Дисертації з теми "Document reconstruction"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Document reconstruction".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Chhatkuli, Ajad. "Local analytic and global convex methods for the 3D reconstruction of isometric deformable surfaces." Thesis, Clermont-Ferrand 1, 2016. http://www.theses.fr/2016CLF1MM27/document.
Повний текст джерелаThis thesis contributes to the problem of 3D reconstruction for deformable surfaces using a single camera. In order to model surface deformation, we use the isometric prior because many real object deformations are near-isometric. Isometry implies that the surface cannot stretch or compress. We tackle two different problems. The first is called Shape-from-Template where the object’s deformed shape is computed from a single image and a texture-mapped 3D template of the object surface. Previous methods propose a differential model of the problem and compute the local analytic solutions. In the methods the solution related to the depth-gradient is discarded and only the depth solution is used. We demonstrate that the depth solution lacks stability as the projection geometry tends to affine. We provide alternative methods based on the local analytic solutions of first-order quantities, such as the depth-gradient or surface normals. Our methods are stable in all projection geometries. The second type of problem, called Non-Rigid Shape-from-Motion is the more general templatefree reconstruction scenario. In this case one obtains the object’s shapes from a set of images where it appears deformed. We contribute to this problem for both local and global solutions using the perspective camera. In the local or point-wise method, we solve for the surface normal at each point assuming infinitesimal planarity of the surface. We then compute the surface by integration. In the global method we find a convex relaxation of the problem. This is based on relaxing isometry to inextensibility and maximizing the surface’s average depth. This solution combines all constraints into a single convex optimization program to compute depth and works for a sparse point representation of the surface. We detail the extensive experiments that were used to demonstrate the effectiveness of each of the proposed methods. The experiments show that our local template-free solution performs better than most of the previous methods. Our local template-based method and our global template-free method performs better than the state-of-the-art methods with robustness to correspondence noise. In particular, we are able to reconstruct difficult, non-smooth and articulating deformations with the latter; while with the former we can accurately reconstruct large deformations with images taken at very long focal lengths
Al, Moussawi Ali. "Reconstruction 3D de vaisseaux sanguins." Thesis, Toulon, 2014. http://www.theses.fr/2014TOUL0014/document.
Повний текст джерелаThis work concerns the 3D reconstruction of blood vessels from a limited number of 2D transversal cuts obtained from scanners. If data are missing, a coherentreconstruction with a vessel network is obtained. This approach allows to limit human interventions in processing images of 2D transversal cuts. Knowing that the images used are obtained by scanner, the difficulty is to connect the blood vessels between some widely spaced cuts in order to produce the graph corresponding to the network of vessels. We identify the vessels on each trnasversal cut as a mass to be transported, we construct a graph solution of a branched transport problem. At this stage, we are able to reconstruct the 3D geometry by using the 2D Level Set Functions given by the transversal cuts and the graph information. The 3D geometry of blood vessels is represented by the data of the Level Set function defined at any point of the space whose 0-level corresponds to the vessel walls. The resulting geometry is usually integrated in a fluid mechanic code solving the incompressible Navier-Stokes equations on a Cartesian grid strictly included in a reconstructed geometry. The inadequacy of the mesh with the interface of the geometry is overcomed thanks to a modified boundary condition leading to an accurate computation of the constraints to the walls
Yang, Xiaoyi. "Background reconstruction from multiple images." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLT020/document.
Повний текст джерелаThe general topic of this thesis is to reconstruct the background scene from a burst of images in presence of masks. We focus on the background detection methods as well as on solutions to geometric and chromatic distortions introduced during ph-otography. A series of process is proposed, which consists of geometric alignment, chromatic adjustment, image fusion and defect correction.We consider the case where the background scene is a flat surface. The geometric alignment between a reference image and any other images in the sequence, depends on the computation of a homography followed by a bilinear interpolation.The chromatic adjustment aims to attach a similar contrast to the scene in different images. We propose to model the chromatic mapping between images with linear approximations whose parameters are decided by matched pixels of SIFT .These two steps are followed by a discussion on image fusion. Several methods have been compared.The first proposition is a generation of typical median filter to the vector range. It is robust when more than half of the images convey the background information. Besides, we design an original algorithm based on the notion of clique. It serves to distinguish the biggest cloud of pixels in RGB space. This approach is highly reliable even when the background pixels are the minority.During the implementation, we notice that some fusion results bear blur-like defects due to the existence of geometric alignment errors. We provide therefore a combination method as a complementary step to ameli-orate the fusion results. It is based on a com-parison between the fusion image and other aligned images after applying a Gaussian filter. The output is a mosaic of patches with clear details issued from the aligned images which are the most similar to their related fusion patches.The performance of our methods is evaluated by a data set containing extensive images of different qualities. Experiments confirm the reliability and robustness of our design under a variety of photography conditions
Slysz, Rémi. "Reconstruction de surface 3D d'objets vivants." Thesis, Troyes, 2014. http://www.theses.fr/2014TROY0022/document.
Повний текст джерелаThis thesis is part of the CPER BRAMSS project, one of its objectives was to develop an surface's retrieval method applied to the female bust. Therefore the work has aimed at the design, development and implementation of a three-dimensional measuring machine adapted to living objects.Among the large number of existing methods of three-dimensional measurements, attention was paid to the stereo matching as well as the use of structured light. Matching in stereovision is to find homologous pixels in two images of the same scene, taken from two different points of view. One way to achieve the mapping is to use correlation measurements. The algorithms used come up against certain difficulties: the changing light, noises, distortions, occlusions, low textured areas and large homogeneous areas. The use of structured light allow essentially the adding of information in homogeneous areas in this work. Developing this approach, an original method of reconstruction based on the exploitation of a particular pattern projected on the surface has been designed. A matching based on a comparison of the signatures of specific points in the pattern was implemented. This method allows a single sparse reconstruction acquisition step and simplifies the handling of the point cloud when transforming it in a surface mesh
Weber, Loriane. "Iterative tomographic X-Ray phase reconstruction." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI085/document.
Повний текст джерелаPhase contrast imaging has been of growing interest in the biomedical field, since it provides an enhanced contrast compared to attenuation-based imaging. Actually, the phase shift of the incoming X-ray beam induced by an object can be up to three orders of magnitude higher than its attenuation, particularly for soft tissues in the imaging energy range. Phase contrast can be, among others existing techniques, achieved by letting a coherent X-ray beam freely propagate after the sample. In this case, the obtained and recorded signals can be modeled as Fresnel diffraction patterns. The challenge of quantitative phase imaging is to retrieve, from these diffraction patterns, both the attenuation and the phase information of the imaged object, quantities that are non-linearly entangled in the recorded signal. In this work we consider developments and applications of X-ray phase micro and nano-CT. First, we investigated the reconstruction of seeded bone scaffolds using sed multiple distance phase acquisitions. Phase retrieval is here performed using the mixed approach, based on a linearization of the contrast model, and followed by filtered-back projection. We implemented an automatic version of the phase reconstruction process, to allow for the reconstruction of large sets of samples. The method was applied to bone scaffold data in order to study the influence of different bone cells cultures on bone formation. Then, human bone samples were imaged using phase nano-CT, and the potential of phase nano-imaging to analyze the morphology of the lacuno-canalicular network is shown. We applied existing tools to further characterize the mineralization and the collagen orientation of these samples. Phase retrieval, however, is an ill-posed inverse problem. A general reconstruction method does not exist. Existing methods are either sensitive to low frequency noise, or put stringent requirements on the imaged object. Therefore, we considered the joint inverse problem of combining both phase retrieval and tomographic reconstruction. We proposed an innovative algorithm for this problem, which combines phase retrieval and tomographic reconstruction into a single iterative regularized loop, where a linear phase contrast model is coupled with an algebraic tomographic reconstruction algorithm. This algorithm is applied to numerical simulated data
Eijk, Rutger Mark van der. "Track reconstruction in the LHCb experiment." [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2002. http://dare.uva.nl/document/66446.
Повний текст джерелаBoulch, Alexandre. "Reconstruction automatique de maquettes numériques 3D." Thesis, Paris Est, 2014. http://www.theses.fr/2014PEST1099/document.
Повний текст джерелаThe interest for digital models in the building industry is growing rapidly. These centralize all the information concerning the building and facilitate communication between the players of construction : cost evaluation, physical simulations, virtual presentations, building lifecycle management, site supervision, etc. Although building models now tend to be used for large projects of new constructions, there is no such models for existing building. In particular, old buildings do not enjoy digital 3D model and information whereas they would benefit the most from them, e.g., to plan cost-effective renovation that achieves good thermal performance. Such 3D models are reconstructed from the real building. Lately a number of automatic reconstruction methods have been developed either from laser or photogrammetric data. Lasers are precise and produce dense point clouds. Their price have greatly reduced in the past few years, making them affordable for industries. Photogrammetry, often less precise and failing in uniform regions (e.g. bare walls), is a lot cheaper than the lasers. However most approaches only reconstruct a surface from point clouds, not a semantically rich building model. A building information model is the alliance of a geometry and a semantics for the scene elements. The main objective of this thesis is to define a framework for digital model production regarding both geometry and semantic, using point clouds as an entry. The reconstruction process is divided in four parts, gradually enriching information, from the points to the final digital mockup. First, we define a normal estimator for unstructured point clouds based on a robust Hough transform. It allows to estimate accurate normals, even near sharp edges and corners, and deals with the anisotropy inherent to laser scans. Then, primitives such as planes are extracted from the point cloud. To avoid over-segmentation issues, we develop a general and robust statistical criterion for shape merging. It only requires a distance function from points to shapes. A piecewise-planar surface is then reconstructed. Planes hypothesis for visible and hidden parts of the scene are inserted in a 3D plane arrangement. Cells of the arrangement are labelled full or empty using a new regularization on corner count and edge length. A linear formulation allow us to efficiently solve this labelling problem with a continuous relaxation. Finally, we propose an approach based on constrained attribute grammars for 3D model semantization. This method is entirely bottom-up. We prevent the possible combinatorial explosion by introducing maximal operators and an order on variable instantiation
Viswanathan, Kartik. "Représentation reconstruction adaptative des hologrammes numériques." Thesis, Rennes, INSA, 2016. http://www.theses.fr/2016ISAR0012/document.
Повний текст джерелаWith the increased interest in 3D video technologies for commercial purposes, there is renewed interest in holography for providing true, life-like images. Mainly for the hologram's capability to reconstruct all the parallaxes that are needed for a truly immersive views that can be observed by anyone (human, machine or animal). But the large amount of information that is contained in a hologram make it quite unsuitable to be transmitted over existing networks in real-time. In this thesis we present techniques to effectively reduce the size of the hologram by pruning portions of the hologram based on the position of the observer. A large amount of information contained in the hologram is not used if the number of observers of an immersive scene is limited. Under this assumption, parts of the hologram can be pruned out and only the requisite parts that can cause diffraction at an observer point can be retained. For reconstructions these pruned holograms can be propagated numerically or optically. Wavelet transforms are employed to capture the localized frequency information from the hologram. The selection of the wavelets is based on the localization capabilities in the space and frequency domains. Gabor and Morlet wavelets possess good localization in space and frequency and form good candidates for the view based reconstruction system. Shannon wavelets are also employed for this cause and the frequency domain based application using the Shannon wavelet is shown to provide fast calculations for real-time pruning and reconstruction
Vuiets, Anatoliy. "Reconstruction empirique du spectre ultraviolet solaire." Thesis, Orléans, 2015. http://www.theses.fr/2015ORLE2015/document.
Повний текст джерелаThe spectrally-resolved radiative output of the Sun (SSI) in the UV band, i.e. at wavelengths below 300 nm, is a key quantity for specifying the state of the middle and upper terrestrial atmosphere. This quantity is required in numerous space weather applications, and also for climate studies. Unfortunately, SSI observations suffer from several problems : they have numerous spectral and temporal gaps, instruments are prone to degradation and often disagree, etc. This has stimulated the development of various types of SSI models. Proxy-based models suffer from lack of the physical interpretation and are as good as the proxies are. Semi-empirical models do not perform well below 300 nm, where the local thermodynamic equilibrium approximation does not hold anymore. We have developed an empirical model, which assumes that variations in the SSI are driven by solar surface magnetic flux. This model proceeds by segmenting solar magnetograms into different structures. In contrast to existing models, these features are classified by their area (and not their intensity), and their spectral signatures are derived from the observations (and not from models). The quality of the reconstruction is comparable to that of other models. More importantly, we find that two classes only of solar features are required to properly reproduce the spectral variability. Furthermore, we find that a coarse radial resolution suffices to account for geometrical line-of-sight effects. Finally, we show how the performance of the model on different time-scales is related to the optical thickness of the emission lines
Lejeune, Joseph. "Surface recovery and reconstruction after deformation." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAE031/document.
Повний текст джерелаPolymer's low weight, deformability and easy manufacturing make them attractive materials for tire, organic glasses, sealing applications … Their mechanical properties are nonetheless poorly understood. In particular, two fields are searched over this thesis: time dependency and contact behavior for two transparent polymer: PMMA and CR39. The mechanical behavior time dependency is observed by the construction of stress relaxation and contact master curves. The mechanical contact behavior is analyzed by indentation creep and recovery experiments. Moreover the immediate scratch recovery is measured in the thesis. Finally, the uniaxial data is used to build constitutive laws, which accuracy is compared by Finite Element Modeling to contact tests
Synave, Rémi. "Reconstruction de solides à partir d'acquisitions surfaciques." Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13909/document.
Повний текст джерелаAbstract
Moncla, Ludovic. "Automatic Reconstruction of Itineraries from Descriptive Texts." Thesis, Pau, 2015. http://www.theses.fr/2015PAUU3029/document.
Повний текст джерелаThis PhD thesis is part of the research project PERDIDO, which aims at extracting and retrieving displacements from textual documents. This work was conducted in collaboration with the LIUPPA laboratory of the university of Pau (France), the IAAA team of the university of Zaragoza (Spain) and the COGIT laboratory of IGN (France). The objective of this PhD is to propose a method for establishing a processing chain to support the geoparsing and geocoding of text documents describing events strongly linked with space. We propose an approach for the automatic geocoding of itineraries described in natural language. Our proposal is divided into two main tasks. The first task aims at identifying and extracting information describing the itinerary in texts such as spatial named entities and expressions of displacement or perception. The second task deal with the reconstruction of the itinerary. Our proposal combines local information extracted using natural language processing and physical features extracted from external geographical sources such as gazetteers or datasets providing digital elevation models. The geoparsing part is a Natural Language Processing approach which combines the use of part of speech and syntactico-semantic combined patterns (cascade of transducers) for the annotation of spatial named entities and expressions of displacement or perception. The main contribution in the first task of our approach is the toponym disambiguation which represents an important issue in Geographical Information Retrieval (GIR). We propose an unsupervised geocoding algorithm that takes profit of clustering techniques to provide a solution for disambiguating the toponyms found in gazetteers, and at the same time estimating the spatial footprint of those other fine-grain toponyms not found in gazetteers. We propose a generic graph-based model for the automatic reconstruction of itineraries from texts, where each vertex represents a location and each edge represents a path between locations. %, combining information extracted from texts and information extracted from geographical databases. Our model is original in that in addition to taking into account the classic elements (paths and waypoints), it allows to represent the other elements describing an itinerary, such as features seen or mentioned as landmarks. To build automatically this graph-based representation of the itinerary, our approach computes an informed spanning tree on a weighted graph. Each edge of the initial graph is weighted using a multi-criteria analysis approach combining qualitative and quantitative criteria. Criteria are based on information extracted from the text and information extracted from geographical sources. For instance, we compare information given in the text such as spatial relations describing orientation (e.g., going south) with the geographical coordinates of locations found in gazetteers. Finally, according to the definition of an itinerary and the information used in natural language to describe itineraries, we propose a markup langugage for encoding spatial and motion information based on the Text Encoding and Interchange guidelines (TEI) which defines a standard for the representation of texts in digital form. Additionally, the rationale of the proposed approach has been verified with a set of experiments on a corpus of multilingual hiking descriptions (French, Spanish and Italian)
Schaefer, Pierre-Loup. "Reconstruction de la déformée d’une aiguille instrumentée." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAS025/document.
Повний текст джерелаMost of navigation system dedicated to interventional radiology make the assumption that needles stay straight during insertions in tissues. In practice, this hypothesis is not verified as the interactions between needles and surrounding tissues cause the needles to bend, resulting in a loss of accuracy. My PhD thesis is a part of the national projet GAME-D whose goal is to solve that problem by developing and studying instrumented needles which should eventually provide 3D deformed shape of the needle to clinicians in real-time. My reasearch work focus on reconstruction of deformed needle shape from its strain sensors data. Precision needed for clinical use faces technical limitations which restraint number of sensors embedded on the needle. Methods developped to adress this issue fall into one of these two categories: sensors data retrieving and sensors data processing. Use of beam theory to study sensors deformations gives strain information such as torsion. It also allows to develop reconstruction methods able to use these informations to gain accuracy. An optimization method of the sensors positions based on needle insertions experimental data is proposed. Sensors optimal positions make sensors data much more significant. A statistical processing of experimental data is performed to extract deformation features of needles in tissue. It is further used in a a specially built reconstruction method. Representativeness of these features improve the reconstrution of the deformed shape of the needle
Paleo, Pierre. "Méthodes itératives pour la reconstruction tomographique régularisée." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAT070/document.
Повний текст джерелаIn the last years, there have been a diversification of the tomography imaging technique for many applications. However, experimental constraints often lead to limited data - for example fast scans, or medical imaging where the radiation dose is a primary concern. The data limitation may come as a low signal to noise ratio, scarce views or a missing angle wedge.On the other hand, artefacts are detrimental to reconstruction quality.In these contexts, the standard techniques show their limitations.In this work, we explore how regularized tomographic reconstruction methods can handle these challenges.These methods treat the problem as an inverse problem, and the solution is generally found by the means of an optimization procedure.Implementing regularized reconstruction methods entails to both designing an appropriate regularization, and choosing the best optimization algorithm for the resulting problem.On the modelling part, we focus on three types of regularizers in an unified mathematical framework, along with their efficient implementation: Total Variation, Wavelets and dictionary-based reconstruction. On the algorithmic part, we study which state-of-the-art convex optimization algorithms are best fitted for the problem and parallel architectures (GPU), and propose a new algorithm for an increased convergence speed.We then show how the standard regularization models can be extended to take the usual artefacts into account, namely rings and local tomography artefacts. Notably, a novel quasi-exact local tomography reconstruction method is proposed
Capanna, Claire. "Reconstruction 3D de petits corps par photoclinométrie." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4757/document.
Повний текст джерелаMy PhD work consists in the establishment of a method of 3D reconstruction. Studied objects are small solar system bodies that have been observed in the visible range by sensors during space missions. The proposed method (called photoclinometry by deformation ) consists in deforming a mesh until the synthetic images of the mesh correspond to the observed ones, this is done in an optimization loop . This method requires an initial mesh close to the desired solution. We implement this method in a multiresolution scheme (multiresolution photoclinometry by deformation) to obtain a reconstruction without an apriori shape . However, this method does not allow models containing millions of facets . A third method has been developed to overcome this problem, it consists in cutting the mesh into different pieces and apply the multiresolution method photoclinometry by deforming to each of these pieces . By merging these pieces , we obtain meshes of several millions facets (high resolution model). These methods have been tested by reconstructing the two asteroids (Steins and lutetia) flown-by the Rosetta spacecraft of the European Space Agency (ESA)
Mannani, Haroon. "La reconstruction de l'État-Nation en Afghanistan." Thesis, Toulouse 1, 2014. http://www.theses.fr/2014TOU10063/document.
Повний текст джерелаOstrovskii, Dmitrii. "Reconstruction adaptative des signaux par optimisation convexe." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAM004/document.
Повний текст джерелаWe consider the problem of denoising a signal observed in Gaussian noise.In this problem, classical linear estimators are quasi-optimal provided that the set of possible signals is convex, compact, and known a priori. However, when the set is unspecified, designing an estimator which does not ``know'' the underlying structure of a signal yet has favorable theoretical guarantees of statistical performance remains a challenging problem. In this thesis, we study a new family of estimators for statistical recovery of signals satisfying certain time-invariance properties. Such signals are characterized by their harmonic structure, which is usually unknown in practice. We propose new estimators which are capable to exploit the unknown harmonic structure of a signal to reconstruct. We demonstrate that these estimators admit theoretical performance guarantees, in the form of oracle inequalities, in a variety of settings.We provide efficient algorithmic implementations of these estimators via first-order optimization algorithm with non-Euclidean geometry, and evaluate them on synthetic data, as well as some real-world signals and images
Dalla, Vedova Gaetan. "Imagerie et analyse hyperspectrales d'observations interférométriques d'environnement circumstellaires." Thesis, Université Côte d'Azur (ComUE), 2016. http://www.theses.fr/2016AZUR4060/document.
Повний текст джерелаEnvironment of nearby stars requires instruments with high performances in termsof dynamics and angular resolution. The interferometry offers a solution. Inparticular, in the nulling interferometry, the flux of the star on the axis ofthe interferometer is strongly reduced, allowing to emerge fainter structuresaround it. In this context, the image reconstruction is a fundamental andpowerful tool. The advent of the high spectral resolution interferometers such asAMBER, MATISSE and GRAVITY boost the interest in the polychromatic imagereconstruction, in order to exploit all the available spectral information.The goal of this thesis is to develop and improve monochromatic and hyperspectralimaging techniques. The work here presented has two main parts. First, we discussthe performances of the nulling in the context of the inverse problem solving.This part is based on simulations and data collected on the nulling test benchPERSEE. Second, we adapted and developed monochromatic and hyperspectral imagereconstruction methods. Then, we applied these methods in order to study thecircumstellar environment of two evolved objects, Achernar and Eta Carina, fromPIONIER and AMBER observations.This work provides elements in the field of the image reconstruction forminterferometric observations as well as the specific studies on the environmentof Achernar and Eta Carina
Giraudot, Simon. "Reconstruction robuste de formes à partir de données imparfaites." Thesis, Nice, 2015. http://www.theses.fr/2015NICE4024/document.
Повний текст джерелаOver the last two decades, a high number of reliable algorithms for surface reconstruction from point clouds has been developed. However, they often require additional attributes such as normals or visibility, and robustness to defect-laden data is often achieved through strong assumptions and remains a scientific challenge. In this thesis we focus on defect-laden, unoriented point clouds and contribute two new reconstruction methods designed for two specific classes of output surfaces. The first method is noise-adaptive and specialized to smooth, closed shapes. It takes as input a point cloud with variable noise and outliers, and comprises three main steps. First, we compute a novel noise-adaptive distance function to the inferred shape, which relies on the assumption that this shape is a smooth submanifold of known dimension. Second, we estimate the sign and confidence of the function at a set of seed points, through minimizing a quadratic energy expressed on the edges of a uniform random graph. Third, we compute a signed implicit function through a random walker approach with soft constraints chosen as the most confident seed points. The second method generates piecewise-planar surfaces, possibly non-manifold, represented by low complexity triangle surface meshes. Through multiscale region growing of Hausdorff-error-bounded convex planar primitives, we infer both shape and connectivity of the input and generate a simplicial complex that efficiently captures large flat regions as well as small features and boundaries. Imposing convexity of primitives is shown to be crucial to both the robustness and efficacy of our approach
Hmida, Rihab. "Vision et reconstruction 3D : application à la robotique mobile." Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT335/document.
Повний текст джерелаWith the development of technological processes, interest in mobile robotics is constantly increasing in recent years, particularly to replace human in environments of risk (radioactive areas, military robots) or areas that are inaccessible (planetary or underwater exploration), or at different scales (robot within a pipeline or surgical robot inside the human body). In the same context, navigation systems are designed specifically for underwater exploration which is attracting more and more interest of several geologists, robotics and scientists in order to better understand and characterize submarine environment. For optimal security, new technologies (radar, sonar, camera system, ..) have been developed to replace human.In this context, the work of this thesis is focusing with the aim of implementing a stereoscopic vision system to acquire useful information and the development of an algorithm for the restoration of the 3D structure of a confined aquatic environment. Our system consists of a pair of catadioptric sensors and a laser pointer belt permitting to identify visual landmarks of the scene and a platform for the implementation of the acquired image processing. The processing chain is preceded by an offline calibration phase to generate the geometric modeling of the complete system. The processing algorithm consists of pixel-wise analysis of the stereoscopic images for the extraction of 2D laser projections and rebuilds their 3D corresponding based on the calibration parameters.The implementation of the complete system on a software platform requests an execution time higher than that required by the application. The work closing the memory is addressed to this problem and proposes a solution to simplify the development and implementation of real-time applications on platforms based on a FPGA device. The implementation of our application was performed and a study of performance is presented, considering the requirements of the application in terms of precision, speed and efficiency rate
Morel, Jules. "Surface reconstruction based on forest terrestrial LiDAR data." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0039/document.
Повний текст джерелаIn recent years, the capacity of LiDAR technology to capture detailed information about forests structure has attracted increasing attention in the field of forest science. In particular, the terrestrial LiDAR arises as a promising tool to retrieve geometrical characteristics of trees at a millimeter level.This thesis studies the surface reconstruction problem from scattered and unorganized point clouds, captured in forested environment by a terrestrial LiDAR. We propose a sequence of algorithms dedicated to the reconstruction of forests plot attributes model: the ground and the woody structure of trees (i.e. the trunk and the main branches). In practice, our approaches model the surface with implicit function build with radial basis functions to manage the homogeneity and handle the noise of the sample data points
Heijboer, Adriaan Jacob. "Track reconstruction and point source searches with ANTARES." [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2004. http://dare.uva.nl/document/77461.
Повний текст джерелаYureidini, Ahmed. "Robust blood vessel reconstruction for interactive medical simulations." Thesis, Lille 1, 2014. http://www.theses.fr/2014LIL10044/document.
Повний текст джерелаIn the context of interactive simulation, the lack of patient specific geometrical models remains one of the major limitations of simulators. Current commercial simulators proposed no or a limited number of cases. However, a vast literature on the subject has been introduced in the past twenty years. Nevertheless, the proposed methods are not adapted to an interactive context, especially when dealing with vascular networks. In this work, we address the problem of blood vessel segmentation and reconstruction from 3DRA patient data. To this end, we propose two novel algorithms for segmentation and reconstruction. First, the vessel tree is built by tracking the vessel centerline. Our dedicated tracking process also extracts points on the vessel surface in a robust way. Second, those points are fitted by an implicit surface (a blobby model) that is iteratively refined. Tracking and reconstruction results are reported on synthetic and patient data. Simulations within an interventional tool navigation context showed that the resulting geometrical model complies with interactive simulation requirements : fast collision detection and prediction, topology information, smoothness and availability of differential quantities for contact response computation
Chen, Zhouye. "Reconstruction of enhanced ultrasound images from compressed measurements." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30222/document.
Повний текст джерелаThe interest of compressive sampling in ultrasound imaging has been recently extensively evaluated by several research teams. Following the different application setups, it has been shown that the RF data may be reconstructed from a small number of measurements and/or using a reduced number of ultrasound pulse emissions. According to the model of compressive sampling, the resolution of reconstructed ultrasound images from compressed measurements mainly depends on three aspects: the acquisition setup, i.e. the incoherence of the sampling matrix, the image regularization, i.e. the sparsity prior, and the optimization technique. We mainly focused on the last two aspects in this thesis. Nevertheless, RF image spatial resolution, contrast and signal to noise ratio are affected by the limited bandwidth of the imaging transducer and the physical phenomenon related to Ultrasound wave propagation. To overcome these limitations, several deconvolution-based image processing techniques have been proposed to enhance the ultrasound images. In this thesis, we first propose a novel framework for Ultrasound imaging, named compressive deconvolution, to combine the compressive sampling and deconvolution. Exploiting an unified formulation of the direct acquisition model, combining random projections and 2D convolution with a spatially invariant point spread function, the benefit of this framework is the joint data volume reduction and image quality improvement. An optimization method based on the Alternating Direction Method of Multipliers is then proposed to invert the linear model, including two regularization terms expressing the sparsity of the RF images in a given basis and the generalized Gaussian statistical assumption on tissue reflectivity functions. It is improved afterwards by the method based on the Simultaneous Direction Method of Multipliers. Both algorithms are evaluated on simulated and in vivo data. With regularization techniques, a novel approach based on Alternating Minimization is finally developed to jointly estimate the tissue reflectivity function and the point spread function. A preliminary investigation is made on simulated data
Bianchetti, Morales Rennan. "Density profile reconstruction methods for extraordinary mode reflectometry." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0031/document.
Повний текст джерелаThe goal of this PhD is to improve the data analysis techniques of frequency swept reflectometry for determination of the density profile of fusion plasmas. There has been significant improvements in the last two decades on the hardware design and signal extraction techniques, but the data analysis is lagging behind and require further improvements to meet the required standards for continuous operation in future reactors. The improvements obtained in this thesis on the reconstruction of density profiles provide a better accuracy in a shorter time, even in the presence of a density hole, also enabling sufficiently precise measurements of the properties of turbulence used to validate numerical models, and allowing real-time monitoring of the shape and position of the plasma
Yu, Liang. "Acoustical source reconstruction from non-synchronous sequential measurements." Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0023/document.
Повний текст джерелаA fundamental limitation of the inverse acoustic problem is determined by the size of the array and the microphone density. A solution to achieve large array and/or high microphone density is to scan the object of interest by moving sequentially a small prototype array, which is referred to as sequential measurements. In comparison to a large array and/or high microphone density array that can acquire simultaneously all the information of the spectral matrix, in particular all cross-spectra, sequential measurements can only acquire a block diagonal spectral matrix, while the cross-spectra between the sequential measurements remain unknown due to the missing phase relationships between consecutive positions. Nevertheless, these unknown cross-spectra are necessary for acoustic reconstruction. The object of this thesis is to recover the missing elements of the spectral matrix in the case that the acoustical field is highly coherent so as to implement the sequential measurements. Sparse eigenvalue spectrum are assumed to solve this problem, which lead to a structured low rank model and a weakly sparse eigenvalue spectrum model
Duhant, Alexandre. "Contrôle non destructif par reconstruction en tomographie térahertz." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS006/document.
Повний текст джерелаTomography and its associated algorithms are now well known in the field of X-rays. On the other hand, all these tools are based on a modeling that differs from which could be envisaged in the field of Terahertz (THz) waves. We find, in the state of the art, models of propagation of the THz wave within an object. These models generate a THz wave that is either far from a ground truth, or of an algorithmic complexity that is too high to be used within a tomographic reconstruction in acceptable computing times. One of the objectives of this thesis work is therefore to obtain a propagation model of the THz wave allowing better modeling of the acquisition process and which can be calculated in relatively short times. When measuring the projection of an object, the absorption phenomenon is not the only phenomenon responsible for the attenuation of the THz wave. The phenomena of refraction and reflection are also responsible for attenuation of the measured THz wave. During a THz tomographic reconstruction, if these phenomena are not taken into account, the algorithm attributes this attenuation to the absorption phenomenon. This results in a reconstruction of the absorption coefficients of the object far from their real value. Under the effect of these phenomena, the problem of THz tomographic reconstruction is non-linear. This prevents the direct use of classical reconstruction methods since these methods imply that the relationship between an object and its projections is linear
Dieuleveut, Daphné. "Coupe et reconstruction d'arbres et de cartes aléatoires." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS217/document.
Повний текст джерелаThis PhD thesis is divided into two parts. First, we study some fragmentations of random trees and the associated cut-trees. The discrete models we are interested in are Galton-Watson trees, which are cut down by recursively removing random edges. We also consider their continuous counterparts, the Brownian and stable trees, which are fragmented by deleting the atoms of Poisson point processes. For these discrete and continuous models, the associated cut-tree describes the genealogy of the connected components which appear during the cutting procedure. We show that for a ''vertex-fragmentation'', in which the nodes having a large degree are more susceptible to be deleted, the continuous cut-tree is the scaling limit of the corresponding discrete cut-trees. In the Brownian and stable cases, we also give a transformation which rebuilds the initial tree from its cut-tree and a well chosen labeling of its branchpoints. The second part relates to random maps, and more precisely the uniform infinite quadrangulation of the plane (UIPQ). Recent results show that in the UIPQ, all infinite geodesic rays originating from the root are essentially similar. We identify the limit quadrangulation obtained by rerooting the UIPQ at a point ''at infinity'' on one of these geodesics. To do this, we split the UIPQ along this geodesic ray. Using a correspondence with discrete trees, we study the two sides, and obtain the desired limit by gluing them back together
Liu, Zhe. "Robust, refined and selective matching for accurate camera pose estimation." Thesis, Paris Est, 2015. http://www.theses.fr/2015PEST1020/document.
Повний текст джерелаWith the recent progress in photogrammetry, it is now possible to automatically reconstruct a model of a 3D scene from pictures or videos. The model is reconstructed in several stages. First, salient features (often points, but more generally regions) are detected in each image. Second, features that are common in images pairs are matched. Third, matched features are used to estimate the relative pose (position and orientation) of images. The global poses are then computed as well as the 3D location of these features (structure from motion). Finally, a dense 3D model can be estimated. The detection of salient features, their matching, as well as the estimation of camera poses play a crucial role in the reconstruction process. Inaccuracies or errors in these stages have a major impact on the accuracy and robustness of reconstruction for the entire scene. In this thesis, we propose better methods for feature matching and feature selection, which improve the robustness and accuracy of existing methods for camera position estimation. We first introduce a photometric pairwise constraint for feature matches (VLD), which is more reliable than geometric constraints. Then we propose a semi-local matching approach (K-VLD) using this photometric match constraint. We show that our method is very robust, not only for rigid scenes but also for non-rigid and repetitive scenes, which can improve the robustness and accuracy of pose estimation methods, such as based on RANSAC. To improve the accuracy in camera position estimation, we study the accuracy of reconstruction and pose estimation in function of the number and quality of matches. We experimentally derive a “quantity vs. quality” relation. Using this relation, we propose a method to select a subset of good matches to produce highly accurate pose estimations. We also aim at refining match position. For this, we propose an improvement of least square matching (LSM) using an irregular sampling grid and image scale exploration. We show that match refinement and match selection independently improve the reconstruction results, and when combined together, the results are further improved
Huard, Mathieu. "Modélisation géométrique et reconstruction de formes équipées de capteurs d'orientation." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENM090/document.
Повний текст джерелаThis PhD thesis in applied mathematics was conducted within the Electronic Systems andSensors department of the CEA-Leti (Atomic Energy and Alternative Energies Commission - Laboratory for Electronics and Information Technologies), a major organism for technological research located in Grenoble, France. This work originated from a partnership with the applied mathematics laboratory (LJK) of the Joseph Fourier university (UJF). The Leti develops embedded systems equiped with micro-sensors (magnetometers, accelerometers...) from which it is possible to retrieve informations about their spatial orientation. These systems allow for innovative applications in the field of shape acquisition and reconstruction. The problem of reconstructing surfaces from unstructured orientation data is ill-posed. However, previous work done within the Leti came up with a valid reconstruction protocol. The micro-sensors were integrated into the Morphosense ribbon : this flexible ribbon instrumented with sensor knots according to a known geometry is at the core of a number of reconstruction algorithms for the curves followed by the ribbon. When lied on a physical surface, Morphosense ribbons then allow the acquisition and reconstruction of a network of curves on the surface, that are then used for the reconstruction of the entire surface. We first propose new algorithms for curve reconstruction thanks to the Morphosense ribbon. Those new methods now integrate the orientation informations provided by the sensors in their entirety, as well as the mechanical properties of the ribbon that force it to follow geodesic curves on a surface. From this point of view, the curve reconstruction can be considered optimal, as it integrates all the information embedded in the ribbons' structure. We then study a set of methods for the reconstruction of surfaces using a network of ribbon curves. Such a network generally leads to problems linked to the closure of the network and missing data estimation. The closure of the network is essentially a numerical problem related to differential constraints. The missing data corresponds to the lack of information on the surface outside the network of curves. In order to deal with these problems and propose practical solutions for the reconstruction, hypotheses either on the surface models or the topology of the network of curves are required. Therefore, the developed methods fall within the two following approaches.– On the one hand, reconstruction methods for developable and quasi-developable surfaces, which are a good approximation for the surfaces considered in numerous applications.– On the other hand, reconstruction methods from networks of curves with specific topologies (quasi-planar curves, open network) so as to deal with the closure problem.The set of methods developed in this work allow to formulate a global process for the reconstruction of surfaces, with flexible algorithms adapting to the different practical situations, so as to propose a solution both simple and precise in each case. The validation of our results in the case of real sensors data provided by the Morphosense ribbons also led us to develop metrological device. Finally, notice that the general context of reconstruction from orientation data studied here raises original theorical problems, to which we tried to answer with innovative solutions through interpolation and optimization algorithms
Bechetoille, Soizik. "Reconstructions et restaurations des monuments en bois. Les techniques traditionnelles du Japon face aux enjeux de la modernisation, de la construction du sanctuaire de Heian à Kyōto (1894) à la reconstruction du pavillon de l'Ultime Suprême de l'ancien palais impérial de Nara (2010)." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEP072/document.
Повний текст джерелаThis research addresses the issue of authenticity through restoration practices on Japanese architectural heritage and focuses mainly on traditional wooden buildings under restoration. One of the particularities of architectural practice in Japan is certainly the periodic dismantling of old buildings. The origins of this traditional practice stems from harsh climatic conditions, specificities related to wooden architecture, or ancient religious practices including the periodic reconstruction of some Shinto shrines. This “non-permanence” of buildings allows the transmission of forms and techniques through ages and time. With the concept of “reconstruction” comes the idea of building “once again” what was destroyed, as well as restoring, reproducing or restoring a primitive form, a structure or a building from fragmentary elements (vestiges, epigraphic sources, etc.). This presupposes the creation of a completely new object – with unprecedented materiality – that is triggered by the idea of making "once again" something that already existed. This definition of “reconstructing” invites us to consider a possible coexistence of different types of practices and standards of reconstruction. The act of “reconstruction - restitution” is often invoked to retrieve a missing “savoir-faire” (technical know-how). For many specialists, the practice of restoration by disassembling (prior to reconstructing) constitutes (or involves) the synthesis of techniques and theories related to traditional architecture. The aim of this research work is thus to study different cases of building reconstruction and type of practices that drive them
Government, South African. "RDP white paper: discussion document." Government Printer, 1994. http://hdl.handle.net/10962/69419.
Повний текст джерелаLiu, Kun. "Multi-View Oriented 3D Data Processing." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0273/document.
Повний текст джерелаPoint cloud refinement and surface reconstruction are two fundamental problems in geometry processing. Most of the existing methods have been targeted at range sensor data and turned out be ill-adapted to multi-view data. In this thesis, two novel methods are proposed respectively for the two problems with special attention to multi-view data. The first method smooths point clouds originating from multi-view reconstruction without impairing the data. The problem is formulated as a nonlinear constrained optimization and addressed as a series of unconstrained optimization problems by means of a barrier method. The second method triangulates point clouds into meshes using an advancing front strategy directed by a sphere packing criterion. The method is algorithmically simple and can produce high-quality meshes efficiently. The experiments on synthetic and real-world data have been conducted as well, which demonstrates the robustness and the efficiency of the methods. The developed methods are suitable for applications which require accurate and consistent position information such photogrammetry and tracking in computer vision
Lojacono, Xavier. "Image reconstruction for Compton camera with application to hadrontherapy." Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0126/document.
Повний текст джерелаThe Compton camera is a device for imaging gamma radiation sources. The advantages of the system lie in its sensitivity, due to the absence of mechanical collimator, and the possibility of imaging wide energy spectrum sources. These advantages make it a promising candidate for application in hadrontherapy. Funded by the european project ENVISION, FP7-Cooperation Work Program, this work deals with the development of image reconstruction methods for the Compton camera. We developed both analytical and iterative methods in order to reconstruct the source from cone-surface projections. Their performances are analyzed with regards to the context (geometry of the camera, number of events). We developped an analytical method using a Filtered BackProjection (FBP) formulation. This method is fast but really sensitive to the noise. We have also developped iterative methods using a List Mode-Maximum Likelihood Expectation Maximization (LM-MLEM) algorithm. We proposed a new probabilistic model for the computation of the elements of the system matrix and different approaches for the calculation of these elements neglecting or not the measurement uncertainties. We also implemented a simplified method using the probabilistic model we proposed. The novelty of the method also lies on the specific discretization of the cone-surface projections. Several studies are carried out upon the reconstructions of simulated data worked out with Geant4, but also simulated data obtained from several prototypes of Compton cameras under study at the Institut de Physique Nucléaire de Lyon (IPNL) and at the Research Center of Dresden-Rossendorf. Results are promising, and further investigations on more realistic data are to be done
Arnault, Anthony. "Reconstruction de champs aérodynamiques à partir de mesures ponctuelles." Thesis, Ecole centrale de Lille, 2016. http://www.theses.fr/2016ECLI0023/document.
Повний текст джерелаReal time monitoring of turbulent flows is a challenging task that concerns a large range of applications. Evaluating wake vortices around the approach runway of an airport, in order to optimize the distance between lined-up aircraft, is an example. Another one touches to the broad subject of active flow control. In aerodynamic, control of detached flows is an essential issue. Such a control can serve to reduce noise produced by airplanes, or improve their aerodynamic performances. This work aims at developing tools to produce real time prediction of turbulent velocity fields from a small number of punctual sensors. After a literature review focused on a popular reconstruction method in fluid mechanics, the Stochastic Estimation (SE), the first step was to evaluate its overall prediction performances on several turbulent flows of gradual complexity. The accuracy of the SE being very limited in some cases, a deeper characterization of the method was performed. The filtering effect of the SE in terms of spatial and temporal content was particularly highlighted. This characterization pointed out the strong influence of the sensor locations on the estimation quality. Therefore, a sensor location optimization algorithm was proposed and extended to the choice of time delays when using Multi-Time-Delay SE. While using optimized locations for the sensors hold some accuracy improvements, they were still insufficient for some test cases. The opportunity to use a data assimilation method, the Kalman filter that combines a dynamic model of the flow with sensor information, was investigated. For some cases, the results were promising and the Kalman filter outperforms all SE methods
Singh, Inderjeet. "Curve based approach for shape reconstruction of continuum manipulators." Thesis, Lille 1, 2018. http://www.theses.fr/2018LIL1I042/document.
Повний текст джерелаThis work provides a new methodology to reconstruct the shape of continuum manipulators using a curve based approach. Pythagorean Hodograph (PH) curves are used to reconstruct the optimal shape of continuum manipulators using minimum potential energy (bending and twisting energy) criteria. This methodology allows us to obtain the optimal kinematics of continuum manipulators. The models are applied to a continuum manipulator, namely, the Compact Bionic Handling Assistant (CBHA) for experimental validation under free load manipulation. The calibration of the PH-based shape reconstruction methodology is performed to improve its accuracy to accommodate the uncertainties due to the structure of the manipulator. The proposed method is also tested under the loaded manipulation after combining it with a qualitative Neural Network approach. Furthermore, the PH-based methodology is extended to model multi-section heterogeneous bodies. This model is experimentally validated for a closed loop kinematic chain formed using two CBHA manipulating jointly a rope
Zhang, Miaomiao. "Fourier-based reconstruction of ultrafast sectorial images in ultrasound." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI144/document.
Повний текст джерелаThree-dimensional echocardiography is one of the most widely used modality in real time heart imaging thanks to its noninvasive and low cost. However, the real-time property is limited because of the limited speed of sound. To increase the frame rate, plane wave and diverging wave in transmission have been proposed to drastically reduce the number of transmissions to reconstruct one image. In this thesis, starting with the 2D plane wave imaging methods, the reconstruction of 2D/3D echocardiographic sequences in Fourier domain using diverging waves is addressed. The main contributions are as follows: The first contribution concerns the study of the influence of transmission scheme in the context of 2D plane wave imaging. A dichotomous transmission scheme was proposed. Results show that the proposed scheme allows the improvement of the quality of the reconstructed B-mode images at a constant frame rate. Then we proposed an alternative Fourier-based plane wave imaging method (i.e. Ultrasound Fourier Slice Beamforming). The proposed method was assessed using numerical simulations and experiments. Results revealed that the method produces very competitive image quality compared to the state-of-the-art methods. The third contribution concerns the extension of Fourier-based plane wave imaging methods to sectorial imaging in 2D. We derived an explicit spatial transformation which allows the extension of the current Fourier-based plane wave imaging techniques to the reconstruction of sectorial scan using diverging waves. Results obtained from simulations and experiments show that the derived methods produce competitive results with lower computational complexity when compared to the conventional delay and sum (DAS) technique. Finally, the 2D Fourier-based diverging wave imaging methods are extended to 3D. Numerical simulations were performed to evaluate the proposed method. Results show that the proposed approach provides competitive scores in terms of image quality compared to the DAS technique, but with a much lower computational complexity
Huynh, Minh Duc. "Reconstruction Volumique de Résultats de Simulation à Base Chimère." Thesis, Pau, 2012. http://www.theses.fr/2012PAUU3051/document.
Повний текст джерелаComputationnal fluid dynamics is an essential step in gas turbine modelling. Continuous optimization of turbines has led to sophisticated geometries, which raises severe issues for the design of adapted simulation grids. The chimera technique aims at relaxing geometry matching constraints by allowing grids overlap. However, post-processing of simulation results performed over chimera grids raises new issues because usual tools are not tuned for this particular geometricconfigurations. In the framework of the MOSART programme of the world competitiveness cluster Aerospace Valley, we have been working in collaboration with Turbomeca in order to develop a technique for the volumetric reconstruction of chimerasimulation results. We propose an innovative method that allows us to build a collection of non-overlapping grids while preserving the main properties of the former simulation grids and featuring boundary conforming property everywhere.The theorical complexity of our algorithms has proved to be linear in the size of the former grids and leads to computation times of a few seconds for grids of hundreds of thousands of cells. The main impact of this work leads in the possibility of using any post-processing tool, including a large number of OpenSource solutions, for post-processing chimera simulation results, which is a mandatory condition for the wide acceptance of this method by industry actors
Recur, Benoît. "Précision et qualité en reconstruction tomographique : algorithmes et applications." Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14113/document.
Повний текст джерелаA large kind of methods are available now to acquire an object in a non-destructive way (X-Ray scanner, micro-scanner, Tera-hertz waves, Transmission Electron Microscopy, etc). These tools acquire a projection set around the object and a reconstruction step leads to a representation of the acquired domain. The main limitation of these methods is that they rely on a continuous domain modeling wheareas they compute in a finite domain. The resulting discretization step sparks off errors in obtained images. Moreover, the acquisition step is not performed ideally and may be corrupted by artifacts and noises. Many direct or iterative methods have been developped to try to reduce errors and to give a better representative image of reality. An overview of these reconstructions is proposed and it is enriched with a study on quality, precision and noise robustness.\\Since the discretization is one of the major limitations, we try to adjust discrete methods for the reconstruction of real data. These methods are accurate in a finite domain but are not suitable for real acquisition, especially because of their error sensitivity. Therefore, we propose a link between the two worlds and we develop new discrete and noise robust methods. Finally, we are interesting in the missing data problem, i.e. when the acquisition is not uniform around the object, giving deformations into reconstructed images. Since discrete reconstructions are insensitive to this effect, we propose a primer solution using the tools developed previously
Loira, Nicolas. "Scaffold-based reconstruction method of genome-scale metabolic models." Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14484/document.
Повний текст джерелаUnderstanding living organisms has been a quest for a long time. Since the advancesof the last centuries, we have arrived to a point where massive quantities of data andinformation are constantly generated. Even though most of the work so far has focusedon generating a parts catalog of biological elements, only recently have we seena coordinated effort to discover the networks of relationships between those parts. Notonly are we trying to understand these networks, but also the way in which, from theirconnections, emerge biological functions.This work focuses on the modeling and exploitation of one of those networks:metabolism. A metabolic network is a net of interconnected biochemical reactionsthat occur inside, or in the proximity of, a living cell. A new method of discovery, orreconstruction, of metabolic networks is proposed in this work, with special emphasison eukaryote organisms.This new method is divided in two parts: a novel approach to reconstruct metabolicmodels, based on instantiation of elements of an existing scaffold model, and a novelmethod of assigning gene associations to reactions. This two-parts method allows reconstructionsthat are beyond the capacity of the state-of-the-art methods, enablingthe reconstruction of metabolic models of eukaryotes, and providing a detailed relationshipbetween its reactions and genes, knowledge that is crucial for biotechnologicalapplications.The reconstruction methods developed for the present work were complementedwith an iterative workflow of model edition, verification and improvement. This workflowwas implemented as a software package, called Pathtastic.As a case study of the method developed and implemented in the present work,we reconstructed the metabolic network of the oleaginous yeast Yarrowia lipolytica,known as food contaminant and used for bioremediation and as a cell factory. A draftversion of the model was generated using Pathtastic, and further improved by manualcuration, working closely with specialists in that species. Experimental data, obtainedfrom the literature, were used to assess the quality of the produced model.Both, the method of reconstruction in eukaryotes, and the reconstructed model ofY. lipolytica can be useful for their respective research communities, the former as astep towards better automatic reconstructions of metabolic networks, and the latteras a support for research, a tool in biotechnological applications and a gold standardfor future reconstructions
Semeria, Magali. "Évolution de l’architecture des génomes : modélisation et reconstruction phylogénétique." Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10280/document.
Повний текст джерелаGenomes evolve through processes that modify their content and organization at different scales, ranging from the substitution, insertion or deletion of a single nucleotide to the duplication, loss or transfer of a gene and to large scale chromosomal rearrangements. Extant genomes are the result of a combination of many such processes, which makes it difficult to reconstruct the overall picture of genome evolution. As a result, most models and methods focus on one scale and use only one kind of data, such as gene orders or sequence alignments. Most phylogenetic reconstruction methods focus on the evolution of sequences. Recently, some of these methods have been extended to integrate gene family evolution. Chromosomal rearrangements have also been extensively studied, leading to the development of many models for the evolution of the architecture of genomes. These two ways to model genome evolution have not exchanged much so far, mainly because of computational issues. In this thesis, I present a new model of evolution for the architecture of genomes that accounts for the evolution of gene families. With this model, one can reconstruct the evolutionary history of gene adjacencies and gene order accounting for events that modify the gene content of genomes (duplications and losses of genes) and for events that modify the architecture of genomes (chromosomal rearrangements). Integrating these two types of information in a single model yields more accurate evolutionary histories. Moreover, we show that reconstructing ancestral gene orders can provide feedback on the quality of gene trees thus paving the way for an integrative model and reconstruction method
Nguyễn, Hoàng Hà. "Automatic reconstruction of realistic road networks from GIS data." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4007/document.
Повний текст джерелаRoad reconstruction is an important topic in 3D modeling. Recently, the steady development of many critical-accurate applications has posed a high demand for realistic road models, taking into account road-design constraints selected from civil engineering. We propose in this dissertation methods for building realistic road network models from GIS data.Firstly, problems of single road axis reconstruction from a polyline are addressed. We present a novel G1-piecewise-curve model which is not only faithful to the real road axis but also convenient and cheap to render. Our Least Square Growing Algorithm creates, as in civil engineering, an horizontal and a vertical curves, then combines them to produce a 3D road axis fitting well the polyline. Processing individual polyline will leads to the discontinuities at road intersections so we introduce a procedure to detect road relations, then we propose a global process to reconstruct all road axes with the considerations on further constraints of road ends.Finally, based upon the resulting road axis and road properties in the GIS database, we define a mathematical road surface model respecting the essential constraints of real road surfaces. To produce a geometry representing the final road surface, we build a coarse mesh from the input terrain highmap, subdivide it adaptively along the road axis, then adjust the altitude of concerning vertices to the value defined by the mathematical model in order to attain a correct mapping between the terrain and the real road
Salaün, Yohann. "Reconstruction 3D de scènes d'intérieurs à partir de photographies." Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1186/document.
Повний текст джерелаThe 3D reconstruction of many objects and/or scenes from their photographies is made possible by current photogrammetry methods. To do so, usual methods detect salient points in every pictures and then match them between each pictures. These matches then give information on the position of every camera that took a picture of the scene. Once these positions are obtained, a dense reconstruction of the scene can be obtained by triangulating the parts seen in different pictures. Point detection and matching are crucial parts of these 3D reconstruction methods. That is why some scenes or objects are still hard to reconstruct in 3D with photogrammetry methods. Indoor scenes belong to these difficult cases, with their lack of texture that causes point detection and matching to give poor results. Moreover, the planarity of these scenes is a degenerate case for usual calibration methods. Combined, these drawbacks explain the difficulty to calibrate such scenes. In this thesis, we explain how to use segments to compensate for the lack of robustness of point methods in the case of indoor scenes. First, we introduce a segment detection method that is more robust to the lack of contrast in indoor scenes. This multi-scale method also gives good results whatever the image resolution is. We use criterion inspired from emph{a contrario} methods to avoid usage of several parameters. We then present a bifocal calibration method that uses both line segments and points. Segments allow the method to still work in low-texture and/or planar scenes and points allow the method to be as accurate as other point methods. To do so, we introduce an emph{a contrario} RANSAC variant to choose, for each scene, whether points or line segments should be used for calibration. Finally, to deal with the lack of overlap between consecutive pictures in indoor scenes, we introduce a multi-view calibration method that uses coplanarity constraints between segments when there are no trifocal constraints. We explain how to modify usual trifocal constraints to combine them with coplanarity constrains in order to obtain a method as accurate as usual methods but more robust in wide-baseline scenes
Cura, Rémi. "Inverse procedural Street Modelling : from interactive to automatic reconstruction." Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC1034/document.
Повний текст джерелаWorld urban population is growing fast, and so are cities, inducing an urgent need for city planning and management.Increasing amounts of data are required as cities are becoming larger, "Smarter", and as more related applications necessitate those data (planning, virtual tourism, traffic simulation, etc.).Data related to cities then become larger and are integrated into more complex city model.Roads and streets are an essential part of the city, being the interface between public and private space, and between urban usages.Modelling streets (or street reconstruction) is difficult because streets can be very different from each other (in layout, functions, morphology) and contain widely varying urban features (furniture, markings, traffic signs), at different scales.In this thesis, we propose an automatic and semi-automatic framework to model and reconstruct streets using the inverse procedural modelling paradigm.The main guiding principle is to generate a procedural generic model and then to adapt it to reality using observations.In our framework, a "best guess" road model is first generated from very little information (road axis network and associated attributes), that is available in most of national databases.This road model is then fitted to observations by combining in-base interactive user edition (using common GIS software as graphical interface) with semi-automated optimisation.The optimisation approach adapts the road model so it fits observations of urban features extracted from diverse sensing data.Both street generation (StreetGen) and interactions happen in a database server, as well as the management of large amount of street Lidar data (sensing data) as the observations using a Point Cloud Server.We test our methods on the entire Paris city, whose streets are generated in a few minutes, can be edited interactively (<0.3 s) by several concurrent users.Automatic fitting (few m) shows promising results (average distance to ground truth reduced from 2.0 m to 0.5m).In the future, this method could be mixed with others dedicated to reconstruction of buildings, vegetation, etc., so an affordable, precise, and up to date City model can be obtained quickly and semi-automatically.This will also allow to such models to be used in other application areas.Indeed, the possibility to have common, more generic, city models is an important challenge given the cost an complexity of their construction
Chauraud, Dimitri. "Influence des contraintes sur la reconstruction de l'Au (111)." Thesis, Poitiers, 2019. http://www.theses.fr/2019POIT2295/document.
Повний текст джерелаThe evolution of the surface reconstruction of the Au(111) under stress-strain has been studied in the context of an experimental approach, both by tunneling microscopy under ultra-vacuum environment coupled to a compression device, and numerically by molecular dynamics simulations. At first, we studied the interaction between atomic steps (vicinal or slip traces) and reconstruction. In particular, we showed experimentally a strong dependence of the length of the reconstruction with the width of the terraces, in very good agreement with the atomistic simulations. We have quantitatively demonstrated that this behavior is originated from the release of surface stress, both along and perpendicular to the atomic steps. Subsequently, we have shown that the appearance of a slip traces, resulting from the emergence of dislocations at the surface, induce a reorganization of the reconstruction, characterized by the formation of a U-shaped pattern. We also observed experimentally the presence of kinks along the trace. The simulations confirmed that these kinks are correlated with the modification of the reconstruction. At last, the study focused on the evolution of the chevron pattern under applied stress-strain. Experimental observations have shown that a macroscopic compressive strain involved a modification of the herringbone structure. Molecular dynamics simulations allowed to analyze the influence of stress orientation on surface threading dislocations. We have shown that an irreversible reorganisation of the herringbone structure takes place, characterized by the annihilation of the surface threading dislocations and the removal of the herringbone structure
Agaltsov, Alexey. "Reconstruction methods for inverse problems for Helmholtz-type equations." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX099/document.
Повний текст джерелаThis work is devoted to study of some inverse problems for the gauge-covariant Helmholtz equation, whose particular cases include the Schrödinger equation for a charged elementary particle in a magnetic field and the time-harmonic wave equation describing sound waves in a moving fluid. These problems are mainly motivated by applications in different tomographies, including acoustic tomography, tomography using elementary particles and electrical impedance tomography. In particular, we study inverse problems motivated by applications in acoustic tomography of moving fluid. We present formulas and equations which allow to reduce the acoustic tomography problem to an appropriate inverse scattering problem. Next, we develop a functional-analytic algorithm for solving this inverse scattering problem. However, in general, the solution to the latter problem is unique only up to an appropriate gauge transformation. In this connection, we give formulas and equations which allow to get rid of this gauge non-uniqueness and recover the fluid parameters, by measuring acoustic fields at several frequencies. We also present examples of fluids which are not distinguishable in this acoustic tomography setting. Next, we consider the inverse scattering problem without phase information. This problem is motivated by applications in tomography using elementary particles, where only the absolute value of the scattering amplitude can be measured relatively easily. We give estimates in the configuration space for the phaseless Born-type reconstructions, which are needed for the further development of precise inverse scattering algorithms. Finally, we consider the problem of determination of a Riemann surface in the complex projective plane from its boundary. This problem arises as a part of the inverse Dirichlet-to-Neumann problem for the Laplace equation on an unknown 2-dimensional surface, and is motivated by applications in electrical impedance tomography
Burns, Calum. "Super résolution de texture pour la reconstruction 3D fine." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS026/document.
Повний текст джерелаMulti-view 3D reconstruction techniques have reached industrial level maturity : non-expert users are now able to use commercial software to produce quality, large scale, 3D models. These reconstructions use top of the line sensors such as LIDAR or DSLR cameras, mounted on tripods and moved around the scene. Such protocols are not designed to efficiently inspect large infrastructures with complex geometry. As the capabilities of micro-drones progress at a fast rate, it is becoming possible to delegate such tasks to them. This choice induces changes in the acquired data : rather than a set of carefully acquired images, micro-drones will produce a video sequence with varying image quality, due to such flaws as motion blur and defocus. Processing video data is challenging for photogrammetry software, due to the high combinatorial cost induced by the large number of images. We use the full image sequence in two steps. Firstly, a 3D reconstruction is obtained using a temporal sub-sampling of the data, then a high resolution texture is built from the full sequence. Texture allows the inspector to visualize small details that may be lost in the noise of the geometric reconstruction. We apply Super Resolution techniques to achieve texture quality augmentation. To reach this goal we developed an algorithmic pipeline that processes the video input and outputs a 3D model of the scene with super resolved texture. This pipeline uses a state of the art 3D reconstruction software for the geometric reconstruction step. The main contribution of this pipeline is the image registration method used to achieve the sub-pixel accuracy required for Super Resolution. Unlike the data on which Super Resolution is generally applied, our viewpoints are subject to relative 3D motion and are facing a scene with 3D geometry, which makes the motion field all the more complex. The intrinsic precision of current 3D reconstruction algorithms is insufficient to perform a purely geometric registration. Instead we refine the geometric registration with an optical flow algorithm. This approach is qualitatively to a competing state of the art method. qualitative comparisons are reinforced by a quantitative evaluation of the resulting image quality. For this we developed a quantitative evaluation protocol of Super Resolution techniques applied to 3D surfaces. This method is based on the Binary Fractal Targets proposed by S. Landeau. We extended these ideas to the context of curved surfaces. This method has been used to validate our choice of Super Resolution algorithm. Finally, specularities present on the scene surfaces induce artefacts in our Super Resolution results, due to the loss of photoconsistency among the set of images to be fused. To address this problem we propose two corrective methods designed to achieve photometric registration of our images and restore photoconsistency. The first method is based on a model of the illumination phenomena, valid in a specific setting, the second relies on local photometric equalization among the images. When tested on data polluted by varying illumination, both methods were able to eliminate these artefacts
Khomutenko, Bogdan. "Contribution à la Perception Visuelle Basée Caméras Grand Angle pour la Robotique Mobile et Les Véhicules Autonomes." Thesis, Ecole centrale de Nantes, 2018. http://www.theses.fr/2018ECDN0010/document.
Повний текст джерелаThis thesis presents a novel projection model for fisheye cameras, which is mathematically simple and yet shows a high precision when applied to real cameras. Geometric properties of the model have been analyzed using the concept of projection surface, introduced in this work. In particular, a closed-form inverse mapping and an implicit equation for straight line projection have been found. This fact has been used to develop a method of direct stereo correspondence on raw fisheye images via rasterization of implicit curve. This correspondence algorithm allows us to apply the Semi-Global Matching algorithm to get an accurate 3D reconstruction using fisheye stereo systems. All these elements have been shown to be applicable to a direct visual localization system with two different methods of image registration: direct photometric error minimization and mutual information maximization. Intrinsic and extrinsic calibration of a mobile robot with fisheye cameras has been considered and a toolbox for such a calibration has been developed
Chamouine, Saïd Omar. "Nouvelle approche de la correction de l'atténuation mammaire en tomoscintigraphie de perfusion myocardique." Thesis, Paris Est, 2011. http://www.theses.fr/2011PEST1073/document.
Повний текст джерелаWe propose in this thesis a new approach to correct the breast attenuation in SPECT myocardial perfusion imaging. It consists of two parts: -The first is to make the acquired projections consistent with each other. - The second is to weight the corrected attenuated projection during the reconstruction. We conducted a validation of our methods on some examples of myocardial perfusion SPECT imaging simulating the breast attenuation and some examples of real patient studies including: breast attenuation, anterior myocardial infarction, inferior myocardial infarction, anterior myocardial ischemia and inferior myocardial ischemia. The obtained results are encouraging. At this step, it is interesting in the near future to conduct a validation study in patients versus a gold standard (angiography, coroscan).Key words: SPECT, tomographic reconstruction, breast attenuation, Iterative reconstruction, attenuation correction, myocardial perfusion imaging, nuclear medicine
Landon, Jr George V. "Innovative Techniques for Digitizing and Restoring Deteriorated Historical Documents." UKnowledge, 2008. http://uknowledge.uky.edu/gradschool_diss/599.
Повний текст джерела