Добірка наукової літератури з теми "Divisibilité infinie en puissance"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Divisibilité infinie en puissance".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Divisibilité infinie en puissance"
Mazet, Edmond. "Grandeur infinie en puissance et grandeur infinie en acte." Philosophie antique, no. 2 (October 31, 2002): 63–87. http://dx.doi.org/10.4000/philosant.6655.
Повний текст джерелаMalet, Antoni. "Some Thoughts on Pascal’s and Galileo’s “Indivisibles” and the Infinite Divisibility of Extension." Revue d'histoire des sciences Tome 76, no. 2 (June 27, 2023): 341–74. http://dx.doi.org/10.3917/rhs.762.0341.
Повний текст джерелаCrouzet, Michel. "Julien Sorel et le sublime: étude de la poétique d'un personnage." Revue d'histoire littéraire de la France o 86, no. 1 (January 1, 1986): 86–108. http://dx.doi.org/10.3917/rhlf.g1986.86n1.0086.
Повний текст джерелаTherme, Anne-Laure, та Arnaud Macé. "L'immanence de la puissance infinie. Le νοῦς d’Anaxagore à la lumière d’Homère". Méthodos, № 16 (1 січня 2016). http://dx.doi.org/10.4000/methodos.4477.
Повний текст джерелаДисертації з теми "Divisibilité infinie en puissance"
Zambiasi, Roberto. "'Minima sensibilia'. The Medieval Latin Debate (ca. 1250-ca. 1350) and Its Roots." Electronic Thesis or Diss., Université Paris sciences et lettres, 2023. http://www.theses.fr/2023UPSLP006.
Повний текст джерелаThe thesis focuses on one of the least studied topics in Medieval Latin Aristotelian natural philosophy (ca. 1250-ca. 1350), i.e., the so-called topic of "minima sensibilia". If, as claimed most notably in "Physics" VI, magnitudes are (potentially) infinitely divisible, a dilemma arises with respect to the limits of the divisibility of sensible qualities through the division of the matter (considered as an extended magnitude) with which they are united. Either sensible qualities are also (potentially) infinitely divisible (but this implies that the senses should have an infinite power in order to perceive them, against a fundamental Aristotelian assumption concerning the limits of every power existing in nature), or they are not (potentially) infinitely divisible (in this case, however, there would be portions of matter that can neither be cognised by the senses nor, evidently, by the intellect, and, what is worse, sensible entities would be ultimately composed of them, something entirely unacceptable in the Aristotelian worldview). To solve the dilemma, Aristotle, in Chapter 6 of the "De sensu et sensato" (445b3-446a20), makes use of the distinction between act and potency, affirming that sensible qualities are infinitely divisible in potency as part of the whole to which they belong, but there are minimal quantities of matter that can exist in act on their own endowed with their sensible qualities. The thesis investigates the reflection conducted by Medieval Latin commentators of the "De sensu et sensato" (always read in connection with their Greek and Islamic sources) on the subject of "minima sensibilia", using it as a privileged gateway to study from a new and original point of view the Medieval Latin conception of the ontology and of the epistemology of sensible qualities. Indeed, through a close scrutiny of the debate (which is accompanied by a thorough reconstruction of the complex manuscript tradition of Medieval Latin "De sensu" commentaries, that have hitherto been largely neglected by scholars) it is demonstrated that Medieval Latin commentators progressively developed a conception according to which sensible qualities can exist on their own in the natural world without being perceptible in act due to the smallness of the matter with which they are united. Such sensible qualities (that are sometimes called "insensibilia propter parvitatem") can, nevertheless, become perceptible in act by uniting with each other. Thanks to this fundamental development, not only sensible qualities started to be understood mostly in autonomy from their role in perception, but the sensible world became suddenly much more extended than the world that can be perceived by the senses, with the consequence that the confidence in the human ability to cognise its ultimate structure began to crumble
Roy, Emmanuel. "Mesures de Poisson, infinie divisibilité et propriétés ergodiques." Paris 6, 2005. http://www.theses.fr/2005PA066544.
Повний текст джерелаOliveira, Paulo Eduardo de. "Infinie divisibilité, principes d'invariance et estimation de noyaux de transition en théorie des mesures aléatoires." Lille 1, 1991. http://www.theses.fr/1991LIL10016.
Повний текст джерелаBosch, Pierre. "Quelques nouveaux résultats de divisibilité infinie sur la demi-droite." Thesis, Lille 1, 2015. http://www.theses.fr/2015LIL10042/document.
Повний текст джерелаIn this thesis, we give some new results of infinite divisibility on the half-line. The main results are : - The resolution of a conjecture due to Steutel (1973) about the infinite divisibility of negative powers of a gamma variable.- The resolution of a conjecture due to Bondesson (1992) concerning stable densities and hyperbolic complete monotonicity property
Wang, Min. "Generalized stable distributions and free stable distributions." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I032/document.
Повний текст джерелаThis thesis deals with real stable laws in the broad sense and consists of two independent parts. The first part concerns the generalized stable laws introduced by Schneider in a physical context and then studied by Pakes. They are defined by a fractional differential equation, whose existence and uniqueness of the density solutions is here characterized via two positive parameters, a stability parameter and a bias parameter. We then show various identities in law for the underlying random variables. The precise asymptotic behaviour of the density at both ends of the support is investigated. In some cases, exact representations as Fox functions of these densities are given. Finally, we solve entirely the open questions on the infinite divisibility of the generalized stable laws. The second and longer part deals with the classical analysis of the free alpha-stable laws. Introduced by Bercovici and Pata, these laws were then studied by Biane, Demni and Hasebe-Kuznetsov, from various points of view. We show that they are classically infinitely divisible for alpha less than or equal to 1 and that they belong to the extended Thorin class extended for alpha less than or equal to 3/4. The Lévy measure is explicitly computed for alpha = 1, showing that free 1-stable distributions are not in the Thorin class except in the drifted Cauchy case. In the symmetric case we show that the free alpha-stable densities are not infinitely divisible when alpha larger than 1. In the one-sided case we prove, refining unimodality, that the densities are whale-shaped, that is their successive derivatives vanish exactly once on their support. This echoes the bell shape property of the classical stable densities recently rigorously shown. We also derive several fine properties of spectrally one-sided free stable densities, including a detailed analysis of the Kanter random variable, complete asymptotic expansions at zero, and several intrinsic features of whale-shaped functions. Finally, we display a new identity in law for the Beta-Gamma algebra, various stochastic order properties, and we study the classical Van Danzig problem for the generalized semi-circular law
Vakeroudis, Stavros. "Nombres de tours de certains processus stochastiques plans et applications à la rotation d'un polymère." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2011. http://tel.archives-ouvertes.fr/tel-00584079.
Повний текст джерелаMaunoury, Franck. "Conditions d'existence des processus déterminantaux et permanentaux." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC028/document.
Повний текст джерелаWe establish necessary and sufficient conditions for the existence and infinite divisibility of alpha-determinantal processes and, when alpha is positive, of their underlying intensity (as Cox process). When the space is finite, these distributions correspond to multidimensional binomial, negative binomial and gamma distributions. We make an in-depth study of these last two cases with a non necessarily symmetric kernel
Книги з теми "Divisibilité infinie en puissance"
Noel, Jean Frantz. Recevoir la Puissance Infinie de Dieu. Independently Published, 2018.
Знайти повний текст джерелаЧастини книг з теми "Divisibilité infinie en puissance"
Gress, Thibaut. "Chapitre VII. Vérités éternelles et puissance divine infinie." In Descartes et la précarité du monde, 311–31. CNRS Éditions, 2012. http://dx.doi.org/10.4000/books.editionscnrs.49480.
Повний текст джерелаSoulier, Philippe. "3. La puissance infinie du Principe : Plotin, Proclus, Simplicius." In Relectures néoplatoniciennes de la théologie d’Aristote, 51–82. Academia – ein Verlag in der Nomos Verlagsgesellschaft, 2020. http://dx.doi.org/10.5771/9783896659255-51.
Повний текст джерела