Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: DISTRIBUTED GENERATION PLANNING.

Статті в журналах з теми "DISTRIBUTED GENERATION PLANNING"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "DISTRIBUTED GENERATION PLANNING".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Dugan, R. C., T. E. McDermott, and G. J. Ball. "Planning for distributed generation." IEEE Industry Applications Magazine 7, no. 2 (2001): 80–88. http://dx.doi.org/10.1109/2943.911193.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bazrafshan, Mohammadhafez, Likhitha Yalamanchili, Nikolaos Gatsis, and Juan Gomez. "Stochastic Planning of Distributed PV Generation." Energies 12, no. 3 (January 31, 2019): 459. http://dx.doi.org/10.3390/en12030459.

Повний текст джерела
Анотація:
Recent studies by electric utility companies indicate that maximum benefits of distributed solar photovoltaic (PV) units can be reaped when siting and sizing of PV systems is optimized. This paper develops a two-stage stochastic program that serves as a tool for optimally determining the placing and sizing of PV units in distribution systems. The PV model incorporates the mapping from solar irradiance to AC power injection. By modeling the uncertainty of solar irradiance and loads by a finite set of scenarios, the goal is to achieve minimum installation and network operation costs while satisfying necessary operational constraints. First-stage decisions are scenario-independent and include binary variables that represent the existence of PV units, the area of the PV panel, and the apparent power capability of the inverter. Second-stage decisions are scenario-dependent and entail reactive power support from PV inverters, real and reactive power flows, and nodal voltages. Optimization constraints account for inverter’s capacity, PV module area limits, the power flow equations, as well as voltage regulation. A comparison between two designs, one where the DC:AC ratio is pre-specified, and the other where the maximum DC:AC ratio is specified based on historical data, is carried out. It turns out that the latter design reduces costs and allows further reduction of the panel area. The applicability and efficiency of the proposed formulation are numerically demonstrated on the IEEE 34-node feeder, while the output power of PV systems is modeled using the publicly available PVWatts software developed by the National Renewable Energy Laboratory. The overall framework developed in this paper can guide electric utility companies in identifying optimal locations for PV placement and sizing, assist with targeting customers with appropriate incentives, and encourage solar adoption.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Liu, Zi Fa, Gang Liu, and Wei Zhang. "Substation Optimization Planning Considering Distributed Generation." Advanced Materials Research 732-733 (August 2013): 1314–19. http://dx.doi.org/10.4028/www.scientific.net/amr.732-733.1314.

Повний текст джерела
Анотація:
This paper established a transformer substation comprehensive optimal planning model considering distribution generation (DG) and different block geographic information factors (GIF), set form, volume, location of existing DG in planning area and transformer substation load-bearing capacity as constraint condition, taking construction cost of distribution transform substation and feeder and operation cost including current supply loss into account, in the meantime, regarding the influence of GIF such as land properties and so on to location and cost of construction with load demand satisfied. Furthermore, influence factors of different block information factor to construction cost were work out by means of interval analytical hierarchy process. On the basis of the established objective function, an particle swarm optimization (PSO) algorithm is proposed to solve the problem in this paper. By empirical study of certain planning area, the proposed model and algorithm are proved to be scientific and effective.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Singh, Bindeshwar, and Janmejay Sharma. "A review on distributed generation planning." Renewable and Sustainable Energy Reviews 76 (September 2017): 529–44. http://dx.doi.org/10.1016/j.rser.2017.03.034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rouhani, Ahmad, Seyyed Hadi Hosseini, and Mahdi Raoofat. "Composite generation and transmission expansion planning considering distributed generation." International Journal of Electrical Power & Energy Systems 62 (November 2014): 792–805. http://dx.doi.org/10.1016/j.ijepes.2014.05.041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Keane, A., Q. Zhou, J. W. Bialek, and Mark O'Malley. "Planning and operating non-firm distributed generation." IET Renewable Power Generation 3, no. 4 (2009): 455. http://dx.doi.org/10.1049/iet-rpg.2008.0058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Dzamarija, Mario, and Andrew Keane. "Autonomous Curtailment Control in Distributed Generation Planning." IEEE Transactions on Smart Grid 7, no. 3 (May 2016): 1337–45. http://dx.doi.org/10.1109/tsg.2015.2427378.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kochukov, O., and A. Mutule. "Network-Oriented Approach to Distributed Generation Planning." Latvian Journal of Physics and Technical Sciences 54, no. 3 (June 27, 2017): 3–12. http://dx.doi.org/10.1515/lpts-2017-0015.

Повний текст джерела
Анотація:
AbstractThe main objective of the paper is to present an innovative complex approach to distributed generation planning and show the advantages over existing methods. The approach will be most suitable for DNOs and authorities and has specific calculation targets to support the decision-making process. The method can be used for complex distribution networks with different arrangement and legal base.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wu, Lei, Hai Zhang, Zhaojie Hu, Yinghua Wang, Hairong Wang, Hua Yang, Bin Fan, and Hao Chang. "Multi-objective distribution network planning method with distributed generation based on non dominated sorting differential evolution algorithm." Journal of Physics: Conference Series 2247, no. 1 (April 1, 2022): 012019. http://dx.doi.org/10.1088/1742-6596/2247/1/012019.

Повний текст джерела
Анотація:
Abstract Combined with the specific problems of distribution network planning with distributed generation, this paper constructs a multi-objective optimization model of distribution network planning with distributed generation. According to the distributed generation distribution network layout planning with distributed generation, under the condition of uncertain load prediction value of distributed generation distribution network, taking the minimum voltage stability index, minimum network loss and minimum investment cost of distributed generation as sub objectives, a multi-objective programming model is established, and the model is solved by non dominated sorting differential evolution (NSDE) algorithm.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Contreras, Javier, and Gregorio Muñoz-Delgado. "Distributed Power Generation Scheduling, Modeling, and Expansion Planning." Energies 14, no. 22 (November 19, 2021): 7757. http://dx.doi.org/10.3390/en14227757.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Fathabad, Abolhassan Mohammadi, Jianqiang Cheng, Kai Pan, and Feng Qiu. "Data-Driven Planning for Renewable Distributed Generation Integration." IEEE Transactions on Power Systems 35, no. 6 (November 2020): 4357–68. http://dx.doi.org/10.1109/tpwrs.2020.3001235.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Singh, Devender, R. K. Misra, and Deependra Singh. "Effect of Load Models in Distributed Generation Planning." IEEE Transactions on Power Systems 22, no. 4 (November 2007): 2204–12. http://dx.doi.org/10.1109/tpwrs.2007.907582.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Zhao, Jun Hua, John Foster, Zhao Yang Dong, and Kit Po Wong. "Flexible Transmission Network Planning Considering Distributed Generation Impacts." IEEE Transactions on Power Systems 26, no. 3 (August 2011): 1434–43. http://dx.doi.org/10.1109/tpwrs.2010.2089994.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Trebolle, David, Tomás Gómez, Rafael Cossent, and Pablo Frías. "Distribution planning with reliability options for distributed generation." Electric Power Systems Research 80, no. 2 (February 2010): 222–29. http://dx.doi.org/10.1016/j.epsr.2009.09.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Mendoza, Jorge E., Miguel E. López, Sebastián C. Fingerhuth, Héctor E. Peña, and Claudio A. Salinas. "Low voltage distribution planning considering micro distributed generation." Electric Power Systems Research 103 (October 2013): 233–40. http://dx.doi.org/10.1016/j.epsr.2013.05.020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Alvarez, Manuel, Sarah K. Rönnberg, Math H. J. Bollen, Rafael Cossent, and Jin Zhong. "Regulatory matters affecting distribution planning with distributed generation." CIRED - Open Access Proceedings Journal 2017, no. 1 (October 1, 2017): 2869–73. http://dx.doi.org/10.1049/oap-cired.2017.0358.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Xiang, Yue, Yong Liu, Junyong Liu, Yilu Liu, and Kunyu Zuo. "An Economic Criterion for Distributed Renewable Generation Planning." Electric Power Components and Systems 45, no. 12 (July 21, 2017): 1298–304. http://dx.doi.org/10.1080/15325008.2017.1346727.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Trebolle, David, and Tomas Gomez. "Reliability Options in Distribution Planning Using Distributed Generation." IEEE Latin America Transactions 8, no. 5 (September 2010): 557–64. http://dx.doi.org/10.1109/tla.2010.5623509.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Shea, J. J. "Distributed power generation planning and evaluation [Book Review]." IEEE Electrical Insulation Magazine 17, no. 2 (March 2001): 67–68. http://dx.doi.org/10.1109/mei.2001.917549.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Barati, Fatemeh, Shahram Jadid, and Ali Zangeneh. "Private investor-based distributed generation expansion planning considering uncertainties of renewable generations." Energy 173 (April 2019): 1078–91. http://dx.doi.org/10.1016/j.energy.2019.02.086.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Kumar, Sandeep, Vikas Manjrekar, Vivek Singh, and Bhupesh Kumar Lad. "Integrated yet distributed operations planning approach: A next generation manufacturing planning system." Journal of Manufacturing Systems 54 (January 2020): 103–22. http://dx.doi.org/10.1016/j.jmsy.2019.12.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

KAUR, S., and G. B. KUMBHAR. "Incentive Driven Distributed Generation Planning with Renewable Energy Resources." Advances in Electrical and Computer Engineering 14, no. 4 (2014): 21–28. http://dx.doi.org/10.4316/aece.2014.04004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Jin, Tongdan, Yu Tian, Cai Wen Zhang, and David W. Coit. "Multicriteria Planning for Distributed Wind Generation Under Strategic Maintenance." IEEE Transactions on Power Delivery 28, no. 1 (January 2013): 357–67. http://dx.doi.org/10.1109/tpwrd.2012.2222936.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Ho, W. S., H. Y. Chin, K. C. Wong, Z. A. Muis, and H. Hashim. "Grid-connected distributed energy generation system planning and scheduling." Desalination and Water Treatment 52, no. 4-6 (August 14, 2013): 1202–13. http://dx.doi.org/10.1080/19443994.2013.826785.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Wu, Xiaomeng, Zheng Shi, Guo Feng, and Qianyu Wang. "Overview of distributed generation planning in electric distribution networks." Journal of Physics: Conference Series 1634 (September 2020): 012114. http://dx.doi.org/10.1088/1742-6596/1634/1/012114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Su, Sheng-Yi, Chan-Nan Lu, Rung-Fang Chang, and Guillermo Gutierrez-Alcaraz. "Distributed Generation Interconnection Planning: A Wind Power Case Study." IEEE Transactions on Smart Grid 2, no. 1 (March 2011): 181–89. http://dx.doi.org/10.1109/tsg.2011.2105895.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Martinez Cesena, Eduardo A., Tomislav Capuder, and Pierluigi Mancarella. "Flexible Distributed Multienergy Generation System Expansion Planning Under Uncertainty." IEEE Transactions on Smart Grid 7, no. 1 (January 2016): 348–57. http://dx.doi.org/10.1109/tsg.2015.2411392.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Niu, Getu. "Reliability - Based Distributed Generation Optimization in Demand Response Planning." Journal of Physics: Conference Series 1345 (November 2019): 052050. http://dx.doi.org/10.1088/1742-6596/1345/5/052050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Kools, L., and F. Phillipson. "Data granularity and the optimal planning of distributed generation." Energy 112 (October 2016): 342–52. http://dx.doi.org/10.1016/j.energy.2016.06.089.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Vinothkumar, K., and M. P. Selvan. "Fuzzy Embedded Genetic Algorithm Method for Distributed Generation Planning." Electric Power Components and Systems 39, no. 4 (February 18, 2011): 346–66. http://dx.doi.org/10.1080/15325008.2010.528533.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Cao, Xiaoyu, Jianxue Wang, and Bo Zeng. "Distributed Generation Planning Guidance Through Feasibility and Profit Analysis." IEEE Transactions on Smart Grid 9, no. 5 (September 2018): 5473–75. http://dx.doi.org/10.1109/tsg.2018.2849852.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Munoz-Delgado, Gregorio, Javier Contreras, and Jose M. Arroyo. "Joint Expansion Planning of Distributed Generation and Distribution Networks." IEEE Transactions on Power Systems 30, no. 5 (September 2015): 2579–90. http://dx.doi.org/10.1109/tpwrs.2014.2364960.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Zangeneh, Ali, Shahram Jadid, and Ashkan Rahimi-Kian. "Uncertainty based distributed generation expansion planning in electricity markets." Electrical Engineering 91, no. 7 (January 23, 2010): 369–82. http://dx.doi.org/10.1007/s00202-010-0146-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Zhang, Jietan, Hong Fan, Wenting Tang, Maochun Wang, Haozhong Cheng, and Liangzhong Yao. "Planning for distributed wind generation under active management mode." International Journal of Electrical Power & Energy Systems 47 (May 2013): 140–46. http://dx.doi.org/10.1016/j.ijepes.2012.10.024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Vinothkumar, K., and M. P. Selvan. "Hierarchical Agglomerative Clustering Algorithm method for distributed generation planning." International Journal of Electrical Power & Energy Systems 56 (March 2014): 259–69. http://dx.doi.org/10.1016/j.ijepes.2013.11.021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

AlMuhaini, Mohammad, Abass Yahaya, and Ahmed AlAhmed. "Distributed Generation and Load Modeling in Microgrids." Sustainability 15, no. 6 (March 8, 2023): 4831. http://dx.doi.org/10.3390/su15064831.

Повний текст джерела
Анотація:
Solar PV and wind energy are the most important renewable energy sources after hydroelectric energy with regard to installed capacity, research spending and attaining grid parity. These sources, including battery energy storage systems, and well-established load modeling have been pivotal to the success of the planning and operation of electric microgrids. One of the major challenges in modeling renewable-based DGs, battery storage, and loads in microgrids is the uncertainty of modeling their stochastic nature, as the accuracy of these models is significant in the planning and operation of microgrids. There are several models in the literature that model DG and battery storage resources for microgrid applications, and selecting the appropriate model is a challenging task. Hence, this paper examines the most common models of the aforementioned distributed energy resources and loads and delineates the mathematical rigor required for characterizing the models. Several simulations are conducted to demonstrate model performance using manufacturers’ datasheets and actual atmospheric data as inputs.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Alarcón Villamil, Jorge Alexander, Sergio Raúl Rivera Rodríguez, and Francisco Santamaria Piedrahita. "Planning of power distribution networks in densely populated cities. Through distributed generation and capacitive compensators." Revista vínculos 16, no. 2 (November 20, 2019): 209–18. http://dx.doi.org/10.14483/2322939x.15585.

Повний текст джерела
Анотація:
This paper analyses different options that can be used to solve the problem of the planning of power distribution networks by including capacitive compensation and distributed generation. The methodology for planning aims to determine the size of the units, the bus where the units have to be located, and the year in which investments should be made, in order to minimize the total energy losses on the network during the planning period. The work analyses four different cases: planning using neither capacitive compensation (SC) nor distributed generation (DG), planning using only SC, planning using only DG, and planning using reactive compensation and distributed generation simultaneously. Results show that simultaneous use of SC and DG reduce the total energy losses and improve the voltage profiles on the network, so good results for the planning are obtained.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Saberi, Reza, Hamid Falaghi, and Mostafa Esmaeeli. "Resilience-Based Framework for Distributed Generation Planning in Distribution Networks." Iranian Electric Industry Journal of Quality and Productivity 9, no. 4 (November 1, 2020): 35–49. http://dx.doi.org/10.29252/ieijqp.9.4.35.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Song, Wen, and Qi Qiang Li. "Optimal Planning of Distributed Generation Using Self-Organizing Optimization Algorithm." Advanced Materials Research 852 (January 2014): 720–24. http://dx.doi.org/10.4028/www.scientific.net/amr.852.720.

Повний текст джерела
Анотація:
Recently, distributed generation (DG) has gained lots of attention due to a variety of benefits it can bring to the traditional power produce and distribution system. Identify the optimal location and size of DG in the distribution network is one of the crucial problems of DG integration, because a non-optimal planning might cause some adverse effects. In this paper, an optimization model with the consideration of minimizing energy losses is formulated first, and then an optimization methodology based on the Self-organizing Optimization Algorithm (SOA) is proposed. Finally, a case study is carried out to demonstrate the effectiveness of the proposed procedure.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Daud, Sa’adah, Aida Fazliana Abdul Kadir, Musa Yusup Lada, and Chin Kim Gan. "A Review: Optimal Distributed Generation Planning and Power Quality Issues." International Review of Electrical Engineering (IREE) 11, no. 2 (April 30, 2016): 208. http://dx.doi.org/10.15866/iree.v11i2.5806.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

陈, 昡姿. "Siting and Sizing of Distributed Generation in Distribution Network Planning." Smart Grid 03, no. 06 (2013): 153–58. http://dx.doi.org/10.12677/sg.2013.36028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Muraoka, Yukari, and Tsutomu Oyama. "Generation Planning including Distributed Generator under Uncertainty of Demand Growth." IEEJ Transactions on Power and Energy 123, no. 2 (2003): 162–68. http://dx.doi.org/10.1541/ieejpes.123.162.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Naderi, Ehsan, Hossein Seifi, and Mohammad Sadegh Sepasian. "A Dynamic Approach for Distribution System Planning Considering Distributed Generation." IEEE Transactions on Power Delivery 27, no. 3 (July 2012): 1313–22. http://dx.doi.org/10.1109/tpwrd.2012.2194744.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Chandel, A., D. S. Chauhan, and D. Singh. "Distributed generation planning in deregulated power market - a bibliographical survey." International Journal of Energy Technology and Policy 8, no. 3/4/5/6 (2012): 267. http://dx.doi.org/10.1504/ijetp.2012.052121.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Zangeneh, Ali, Shahram Jadid, and Ashkan Rahimi-Kian. "Promotion strategy of clean technologies in distributed generation expansion planning." Renewable Energy 34, no. 12 (December 2009): 2765–73. http://dx.doi.org/10.1016/j.renene.2009.06.018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Tan, Wen-Shan, Mohammad Yusri Hassan, Md Shah Majid, and Hasimah Abdul Rahman. "Optimal distributed renewable generation planning: A review of different approaches." Renewable and Sustainable Energy Reviews 18 (February 2013): 626–45. http://dx.doi.org/10.1016/j.rser.2012.10.039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Zangeneh, Ali, Shahram Jadid, and Ashkan Rahimi-Kian. "A fuzzy environmental-technical-economic model for distributed generation planning." Energy 36, no. 5 (May 2011): 3437–45. http://dx.doi.org/10.1016/j.energy.2011.03.048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Novoa, Clara, and Tongdan Jin. "Reliability centered planning for distributed generation considering wind power volatility." Electric Power Systems Research 81, no. 8 (August 2011): 1654–61. http://dx.doi.org/10.1016/j.epsr.2011.04.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Wang, HongHao, Libao Shi, and Yixin Ni. "Distribution system planning incorporating distributed generation and cyber system vulnerability." Journal of Engineering 2017, no. 13 (January 1, 2017): 2198–202. http://dx.doi.org/10.1049/joe.2017.0720.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

El-Khattam, W., Y. G. Hegazy, and M. M. A. Salama. "An Integrated Distributed Generation Optimization Model for Distribution System Planning." IEEE Transactions on Power Systems 20, no. 2 (May 2005): 1158–65. http://dx.doi.org/10.1109/tpwrs.2005.846114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії