by powder metallurgy, with grain size around 10 μm, are ideal for determination of intrinsic parameters. The first step for determination of intrinsic magnetic parameters is obtaining images of domain structure in demagnetized samples. In the present study, the domain images were produced by means of Kerr effect, in a optical microscope. After the test of several etchings, Nital appears as the most appropriate for observation of magnetic domains by Kerr effect. Applying Stereology and Domain Theory, several intrinsic parameters of SmCo5 phase were determined: domain wall energy 120 erg/cm2, critical diameter for single domain particle size 2 μm and domain wall thickness 60 Å. In the case of SmCo5, and also other phases with high magnetocrystalline anisotropy, Domain Theory presents several advantages when compared with Micromagnetics.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Bychkov, Vladimir, Michael Kreshchuk, and Evgeniy Kurianovych. "Strings and skyrmions on domain walls." International Journal of Modern Physics A 33, no. 18n19 (July 9, 2018): 1850111. http://dx.doi.org/10.1142/s0217751x18501117.

Повний текст джерела
Анотація:
We address a simple model allowing the existence of domain walls with orientational moduli localized on them. Within this model, we discuss an analytic solution and explore it in the context of previously known results. We discuss the existence of one-dimensional domain walls localized on two-dimensional ones, and construct the corresponding effective action. In the low-energy limit, which is the [Formula: see text] sigma-model, we discuss the existence of skyrmions localized on domain walls, and provide a solution for a skyrmion configuration, based on an analogy with instantons. We perform symmetry analysis of the initial model and of the low-energy theory on the domain wall worldvolume.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Shrimpton, Neil D., and Béla Joós. "The dynamics of a honeycomb array of domain walls as a network of interconnected strings." Canadian Journal of Physics 68, no. 7-8 (July 1, 1990): 587–98. http://dx.doi.org/10.1139/p90-089.

Повний текст джерела
Анотація:
A honeycomb array of domain walls such as is found in incommensurate phases of rare-gas monolayers on graphite is shown to vibrate as an interconnected network of strings. The vibrational modes of the network are determined by the vertices, which provide the boundary conditions for the domain-wall segments. The dynamical matrix is constructed and solved for the normal modes. The krypton on graphite system is used as a test to the theory. A Hamiltonian is constructed for the domain-wall network and the amplitude of the lowest energy mode, the breathing mode, is discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Cividini, J., H. J. Hilhorst, and C. Appert-Rolland. "Exact domain wall theory for deterministic TASEP with parallel update." Journal of Physics A: Mathematical and Theoretical 47, no. 22 (May 15, 2014): 222001. http://dx.doi.org/10.1088/1751-8113/47/22/222001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Liu, Y., and P. Grütter. "Theory of magnetoelastic dissipation due to domain wall width oscillation." Journal of Applied Physics 83, no. 11 (June 1998): 5922–26. http://dx.doi.org/10.1063/1.367456.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Agrawal, P. K., and D. D. Pawar. "Magnetized domain wall in f(R, T) theory of gravity." New Astronomy 54 (July 2017): 56–60. http://dx.doi.org/10.1016/j.newast.2017.01.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Tatara, Gen. "Theory of electron scattering by domain wall in nano-wires." Journal of Magnetism and Magnetic Materials 226-230 (May 2001): 1873–74. http://dx.doi.org/10.1016/s0304-8853(01)00107-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Krotenko, E. B., Yu A. Kuzin, Yu V. Melickov, A. M. Redchenko, and F. G. Baryakhtar. "Theory of domain wall dynamics in bubble films with coercivity." Journal of Magnetism and Magnetic Materials 136, no. 1-2 (September 1994): 59–64. http://dx.doi.org/10.1016/0304-8853(94)90446-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Kamberský, V., P. de Haan, J. Šimšová, S. Porthun, R. Gemperle, and J. C. Lodder. "Domain wall theory and exchange stiffness in Co/Pd multilayers." Journal of Magnetism and Magnetic Materials 157-158 (May 1996): 301–2. http://dx.doi.org/10.1016/0304-8853(95)01162-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Parlinski, K., and Y. Kawazoe. "Domain pattern formation in ferroelastic Pb3(PO4)2 by computer simulation." Journal of Materials Research 12, no. 9 (September 1997): 2366–73. http://dx.doi.org/10.1557/jmr.1997.0313.

Повний текст джерела
Анотація:
A model of lead phosphate, which describes the rhombohedral-monoclinic phase transition, is used to form domain patterns in the annealing process. The obtained domain structures show W and W′ types of domain walls in agreement with the stress-free laws proposed in Sapriel's theory. The observed W domain walls are parallel to the ternary symmetry axis, while the W′ ones are tilted with respect to the same axis. The antiphase domain walls take no preferential orientations, and remain parallel to the ternary axis. The calculated density of the potential energy of the domain wall of type W is estimated to be Edw = 49 K/Å2 at T = 300 K.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Xu, Wu-Long, and Yong-Chang Huang. "Dynamics of domain wall in charged AdS dilaton black hole space–time." International Journal of Modern Physics A 34, no. 23 (August 20, 2019): 1950132. http://dx.doi.org/10.1142/s0217751x1950132x.

Повний текст джерела
Анотація:
For the [Formula: see text]-dimensional FRW domain wall universe induced by [Formula: see text]-dimensional charged dilaton black hole, observers on the domain wall interpret its movement in the bulk as the expansion or collapsing of universe. By analyzing, we found that in this static AdS space, the cosmologic behavior of domain wall is particularly single. Even more surprising, there is an anomaly that the domain wall has a motion area outside the horizon, which cannot be explained by our classical theory.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

LIU, ZHENGRONG, and JIBIN LI. "BIFURCATIONS OF SOLITARY WAVES AND DOMAIN WALL WAVES FOR KdV-LIKE EQUATION WITH HIGHER ORDER NONLINEARITY." International Journal of Bifurcation and Chaos 12, no. 02 (February 2002): 397–407. http://dx.doi.org/10.1142/s0218127402004425.

Повний текст джерела
Анотація:
Bifurcations of solitary waves and domain wall waves for a KdV-like equation with higher order nonlinearity are studied, by using bifurcation theory of planar dynamical systems. Bifurcation parameter sets are shown. Numbers of solitary waves and domain wall waves are given. Under some parameter conditions, a lot of explicit formulas of solitary wave solutions and domain wall solutions are obtained.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Murakami, Yuko, and Ken-Ichi Ishikawa. "Construction of lattice Möbius domain wall fermions in the Schrödinger functional scheme." International Journal of Modern Physics A 33, no. 01 (January 10, 2018): 1850012. http://dx.doi.org/10.1142/s0217751x18500124.

Повний текст джерела
Анотація:
In this paper, we construct the Möbius domain wall fermions (MDWFs) in the Schrödinger functional (SF) scheme for the SU(3) gauge theory by adding a boundary operator at the temporal boundary of the SF scheme setup. Using perturbation theory, we investigate the properties of several constructed MDWFs, including the optimal type domain wall, overlap, truncated domain wall, and truncated overlap fermions. We observe the universality of the spectrum of the effective four-dimensional operator at the tree-level, and fermionic contribution to the universal one-loop beta function is reproduced for MDWFs with a sufficiently large fifth-dimensional extent.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Scott, J. F. "Domain Wall Kinetics: Nano-Domain Nucleation in Lead Germanate and Tilley-Zeks Theory for PVDF." Ferroelectrics 291, no. 1 (January 2003): 205–15. http://dx.doi.org/10.1080/00150190390222709.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Okabayashi, Akira, and Takao Morinari. "Theory of Spin Motive Force in One-Dimensional Antiferromagnetic Domain Wall." Journal of the Physical Society of Japan 84, no. 3 (March 15, 2015): 033706. http://dx.doi.org/10.7566/jpsj.84.033706.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Loxley, P. N., and R. L. Stamps. "Theory of domain wall nucleation in a two section magnetic wire." IEEE Transactions on Magnetics 37, no. 4 (July 2001): 2098–100. http://dx.doi.org/10.1109/20.951065.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Farrar, Glennys R., and John W. McIntosh. "Scattering from a domain wall in a spontaneously broken gauge theory." Physical Review D 51, no. 10 (May 15, 1995): 5889–904. http://dx.doi.org/10.1103/physrevd.51.5889.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Neugebauer, U., and H. J. Mikeska. "Domain wall theory of elementary excitations in anisotropic antiferromagneticS=1 chains." Zeitschrift für Physik B Condensed Matter 99, no. 2 (March 1995): 151–57. http://dx.doi.org/10.1007/s002570050022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Neugebauer, U., and H. J. Mikeska. "Domain wall theory of elementary excitations in anisotropic antiferromagneticS=1 chains." Zeitschrift für Physik B Condensed Matter 99, no. 1 (March 1995): 151–57. http://dx.doi.org/10.1007/bf02769927.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Yang, Ke, Wen-Di Guo, Zi-Chao Lin, and Yu-Xiao Liu. "Domain wall brane in a reduced Born–Infeld-f(T) theory." Physics Letters B 782 (July 2018): 170–75. http://dx.doi.org/10.1016/j.physletb.2018.05.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Ivanov, B. A., and S. N. Lyakhimets. "A theory of domain wall retardation in magnets with RE ions." Journal of Magnetism and Magnetic Materials 86, no. 1 (April 1990): 51–70. http://dx.doi.org/10.1016/0304-8853(90)90085-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Vergeles, S. N. "Domain wall between the Dirac sea and the ‘anti-Dirac sea’." Classical and Quantum Gravity 39, no. 3 (December 28, 2021): 038001. http://dx.doi.org/10.1088/1361-6382/ac40e6.

Повний текст джерела
Анотація:
Abstract It was shown in work (Vergeles 2021 Class. Quantum Grav. 38 085022) that in the theory of gravity coupled with the Dirac field, each state |λ⟩ has its own twin |λ; PT⟩, which is obtained by a discrete PT transformation. If in the state |λ⟩ the Dirac sea is filled, then in the state |λ; PT⟩ there is an ‘anti-Dirac’ filling (in terms of the state |λ⟩). It is important that the energies of these states are the same. Therefore, there may be domains with different filling of the Dirac sea. Here we study a domain wall connecting two such adjacent domains.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Noula Tefouet, Joseph D., and David Yemélé. "Soliton Domain Wall Concept: Analytical and Numerical Investigation in Digital Magnetic Recording System." European Journal of Applied Physics 3, no. 2 (April 30, 2021): 56–66. http://dx.doi.org/10.24018/ejphysics.2021.3.2.64.

Повний текст джерела
Анотація:
To introduce Soliton theory in magnetic recording systems, we begin with the profile of Domain Wall, which is key elements of recording systems, knowing that many different Domain Walls shape exist. For this, we consider the recording media as chain of atoms (spin) and, we use the Hamiltonian to describe the global state of the system; by taking into consideration interaction between the neighboring spin and anisotropic interaction. Spins are considered as classical vector; for that, we defined the cosine and sine of angles that specify the position of the spins. They are developed in Taylor’s series until second order then using the approximation of continuous medium we obtained the Lagragian relation. This Lagragian enables us to describe the dynamics of spin through the wave velocity. As we are fine just the profile of domain wall it is beneficial for us to consider the wall at rest (static) and by the aid of Euler equation we obtain two simple equations; using the equilibrium conditions, the differential equation is obtained and solved by the quadratic method and separation variables method. The profile of domain wall that we obtain is at a particular position, then analytical and numerical simulation give us the opportunity to see that profile of that domain wall is a Kink, anti-Kink Soliton and also Soliton Train. Using this magnetic Soliton wave (Domain Wall), we also evaluate the playback voltage V (x), the peak voltage and the half pulse width PW50 to confirm the uses of this DW profile in magnetic recording systems and insure validity of this work.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Leon, Lider S., Paul R. Miles, Ralph C. Smith, and William S. Oates. "Active subspace analysis and uncertainty quantification for a polydomain ferroelectric phase-field model." Journal of Intelligent Material Systems and Structures 30, no. 14 (July 3, 2019): 2027–51. http://dx.doi.org/10.1177/1045389x19853636.

Повний текст джерела
Анотація:
We perform parameter subset selection and uncertainty analysis for phase-field models that are applied to the ferroelectric material lead titanate. A motivating objective is to determine which parameters are influential in the sense that their uncertainties directly affect the uncertainty in the model response, and fix noninfluential parameters at nominal values for subsequent uncertainty propagation. We employ Bayesian inference to quantify the uncertainties of gradient exchange parameters governing 180° and 90° tetragonal phase domain wall energies. The uncertainties of influential parameters determined by parameter subset selection are then propagated through the models to obtain credible intervals when estimating energy densities quantifying polarization and strain across domain walls. The results illustrate various properties of Landau and electromechanical coupling parameters and their influence on domain wall interactions. We employ energy statistics, which quantify distances between statistical observations, to compare credible intervals constructed using a complete set of parameters against an influential subset of parameters. These intervals are obtained from the uncertainty propagation of the model input parameters on the domain wall energy densities. The investigation provides critical insight into the development of parameter subset selection, uncertainty quantification, and propagation methodologies for material modeling domain wall structure evolution, informed by density functional theory simulations.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Yang, Hung-Hsiang, Namrata Bansal, Philipp Rüßmann, Markus Hoffmann, Lichuan Zhang, Dongwook Go, Qili Li, et al. "Magnetic domain walls of the van der Waals material Fe3GeTe2." 2D Materials 9, no. 2 (March 23, 2022): 025022. http://dx.doi.org/10.1088/2053-1583/ac5d0e.

Повний текст джерела
Анотація:
Abstract Among two-dimensional materials, Fe3GeTe2 has come to occupy a very important place owing to its ferromagnetic nature with one of the highest Curie temperatures among known van der Waals materials and the potential for hosting skyrmions. In this combined experimental and theoretical work, we investigate the magnetic bubble domains as well as the microscopic domain wall profile using spin-polarized scanning tunneling microscopy in combination with atomistic spin-dynamics simulations performed with parameters from density functional theory calculations. We find a weak magneto-electric effect influencing the domain wall width by the electric field in the tunneling junction and determine the critical magnetic field for the collapse of the bubble domains. Our findings shed light on the origins of complex magnetism that Fe3GeTe2 exhibits.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Flaschel, Moritz, and Laura De Lorenzis. "Calibration of material parameters based on 180$$^\circ $$ and 90$$^\circ $$ ferroelectric domain wall properties in Ginzburg–Landau–Devonshire phase field models." Archive of Applied Mechanics 90, no. 12 (September 7, 2020): 2755–74. http://dx.doi.org/10.1007/s00419-020-01747-7.

Повний текст джерела
Анотація:
Abstract Ferroelectric phase field models based on the Ginzburg–Landau–Devonshire theory are characterized by a large number of material parameters with problematic physical interpretation. In this study, we systematically address the relationship between these parameters and the main properties of ferroelectric domain walls. A variational approach is used to derive closed form solutions for the polarization fields at the phase transition regions as well as for the propagation velocities of the domain walls. Introducing a modified set of material parameters, which appropriately scales different contributions to the free energy, we are able to accurately calibrate these parameters based on domain wall thickness and energy of both 180$$^\circ $$ ∘ and 90$$^\circ $$ ∘ domain walls. Moreover, the mobility parameter appearing in the Ginzburg–Landau evolution equation can be accurately calibrated based on the propagation velocity of the domain walls.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Nussinov, Z., and J. Zaanen. "Stripe fractionalization I: The generation of king local symmetry." Journal de Physique IV 12, no. 9 (November 2002): 245–50. http://dx.doi.org/10.1051/jp4:20020405.

Повний текст джерела
Анотація:
This is part one in a series of two papers dedicated to the notion that the destruction of the topological order associated with stripe phases is about the simplest theory controlled by local symmetry: Ising gauge theory. This first part is intended to he a tutorial- we will exploit the simple physics of the stripes to vividly display the mathematical beauty of the gauge theory. Stripes, as they occur in the cuprates, are clearly `topological' in the sense that the lines of charges are at the same time domain walls in the antiferromagnet. Imagine that the stripes quantum melt so that all what seems to be around is a singlet superconductor. What if this domain wall-ness is still around in a delocalized form? This turns out to be exactly the kind of `matter' which is described by the Ising gauge theory. The highlight of the theory is the confinement phenomenon, meaning that when the domain wall-ness gives up it will do so in a mcat-and-potato phase transition. We suggest that this transition might be the one responsible for the quantum criticality in the cuprates. In part two [1] we will become more practical, arguing that another phase is possible according to the theory. It might be that this quantum spin-nematic has already been observed in strongly underdoped $La_{2-x}Sr_xCuO_4$.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Su, Yu, and Chad M. Landis. "Continuum thermodynamics of ferroelectric domain evolution: Theory, finite element implementation, and application to domain wall pinning." Journal of the Mechanics and Physics of Solids 55, no. 2 (February 2007): 280–305. http://dx.doi.org/10.1016/j.jmps.2006.07.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії