Статті в журналах з теми "Disordered quantum systems"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Disordered quantum systems.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Disordered quantum systems".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

D’Errico, Chiara, and Marco G. Tarallo. "One-Dimensional Disordered Bosonic Systems." Atoms 9, no. 4 (December 14, 2021): 112. http://dx.doi.org/10.3390/atoms9040112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Disorder is everywhere in nature and it has a fundamental impact on the behavior of many quantum systems. The presence of a small amount of disorder, in fact, can dramatically change the coherence and transport properties of a system. Despite the growing interest in this topic, a complete understanding of the issue is still missing. An open question, for example, is the description of the interplay of disorder and interactions, which has been predicted to give rise to exotic states of matter such as quantum glasses or many-body localization. In this review, we will present an overview of experimental observations with disordered quantum gases, focused on one-dimensional bosons, and we will connect them with theoretical predictions.
2

Golubev, Dmitrii, and Andrei Zaikin. "Quantum Decoherence in Disordered Mesoscopic Systems." Physical Review Letters 81, no. 5 (August 1998): 1074–77. http://dx.doi.org/10.1103/physrevlett.81.1074.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rieger, Heiko. "Disordered systems near quantum critical points." Physica A: Statistical Mechanics and its Applications 266, no. 1-4 (April 1999): 471–76. http://dx.doi.org/10.1016/s0378-4371(98)00633-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Efetov, K. B. "Quantum disordered systems with a direction." Physical Review B 56, no. 15 (October 15, 1997): 9630–48. http://dx.doi.org/10.1103/physrevb.56.9630.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rieger, Heiko. "Disordered systems near quantum critical points." Computer Physics Communications 121-122 (September 1999): 505–9. http://dx.doi.org/10.1016/s0010-4655(99)00393-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kree, R. "Dynamics of disordered interacting quantum systems." Zeitschrift f�r Physik B Condensed Matter 65, no. 4 (December 1987): 505–13. http://dx.doi.org/10.1007/bf01303773.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Orignac, E., and R. Chitra. "Disordered quantum smectics." Journal de Physique IV 12, no. 9 (November 2002): 261–62. http://dx.doi.org/10.1051/jp4:20020410.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We study the effect of disorder on the properties of the Quantum Hall smectic state arising in two dimciisional electron systems in high Landau levels. We use the replica trick and the Gauzsian Variational method to treat the disorder. We find that the quantum smectics are rather different from the usual classical smectics in that the density correlations along the direction of the stripes manifest a Bragg-Glass type behaviour whereas those in the transverse direction are infra-red divergent. This results in an amsotropic behaviour of all physical quantities. We calculate the dynamical conductivity $\sigma _{xx} ({\bf q}, \omega )$ along the stripe direction and find a $\bf q$ dependent pinning peak.
8

KLESSE, ROCHUS, and MARCUS METZLER. "MODELING DISORDERED QUANTUM SYSTEMS WITH DYNAMICAL NETWORKS." International Journal of Modern Physics C 10, no. 04 (June 1999): 577–606. http://dx.doi.org/10.1142/s0129183199000449.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
It is the purpose of the present article to show that so-called network models, originally designed to describe static properties of disordered electronic systems, can be easily generalized to quantum-dynamical models, which then allow for an investigation of dynamical and spectral aspects. This concept is exemplified by the Chalker–Coddington model for the quantum Hall effect and a three-dimensional generalization of it. We simulate phase coherent diffusion of wave packets and consider spatial and spectral correlations of network eigenstates as well as the distribution of (quasi-)energy levels. Apart from that, it is demonstrated how network models can be used to determine two-point conductances. Our numerical calculations for the three-dimensional model at the Metal-Insulator transition point delivers, among others, an anomalous diffusion exponent of η=3-D2=1.7±0.1. The methods presented here in detail have been used partially in earlier work.
9

Kaveh, M. "Quantum diffusion and localization in disordered systems." Philosophical Magazine B 51, no. 4 (April 1985): 453–64. http://dx.doi.org/10.1080/13642818508240591.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Schuster, H. G., and V. R. Vieira. "New method for studying disordered quantum systems." Physical Review B 34, no. 1 (July 1, 1986): 189–98. http://dx.doi.org/10.1103/physrevb.34.189.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Hamza, Eman, Robert Sims, and Günter Stolz. "Dynamical Localization in Disordered Quantum Spin Systems." Communications in Mathematical Physics 315, no. 1 (August 2, 2012): 215–39. http://dx.doi.org/10.1007/s00220-012-1544-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Mukamel, Shaul. "Dephasing and quantum localization in disordered systems." Physical Review B 40, no. 14 (November 15, 1989): 9945–47. http://dx.doi.org/10.1103/physrevb.40.9945.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

SEROTA, R. A. "QUANTUM LIMIT OF CHAOTIC SYSTEMS AS QUANTUM DIFFUSION." Modern Physics Letters B 08, no. 20 (August 30, 1994): 1243–51. http://dx.doi.org/10.1142/s0217984994001230.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We describe classical chaotic motion in terms of diffusion in configurational space. This approach is illustrated for chaotic billiards and an oscillator with anharmonic coupling. It is argued that in the quantum limit, physical phenomena ordinarily associated with disordered metals, such as localization and mesoscopic phenomena, carry over to chaotic systems in general which are in the universality class of the nonlinear σ model.
14

CUGLIANDOLO, LETICIA F. "DISSIPATIVE QUANTUM DISORDERED MODELS." International Journal of Modern Physics B 20, no. 19 (July 30, 2006): 2795–804. http://dx.doi.org/10.1142/s0217979206035308.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This article reviews recent studies of mean-field and one dimensional quantum disordered spin systems coupled to different types of dissipative environments. The main issues discussed are: (i) The real-time dynamics in the glassy phase and how they compare to the behaviour of the same models in their classical limit. (ii) The phase transition separating the ordered – glassy – phase from the disordered phase that, for some long-range interactions, is of second order at high temperatures and of first order close to the quantum critical point (similarly to what has been observed in random dipolar magnets). (iii) The static properties of the Griffiths phase in random king chains. (iv) The dependence of all these properties on the environment. The analytic and numeric techniques used to derive these results are briefly mentioned.
15

Maiti, Santanu K. "Quantum Transport in Bridge Systems." Solid State Phenomena 155 (May 2009): 71–85. http://dx.doi.org/10.4028/www.scientific.net/ssp.155.71.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We study electron transport properties of some molecular wires and a unconventional disordered thin film within the tight-binding framework using Green's function technique. We show that electron transport is significantly affected by quantum interference of electronic wave functions, molecule-to-electrode coupling strengths, length of the molecular wire and disorder strength. Our model calculations provide a physical insight to the behavior of electron conduction across a bridge system.
16

CRUZEIRO-HANSSON, L., J. O. BAUM, and J. L. FINNEY. "Electron States in Static Disordered Systems and Fluid Systems." International Journal of Modern Physics C 02, no. 01 (March 1991): 305–9. http://dx.doi.org/10.1142/s012918319100038x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The path integral formulation of quantum statistical mechanics is used to study the effect of structural disorder on the electron states at finite temperatures. The following systems are investigated: an excess electron in a) a perfect hard spheres crystal, b) a hard spheres crystal with a vacancy and c) a hard spheres fluid. The localizing effect of a vacancy on the electron equals that of a fluid environment.
17

Aleiner, I. L., B. L. Altshuler, and M. E. Gershenson. "Comment on “Quantum Decoherence in Disordered Mesoscopic Systems”." Physical Review Letters 82, no. 15 (April 12, 1999): 3190. http://dx.doi.org/10.1103/physrevlett.82.3190.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Vanzan, Tommaso, and Lamberto Rondoni. "Quantum thermostatted disordered systems and sensitivity under compression." Physica A: Statistical Mechanics and its Applications 493 (March 2018): 370–83. http://dx.doi.org/10.1016/j.physa.2017.11.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Lu, Min, Na Jiang, and Xin Wan. "Quasihole Tunneling in Disordered Fractional Quantum Hall Systems*." Chinese Physics Letters 36, no. 8 (August 2019): 087301. http://dx.doi.org/10.1088/0256-307x/36/8/087301.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Garreau, Jean-Claude. "Quantum simulation of disordered systems with cold atoms." Comptes Rendus Physique 18, no. 1 (January 2017): 31–46. http://dx.doi.org/10.1016/j.crhy.2016.09.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Belitz, D., and T. R. Kirkpatrick. "Quantum ferromagnetic transition in disordered itinerant electron systems." Europhysics Letters (EPL) 35, no. 3 (July 20, 1996): 201–6. http://dx.doi.org/10.1209/epl/i1996-00554-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Giona, Massimiliano. "Some observations on quantum mechanics in disordered systems." Chaos, Solitons & Fractals 3, no. 2 (March 1993): 203–9. http://dx.doi.org/10.1016/0960-0779(93)90066-a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Schehr, G., T. Giamarchi, and P. Le Doussal. "Thermodynamics of disordered elastic systems in the Bragg glass phase." Journal de Physique IV 12, no. 9 (November 2002): 311–12. http://dx.doi.org/10.1051/jp4:20020422.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We study the thermodynamics of a pinned quantum object when the elastic description applies, e.g. in the Bragg glass phase for a crystal with point disorder or for a single elastic line. Using the replica variational method we compute the specific heat both in the quantum and classical limits. In the quantum regime, we show that the specific heat behaves - at low temperature - as T3 in dimension $d = 2$ and $d = 3$.
24

Zharekeshev, I. Kh, and B. Kramer. "Parametric motion of energy levels in quantum disordered systems." Physica A: Statistical Mechanics and its Applications 266, no. 1-4 (April 1999): 450–55. http://dx.doi.org/10.1016/s0378-4371(98)00629-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Jalabert, Rodolfo A., and Jean-Louis Pichard. "Quantum Mesoscopic Scattering: Disordered Systems and Dyson Circular Ensembles." Journal de Physique I 5, no. 3 (March 1995): 287–324. http://dx.doi.org/10.1051/jp1:1995128.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Zharekeshev, I. Kh, and B. Kramer. "Advanced Lanczos diagonalization for models of quantum disordered systems." Computer Physics Communications 121-122 (September 1999): 502–4. http://dx.doi.org/10.1016/s0010-4655(99)00392-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Jayannavar, A. M. "Scaling theory of quantum resistance distributions in disordered systems." Pramana 36, no. 6 (June 1991): 611–19. http://dx.doi.org/10.1007/bf02845799.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Wreszinski, Walter F. "Progress in the mathematical theory of quantum disordered systems." Journal of Mathematical Physics 53, no. 12 (December 2012): 123307. http://dx.doi.org/10.1063/1.4770066.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Yamada, Hiroaki, Masaki Goda, Yoji Aizawa, and Mitsusada Sano. "Scaling of Quantum Diffusion in One-Dimensional Disordered Systems." Journal of the Physical Society of Japan 61, no. 9 (September 15, 1992): 3050–53. http://dx.doi.org/10.1143/jpsj.61.3050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Kearney, M. J. "Semiclassical versus quantum magnetotransport in two-dimensional disordered systems." Semiconductor Science and Technology 7, no. 6 (June 1, 1992): 804–9. http://dx.doi.org/10.1088/0268-1242/7/6/012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Shindou, Ryuichi, Ryota Nakai, and Shuichi Murakami. "Disordered topological quantum critical points in three-dimensional systems." New Journal of Physics 12, no. 6 (June 17, 2010): 065008. http://dx.doi.org/10.1088/1367-2630/12/6/065008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Torres-Herrera, E. J., and Lea F. Santos. "Extended nonergodic states in disordered many-body quantum systems." Annalen der Physik 529, no. 7 (January 13, 2017): 1600284. http://dx.doi.org/10.1002/andp.201600284.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Paja, A., and G. J. Morgan. "Quantum Interference Effects, Magnetoresistance and Localisation in Disordered Systems." physica status solidi (b) 206, no. 2 (April 1998): 701–11. http://dx.doi.org/10.1002/(sici)1521-3951(199804)206:2<701::aid-pssb701>3.0.co;2-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Portengen, T., J. R. Chapman, V. Nikos Nicopoulos, and N. F. Johnson. "Optics with Quantum Hall Skyrmions." International Journal of Modern Physics B 12, no. 01 (January 10, 1998): 1–35. http://dx.doi.org/10.1142/s0217979298000028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A novel type of charged excitation, known as a Skyrmion, has recently been discovered in quantum Hall systems with filling factor near ν=1. A Skyrmion — which can be thought of as a topological twist in the spin density of the electron gas — has the same charge as an electron, but a much larger spin. In this review we present a detailed theoretical investigation of the optical properties of Skyrmions. Our results provide means for the optical detection of Skyrmions using photoluminescence (PL) spectroscopy. We first consider the optical properties of Skyrmions in disordered systems. A calculation of the luminescence energy reveals a special optical signature which allows us to distinguish between Skyrmions and ordinary electrons. Two experiments to measure the optical signature are proposed. We then turn to the optical properties of Skyrmions in pure systems. We show that, just like an ordinary electron, a Skyrmion may bind with a hole to form a Skyrmionic exciton. The Skyrmionic exciton can have a lower energy than the ordinary magnetoexciton. The optical signature of Skyrmions is found to be a robust feature of the PL spectrum in both disordered and pure systems.
35

Scholes, Gregory D. "Large Coherent States Formed from Disordered k-Regular Random Graphs." Entropy 25, no. 11 (November 6, 2023): 1519. http://dx.doi.org/10.3390/e25111519.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The present work is motivated by the need for robust, large-scale coherent states that can play possible roles as quantum resources. A challenge is that large, complex systems tend to be fragile. However, emergent phenomena in classical systems tend to become more robust with scale. Do these classical systems inspire ways to think about robust quantum networks? This question is studied by characterizing the complex quantum states produced by mapping interactions between a set of qubits from structure in graphs. We focus on maps based on k-regular random graphs where many edges were randomly deleted. We ask how many edge deletions can be tolerated. Surprisingly, it was found that the emergent coherent state characteristic of these graphs was robust to a substantial number of edge deletions. The analysis considers the possible role of the expander property of k-regular random graphs.
36

Bouyer, P. "Quantum gases and optical speckle: a new tool to simulate disordered quantum systems." Reports on Progress in Physics 73, no. 6 (May 5, 2010): 062401. http://dx.doi.org/10.1088/0034-4885/73/6/062401.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

UCHAIKIN, VLADIMIR V., and RENAT T. SIBATOV. "ANOMALOUS KINETICS OF CHARGE CARRIERS IN DISORDERED SOLIDS: FRACTIONAL DERIVATIVE APPROACH." International Journal of Modern Physics B 26, no. 31 (December 4, 2012): 1230016. http://dx.doi.org/10.1142/s0217979212300162.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Anomalous (non-Gaussian) kinetics is often observed in various disordered materials, such as amorphous semiconductors, porous solids, polycrystalline films, liquid-crystalline materials, polymers, etc. Recently the anomalous relaxation-diffusion processes have been observed in nanoscale systems: nanoporous silicon, glasses doped by quantum dots, quasi-one-dimensional (1D) systems, arrays of colloidal quantum dots, and some others. The paper presents a review of new approach, based on fractional kinetic equations. We give a physical basis for some fractional equations deriving them from their classical counterparts by means of averaging over statistical ensemble of disordered media. We consider self-similarity as the main feature of these processes, and explain memory phenomena in frameworks of hidden variables conception.
38

NEILSON, DAVID, and D. J. WALLACE GELDART. "QUANTUM CRITICAL BEHAVIOUR IN THE INSULATING REGION OF THE 2D METAL INSULATOR TRANSITION." International Journal of Modern Physics B 20, no. 30n31 (December 20, 2006): 5229–38. http://dx.doi.org/10.1142/s0217979206036314.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We show the insulating region of the metal-insulator transition phenomena in disordered two-dimensional electron systems contains new information about the quantum critical dynamics at low T because the insulating region and the quantum critical region are two aspects of the localized phase.
39

Glatz, A., and T. Nattermann. "Quantum phase slips and thermal fluctuations in one-dimensional disordered density waves." Journal de Physique IV 12, no. 9 (November 2002): 123–26. http://dx.doi.org/10.1051/jp4:20020376.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The low temperature phase diagram of 1D disordered quantum systems like charge or spin density waves, superfluids, and related systems is considered by a full finite T renormalization group approach for the first time. At zero temperature the consideration of quantum phase slips leads to a new scenario for the unpinning (delocalization) transition. In the strong pinning limit the model is solved exactly. At finite T a rich crossover diagram with various scaling regions is found which reflects the zero temperature quantum critical behavior.
40

Buth, K., and U. Merkt. "Quantum Hall effect in intentionally disordered two‐dimensional electron systems." Annalen der Physik 514, no. 12 (December 2002): 843–91. http://dx.doi.org/10.1002/andp.20025141201.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

DeGottardi, Wade, and Mohammad Hafezi. "Stability of fractional quantum Hall states in disordered photonic systems." New Journal of Physics 19, no. 11 (November 14, 2017): 115004. http://dx.doi.org/10.1088/1367-2630/aa89a5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Kanter, I., and B. Doucot. "Applications of gauge invariance to quantum disordered many-spin systems." Physical Review B 38, no. 16 (December 1, 1988): 11882–84. http://dx.doi.org/10.1103/physrevb.38.11882.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Blanc, Xavier, and Mathieu Lewin. "Existence of the thermodynamic limit for disordered quantum Coulomb systems." Journal of Mathematical Physics 53, no. 9 (September 2012): 095209. http://dx.doi.org/10.1063/1.4729052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Sondhi, S. L., and M. P. Gelfand. "Off-diagonal long range order in disordered quantum Hall systems." Physica B: Condensed Matter 212, no. 3 (August 1995): 295–98. http://dx.doi.org/10.1016/0921-4526(95)00380-r.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Yamada, Hiroaki, and Masaki Goda. "Numerical study of quantum diffusion in two-dimensional disordered systems." Physics Letters A 194, no. 4 (November 1994): 279–84. http://dx.doi.org/10.1016/0375-9601(94)91250-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Itoi, C. "General Properties of Overlap Operators in Disordered Quantum Spin Systems." Journal of Statistical Physics 163, no. 6 (April 30, 2016): 1339–49. http://dx.doi.org/10.1007/s10955-016-1527-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Hattori, Kiminori. "Quantized Spin Transport in Magnetically-Disordered Quantum Spin Hall Systems." Journal of the Physical Society of Japan 80, no. 12 (December 15, 2011): 124712. http://dx.doi.org/10.1143/jpsj.80.124712.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Prigodin, V. N., and B. L. Altshuler. "Long-Range Spatial Correlations of Eigenfunctions in Quantum Disordered Systems." Physical Review Letters 80, no. 9 (March 2, 1998): 1944–47. http://dx.doi.org/10.1103/physrevlett.80.1944.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Mohseni, M., A. Shabani, S. Lloyd, Y. Omar, and H. Rabitz. "Geometrical effects on energy transfer in disordered open quantum systems." Journal of Chemical Physics 138, no. 20 (May 28, 2013): 204309. http://dx.doi.org/10.1063/1.4807084.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Buth, K., and U. Merkt. "Quantum Hall effect in intentionally disordered two-dimensional electron systems." Annalen der Physik 11, no. 12 (December 2002): 843–91. http://dx.doi.org/10.1002/1521-3889(200212)11:12<843::aid-andp843>3.0.co;2-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії