Статті в журналах з теми "Dispersion à changement de phase"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Dispersion à changement de phase.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Dispersion à changement de phase".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Hurisse, Olivier, та Jean-Pierre Minier. "Modélisation stochastique dʼécoulements diphasiques avec changement de phase". Comptes Rendus Mécanique 339, № 6 (червень 2011): 418–31. http://dx.doi.org/10.1016/j.crme.2011.04.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chammari, Ali, Betaboale Naon, Fabien Cherblanc, and Jean-Claude Bénet. "Transfert d'eau en sol aride avec changement de phase." Comptes Rendus Mécanique 331, no. 11 (November 2003): 759–65. http://dx.doi.org/10.1016/j.crme.2003.07.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yang, Changhuei, Adam Wax, Irene Georgakoudi, Eugene B. Hanlon, Kamran Badizadegan, Ramachandra R. Dasari, and Michael S. Feld. "Interferometric phase-dispersion microscopy." Optics Letters 25, no. 20 (October 15, 2000): 1526. http://dx.doi.org/10.1364/ol.25.001526.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yang, Changhuei, Adam Wax, Ramachandra R. Dasari, and Michael S. Feld. "Phase-dispersion optical tomography." Optics Letters 26, no. 10 (May 15, 2001): 686. http://dx.doi.org/10.1364/ol.26.000686.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

BRICARD, P., and L. FRIEDEL. "Two-phase jet dispersion." Journal of Hazardous Materials 59, no. 2-3 (April 1998): 287–310. http://dx.doi.org/10.1016/s0304-3894(97)00159-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Barker, Steven A. "Matrix solid-phase dispersion." Journal of Chromatography A 885, no. 1-2 (July 2000): 115–27. http://dx.doi.org/10.1016/s0021-9673(00)00249-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Robles, Francisco E., Lisa L. Satterwhite, and Adam Wax. "Nonlinear phase dispersion spectroscopy." Optics Letters 36, no. 23 (November 30, 2011): 4665. http://dx.doi.org/10.1364/ol.36.004665.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Page, B. Richard. "The Germanic Verschärfung and Prosodic Change." Diachronica 16, no. 2 (December 31, 1999): 297–334. http://dx.doi.org/10.1075/dia.16.2.04pag.

Повний текст джерела
Анотація:
SUMMARY This investigation of Germanic Verscharfung distinguishes between two types of phonological change. Sound change affects only the phonetic features of a segment whereas prosodic change consists of a change in the rhythmic structure of a language. The fixing of initial stress in Germanic is a prosodic change which conditions the gemination of intervocalic glides following short, previously unstressed vowels. However, the gemination of glides is irregular since prosodic change is phonetically abrupt but lexically gradual and may therefore lead to irregular changes on the segmental level. In contrast, the second stage of Germanic Verschärfung, the fortition of geminate glides to geminate obstruents in East and North Germanic, is an exceptionless sound change in which [-consonantal] becomes [+consonantal]. RÉSUMÉ Cette enquête de la Verschärfung germanique distingue entre deux types de changement phonologique. Tandis que le changement phonétique n'affecte que les caractéristiques phonétiques d'un segment, le changement prosodique transforme la structure rythmique d'une langue. L'introduction de l'accent initial dans la langue germanique est un changement prosodique qui entraîne la gémination des sons transitoires intervocaliques après une voyelle courte préalablement non-accentuée. Cependant, la gémination des sons transitoires est irrégulière, étant donné que le changement prosodique est phonétiquement abrupte, mais lexicalement graduel. Pour cette raison, le changement prosodique peut entraîner un changement irrégulier au niveau du segment. Par contre, la deuxième phase de la Verschärfung germanique, la transformation des sons transitoires géminés en occlusives géminées dans la langue germanique orientale et septentrionale, constitue un changement phonétique sans exception dans lequel [-consonne] devient [+consonne]. ZUSAMMENFASSUNG In dieser Untersuchung der germanischen Verschärfung werden zwei Arten von phonologischem Wandel unterschieden. Lautwandel betrifft nur die phonetischen Merkmale eines Segments, wahrend prosodischer Wandel die rhythmische Struktur einer Sprache verandert. Die Einführung des Initialakzents im Germanischen ist ein prosodischer Wandel, der die Verdop-pelung zwischenvokalischer Gleitlaute herbeiführt, wenn der vorangehende Vokal kurz und vorher unbetont war. Die Verdoppelung von Gleitlauten ist jedoch unregelmäßig, denn prosodischer Wandel ist phonetisch abrupt aber lexikalisch graduell. Deswegen kann prosodischer Wandel zu unregel-mäBigem Wandel auf der segmentalen Ebene führen. Andererseits ist die zweite Phase der Verschärfung, die Verstärkung von verdoppelten Gleitlauten zu verdoppelten Obstruenten im Ost- und Nordgermanischen, ein ausnahms-loser Lautwandel, in dem [-konsonantisch] zu [+konsonantisch] wird.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mounaix, P., S. Le Boiteux, M. Moustakim, R. Wunenburger, JP. Delville, and L. Sarger. "Suivi du changement de phase CO2supercritique par spectroscopie TeraHertz femtoseconde." Journal de Physique IV (Proceedings) 119 (November 2004): 243–44. http://dx.doi.org/10.1051/jp4:2004119077.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Coret, M., S. Valance, R. Laniel, and J. Réthoré. "Étude mécanique d’un changement de phase allotropique à l’échelle mésoscopique." Matériaux & Techniques 97 (2009): 81–87. http://dx.doi.org/10.1051/mattech/2010014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Ingal, V. N., and E. A. Belyaevskaya. "Method of phase-dispersion introscopy." Technical Physics 42, no. 1 (January 1997): 59–67. http://dx.doi.org/10.1134/1.1258639.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Barker, Steven A. "Matrix solid phase dispersion (MSPD)." Journal of Biochemical and Biophysical Methods 70, no. 2 (March 2007): 151–62. http://dx.doi.org/10.1016/j.jbbm.2006.06.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Hao, Rui. "Efficience technique, croissance économique et égalité régionale en Chine : une approche de frontières stochastiques*." Articles 83, no. 3 (May 28, 2008): 297–320. http://dx.doi.org/10.7202/018112ar.

Повний текст джерела
Анотація:
Résumé En appliquant la méthode de frontières stochastiques aux données provinciales, nous avons décomposé la croissance économique en Chine sur la période 1978-2003 en trois éléments : le progrès technique (déplacements de la frontière de production), le changement d’efficience (rapprochements ou non par rapport à la frontière) et l’accumulation du capital physique (mouvements le long de la frontière). Ensuite, nous avons procédé à une analyse des effets de ces composantes en termes de croissance et de convergence régionale. Les résultats mettent en évidence que le changement d’efficience domine la première phase des réformes et l’accumulation du capital devient le déterminant prépondérant de la croissance depuis le début des années 1990, tandis que la contribution du progrès technique reste limitée sur l’ensemble de la période étudiée. Parmi ces trois éléments, le changement d’efficience a été le seul facteur favorable au processus de convergence.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Lue, Niyom, Jeon Woong Kang, Timothy R. Hillman, Ramachandra R. Dasari, and Zahid Yaqoob. "Single-shot quantitative dispersion phase microscopy." Applied Physics Letters 101, no. 8 (August 20, 2012): 084101. http://dx.doi.org/10.1063/1.4745785.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Robles, Francisco E., Prathyush Samineni, Jesse W. Wilson, and Warren S. Warren. "Pump-probe nonlinear phase dispersion spectroscopy." Optics Express 21, no. 8 (April 9, 2013): 9353. http://dx.doi.org/10.1364/oe.21.009353.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Schranz, W., and D. Havlik. "Acoustic dispersion near structural phase transitions." Phase Transitions 68, no. 3 (April 1999): 557–66. http://dx.doi.org/10.1080/01411599908224534.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Jiang, Xue, Jiayi Chen, Xingzhao Liu, Abdelhak M. Zoubir, and Zhixin Zhou. "Phase-Only Robust Minimum Dispersion Beamforming." IEEE Transactions on Signal Processing 68 (2020): 5664–79. http://dx.doi.org/10.1109/tsp.2020.3026177.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Wachi, Shun, and Yasuhiro Nojima. "Gas-phase dispersion in bubble columns." Chemical Engineering Science 45, no. 4 (1990): 901–5. http://dx.doi.org/10.1016/0009-2509(90)85012-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Prud'Homme, M., T. Hung Nguyen, and P. G. Mao. "Étude numérique du changement de phase autour d'un cylindre isotherme en rotation." International Journal of Heat and Mass Transfer 36, no. 11 (July 1993): 2837–46. http://dx.doi.org/10.1016/0017-9310(93)90103-d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Daru, Virginie, Marie-Christine Duluc, Olivier Le Maître, Damir Juric, and Patrick Le Quéré. "Modélisation et simulation numérique du changement de phase liquide–vapeur en cavité." Comptes Rendus Mécanique 334, no. 1 (January 2006): 25–33. http://dx.doi.org/10.1016/j.crme.2005.10.015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Fialová, Marie, Ctirad Verner, and Lothar Ebner. "Axial dispersion in the liquid phase in a horizontal two-phase tube reactor." Collection of Czechoslovak Chemical Communications 56, no. 6 (1991): 1249–52. http://dx.doi.org/10.1135/cccc19911249.

Повний текст джерела
Анотація:
The characteristics of axial dispersion in the liquid phase were measured for two basic flow regimes in a horizontal two-phase tube reactor. The data obtained indicate that in some flow regions, axial dispersion can be quite significant.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Cai, X., X. Chai, Y. Xie, Z. Ren, C. Lin, L. Yang, Y. Tang, and T. Tanaka. "The XAFS Phase Isolation and Characterization of Dispersion Phase Structure." Le Journal de Physique IV 7, no. C2 (April 1997): C2–757—C2–758. http://dx.doi.org/10.1051/jp4:1997227.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Anashkina, Elena A., and Alexey V. Andrianov. "Design and Dispersion Control of Microstructured Multicore Tellurite Glass Fibers with In-Phase and Out-of-Phase Supermodes." Photonics 8, no. 4 (April 8, 2021): 113. http://dx.doi.org/10.3390/photonics8040113.

Повний текст джерела
Анотація:
High nonlinearity and transparency in the 1–5 μm spectral range make tellurite glass fibers highly interesting for the development of nonlinear optical devices. For nonlinear optical fibers, group velocity dispersion that can be controlled by microstructuring is also of great importance. In this work, we present a comprehensive numerical analysis of dispersion and nonlinear properties of microstructured two-, four-, six-, and eight-core tellurite glass fibers for in-phase and out-of-phase supermodes and compare them with the results for one-core fibers in the near- and mid-infrared ranges. Out-of-phase supermodes in tellurite multicore fibers are studied for the first time, to the best of our knowledge. The dispersion curves for in-phase and out-of-phase supermodes are shifted from the dispersion curve for one-core fiber in opposite directions; the effect is stronger for large coupling between the fields in individual cores. The zero dispersion wavelengths of in-phase and out-of-phase supermodes shift to opposite sides with respect to the zero-dispersion wavelength of a one-core fiber. For out-of-phase supermodes, the dispersion can be anomalous even at 1.55 μm, corresponding to the operating wavelength of Er-doped fiber lasers.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Perrat, Jacques. "Les PME dans la nouvelle phase de régulation : enjeux productifs et territoriaux." Revue internationale P.M.E. 3, no. 3-4 (February 16, 2012): 367–88. http://dx.doi.org/10.7202/1007986ar.

Повний текст джерела
Анотація:
A travers leur changement de forme et leur repositionnement économique et social, les PME deviennent des outils adéquats pour une gestion plus efficace des gisements de ressources internes et externes au profit, essentiellement, des firmes les plus puissantes. Elles jouent par là un rôle clé dans le nouveau dispositif de régulation en émergence, ce que nous essayons de cerner ici en en mesurant les enjeux, les avancées et les limites, tant sous l’aspect productif que sous l’aspect territorial.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Sovilj, Milan. "Axial Dispersion in a Three-Phase Gas-Agitated Spray Extraction Column." Collection of Czechoslovak Chemical Communications 63, no. 2 (1998): 283–92. http://dx.doi.org/10.1135/cccc19980283.

Повний текст джерела
Анотація:
The continuous-phase axial dispersion coefficients of the three-phase gas-liquid-liquid system in a gas-agitated spray extraction column 10 cm i.d. at 20 °C were examined. The system used was water as continuous phase, toluene as dispersed phase, and air as gaseous phase. The rise in the gas phase superficial velocity increased the continuous-phase axial dispersion coefficient. A non-linear dependence between the continuous-phase axial dispersion coefficient and the continuous phase superficial velocity was observed. No correlation was found between the continuous-phase axial dispersion coefficient and dispersed phase superficial velocity. The increase in the gas phase hold-up corresponded to a slight increase in the continuous-phase axial dispersion coefficient. The increase in the dispersed phase hold-up generated a growth of the continuous-phase axial dispersion coefficient. A comparison was made of the continuous-phase axial dispersion coefficients of the three-phase (air-water-toluene) and two-phase (water-toluene) systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Fischer, Ludger J., Somayajulu Dhulipala, and Kripa K. Varanasi. "Phase Change Dispersion Made by Condensation–Emulsification." ACS Omega 6, no. 50 (December 6, 2021): 34580–95. http://dx.doi.org/10.1021/acsomega.1c04940.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Konyukhov, A. I., P. A. Mavrin, Suchita, A. Sobhanan, D. Venkitesh, K. S. Gochelashvili, and A. A. Sysoliatin. "Phase-sensitive amplification in dispersion oscillating fibers." Laser Physics 31, no. 8 (July 7, 2021): 085402. http://dx.doi.org/10.1088/1555-6611/ac0dc9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Schwider, J. "Measuring phase dispersion of dielectric multilayer stacks." Applied Optics 31, no. 28 (October 1, 1992): 6107. http://dx.doi.org/10.1364/ao.31.006107.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Wang, Ru, Zhuo Wang, Larry Millet, Martha U. Gillette, A. J. Levine, and Gabriel Popescu. "Dispersion-relation phase spectroscopy of intracellular transport." Optics Express 19, no. 21 (October 3, 2011): 20571. http://dx.doi.org/10.1364/oe.19.020571.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Zhuge, Qunbi, Mohamed Morsy-Osman, and David V. Plant. "Analysis of dispersion-enhanced phase noise in." Optics Express 19, no. 24 (November 10, 2011): 24030. http://dx.doi.org/10.1364/oe.19.024030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Cuadrado-Laborde, C., A. Carrascosa, P. Pérez-Millán, A. Díez, J. L. Cruz, and M. V. Andres. "Phase recovery by using optical fiber dispersion." Optics Letters 39, no. 3 (January 28, 2014): 598. http://dx.doi.org/10.1364/ol.39.000598.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Cahill, P. A., K. D. Singer, and L. A. King. "Anomalous-dispersion phase-matched second-harmonic generation." Optics Letters 14, no. 20 (October 15, 1989): 1137. http://dx.doi.org/10.1364/ol.14.001137.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Ruo-Ding Li, P. Kumar, and W. L. Kath. "Dispersion compensation with phase-sensitive optical amplifiers." Journal of Lightwave Technology 12, no. 3 (March 1994): 541–49. http://dx.doi.org/10.1109/50.285338.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Steinmeyer, G. "Dispersion oscillations in ultrafast phase-correction devices." IEEE Journal of Quantum Electronics 39, no. 8 (August 2003): 1027–34. http://dx.doi.org/10.1109/jqe.2003.814369.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

KRISTENSON, E., U. BRINKMAN, and L. RAMOS. "Recent advances in matrix solid-phase dispersion." TrAC Trends in Analytical Chemistry 25, no. 2 (February 2006): 96–111. http://dx.doi.org/10.1016/j.trac.2005.05.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Capriotti, Anna Laura, Chiara Cavaliere, Aldo Laganà, Susy Piovesana, and Roberto Samperi. "Recent trends in matrix solid-phase dispersion." TrAC Trends in Analytical Chemistry 43 (February 2013): 53–66. http://dx.doi.org/10.1016/j.trac.2012.09.021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Kenderian, Shant. "Phase and Dispersion of Cylindrical Surface Waves." Research in Nondestructive Evaluation 21, no. 4 (October 26, 2010): 224–40. http://dx.doi.org/10.1080/09349847.2010.516061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Mei-Zhen, Shi, Li Chuang-She, Zuo Cui-Cui, Zhang Yan-Peng, Nie Zhi-Qiang, Zheng Huai-Bin, Li Chang-Biao, Song Jian-Ping, and Gan Chen-Li. "Spatial Dispersion Induced by Cross-Phase Modulation." Chinese Physics Letters 27, no. 1 (January 2010): 014205. http://dx.doi.org/10.1088/0256-307x/27/1/014205.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

KIM, S. D., and J. O. KIM. "Liquid dispersion in three-phase fluidized beds." Journal of Chemical Engineering of Japan 19, no. 1 (1986): 86. http://dx.doi.org/10.1252/jcej.19.86.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Ho, Keang-Po, and Hsi-Cheng Wang. "Effect of dispersion on nonlinear phase noise." Optics Letters 31, no. 14 (July 15, 2006): 2109. http://dx.doi.org/10.1364/ol.31.002109.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Pelusi, Mark D., and Akira Suzuki. "Higher-order dispersion compensation using phase modulators." Journal of Optical and Fiber Communications Reports 3, no. 2 (April 2006): 90–110. http://dx.doi.org/10.1007/s10297-004-0023-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Mathieu, Benoît, Olivier Lebaigue, and Lounès Tadrist. "Modélisation physique et numérique d'une ligne de contact dynamique avec changement de phase." La Houille Blanche, no. 5 (October 2003): 84–91. http://dx.doi.org/10.1051/lhb/2003094.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Balandraud, Xavier, André Chrysochoos, Sylvain Leclercq, and Robert Peyroux. "Effet du couplage thermomécanique sur la propagation d'un front de changement de phase." Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics 329, no. 8 (August 2001): 621–26. http://dx.doi.org/10.1016/s1620-7742(01)01376-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Chourghal, Nacira, and Tarik Hartani. "Quelle stratégie de semis du blé dur en Algérie pour s’adapter au changement climatique ?" Cahiers Agricultures 29 (2020): 22. http://dx.doi.org/10.1051/cagri/2020017.

Повний текст джерела
Анотація:
Face à un changement climatique sévère projeté, les agriculteurs dans les pays de l’Afrique du Nord expérimentent habituellement des stratégies d’adaptation basées sur la précocité du semis, l’utilisation de variétés précoces et la fertilisation. Cependant, l’information concernant l’efficacité de la précocité des semis comme stratégie d’adaptation de la culture du blé dur au changement climatique reste très limitée. Cet article a pour objectif d’aider les gestionnaires à proposer des pratiques de semis plus efficaces. Deux options de semis sont examinées ; une date prescrite (fixe) et une date dynamique (dépendant du début des pluies utiles). Un modèle de culture à deux types d’entrées, culturales et climatiques, est utilisé pour simuler, au pas de temps journalier, la phénologie, le bilan hydrique et les rendements du blé dur en Algérie. Le comportement futur du blé dur est simulé en utilisant les projections climatiques du modèle ARPEGE-Climat de Météo-France sous le scénario médium A1B SRES pour le futur lointain (2071–2100). Dans le cas de semis à date prescrite, le réchauffement climatique raccourcit le cycle de 31 jours durant la phase végétative, le bilan hydrique est négatif, l’accumulation de la matière sèche est réduite et le rendement réel diminue de 36 %. En semis à date dynamique, un allongement de la phase reproductive accompagne le raccourcissement de la phase végétative et le cycle est raccourci de seulement 15 jours. La matière sèche totale est réduite, mais le bilan hydrique, favorisé par le semis précoce, est positif. Par conséquent, le rendement dans le probable climat futur est maintenu au même niveau que celui de la situation actuelle. Nos résultats permettent d’outiller les gestionnaires en leur proposant une stratégie de semis basée sur une date dynamique, pour faire face aux défis du changement climatique et de son impact sur la culture du blé dur.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Abdulrazzaq, Burhan S. "Liquid-Phase Back mixing in Bubble Columns." Tikrit Journal of Engineering Sciences 17, no. 4 (December 31, 2010): 10–20. http://dx.doi.org/10.25130/tjes.17.4.02.

Повний текст джерела
Анотація:
Liquid-phase axial dispersion coefficients have been measured for air-water system in bubble columns of 10, 15 and 30 cm diameter. The experiments are carried out using a transient method (the tracer response method). Dispersion coefficient is obtained by adjusting the experimental profiles of tracer concentration with the predictions of the model. The experimental results show that one-dimensional axial dispersion coefficient, Dax,L, reveal strong scale dependence. Backmixing of liquid phase increases with the increase of reactor diameter and superficial gas velocity. Axial dispersion coefficient for large column reactors can be easily predicted from the developed relation . Comparison of calculated with the experimental data and with the published data of other authors shows good agreement which ensure the reliability and confusability of the adopted correlations to be used in further design and scale-up purposes.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Erdogan, Mehmet. "Effect of austenite dispersion on phase transformation in dual phase steel." Scripta Materialia 48, no. 5 (March 2003): 501–6. http://dx.doi.org/10.1016/s1359-6462(02)00500-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Barthe, Jean-François, Serge Clément, and Marcel Drulhe. "Vieillesse ou vieillissement ? Les processus d’organisation des modes de vie chez les personnes âgées." I. Vieillir : la recherche d’une signification, no. 23 (November 10, 2015): 35–46. http://dx.doi.org/10.7202/1033992ar.

Повний текст джерела
Анотація:
Comme n’importe quel acteur social, les personnes âgées mettent en oeuvre diverses sortes de tactiques (on ne préjuge pas que leurs pratiques sont le fruit d’une élaboration consciente ou l’adaptation de routines) pour affronter les difficultés de la vie quotidienne. La diversité et la dispersion de ces pratiques s’expliquent en partie par la nature des problèmes auxquels elles sont confrontées aux différents moments de leur trajectoire. Trois sortes de problèmes importants structurent ces itinéraires : le changement provoqué par la fin de l’activité professionnelle ou familiale; la restriction des activités imposée par les déficiences ou handicaps; la dépendance physique ou morale. Autour des stratégies d’affrontement de ces problèmes, on peut élaborer un modèle simplifié des processus de vieillissement, à trois épisodes.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Smith, Duane H., and Yau-Hsin C. Wang. "Dispersion Morphology Diagram for Three-Phase, "Microemulsion" Emulsions and Comparison to Predictions from the Two-Phase Dispersion Morphology Diagram." Journal of Physical Chemistry 98, no. 29 (July 1994): 7214–18. http://dx.doi.org/10.1021/j100080a018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Wang, Jing-Shang, Dong-Liang Wang, and Guo-Qing Chang. "Dispersion management dual-pass self-phase modulation-enabled spectral selection." Acta Physica Sinica 72, no. 9 (2023): 094205. http://dx.doi.org/10.7498/aps.72.20230088.

Повний текст джерела
Анотація:
Self-phase modulation-enabled spectral selection (SESS) technology can generate wavelength-tunable femtosecond pulses, and it is expected to replace traditional complex optical parametric oscillators, and thus has attracted much attention. However, the positive dispersion in the fiber leads the modulation depth of the spectral lobes to decrease, while optical wave breaking hinders the spectral broadening. In order to solve the two problems, we propose a dual-pass SESS technology based on dispersion management which optimizes the shape of the front edge and rear edge of the pulse prior to the second pass by introducing negative dispersion, and compresses the pulse width for increasing the peak power of the pulse. The resulting spectrum features broader spectrum with a deeper modulation depth. By numerical simulation, we find that adjusting the value of the second-order dispersion compensated after the single pass, a broader spectral lobe can be obtained than both the single-pass case and the double-pass case without dispersion compensation. To verify our numerical simulation, we conduct experiments by using a 2-cm-long LMA-8 fiber for spectral broadening and several chirped mirrors to provide negative dispersion, which controls the nonlinear evolution of the pulse in the second pass of the LMA-8 fiber. We study the spectral output corresponding to different amounts of dispersion compensation and find that an optimal dispersion value is required to produce a clear and broader spectral lobe. We also investigate the effect of input pulse energy on spectral broadening under the same dispersion compensation conditions. With 15-nJ input pulse energy and –420 fs<sup>2</sup> dispersion compensation, the resulting SESS source delivers 6 nJ, 113-fs pulses with the peak wavelength at 920 nm.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Vašáková, Jana, and Jan Čermák. "Modelling of gaseous phase in bubble columns." Collection of Czechoslovak Chemical Communications 56, no. 6 (1991): 1238–48. http://dx.doi.org/10.1135/cccc19911238.

Повний текст джерела
Анотація:
An axial dispersion model of a bubble column was verified by an experimental method based on pseudo-random binary signals of maximum length. The diameter of the column was 0.292 m and the height of the dispersion layer was 1.33 m. Water formed a stagnant liquid layer and a mixture of air with up to 5 vol.% of CO2 formed a streaming gas phase. The model was evaluated from the response of the bubble column to pseudo-random binary signals and from impulse characteristics calculated from this response by the correlation method. The use of the axial dispersion model with mass transfer was evaluated in dependence on the driving force.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії