Добірка наукової літератури з теми "Disordered photonic systems"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Disordered photonic systems".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Disordered photonic systems"
Sgrignuoli, Fabrizio, Giacomo Mazzamuto, Niccolò Caselli, Francesca Intonti, Francesco Saverio Cataliotti, Massimo Gurioli, and Costanza Toninelli. "Necklace State Hallmark in Disordered 2D Photonic Systems." ACS Photonics 2, no. 11 (October 28, 2015): 1636–43. http://dx.doi.org/10.1021/acsphotonics.5b00422.
Повний текст джерелаWang, Hongfei, Xiujuan Zhang, Jinguo Hua, Dangyuan Lei, Minghui Lu, and Yanfeng Chen. "Topological physics of non-Hermitian optics and photonics: a review." Journal of Optics 23, no. 12 (October 25, 2021): 123001. http://dx.doi.org/10.1088/2040-8986/ac2e15.
Повний текст джерелаGranchi, Nicoletta, Richard Spalding, Kris Stokkereit, Matteo Lodde, Andrea Fiore, Riccardo Sapienza, Francesca Intonti, Marian Florescu, and Massimo Gurioli. "Engineering high Q/V photonic modes in correlated disordered systems." EPJ Web of Conferences 266 (2022): 05005. http://dx.doi.org/10.1051/epjconf/202226605005.
Повний текст джерелаDeGottardi, Wade, and Mohammad Hafezi. "Stability of fractional quantum Hall states in disordered photonic systems." New Journal of Physics 19, no. 11 (November 14, 2017): 115004. http://dx.doi.org/10.1088/1367-2630/aa89a5.
Повний текст джерелаCaselli, Niccolò, Francesca Intonti, Federico La China, Francesco Biccari, Francesco Riboli, Annamaria Gerardino, Lianhe Li, et al. "Near-field speckle imaging of light localization in disordered photonic systems." Applied Physics Letters 110, no. 8 (February 20, 2017): 081102. http://dx.doi.org/10.1063/1.4976747.
Повний текст джерелаWang, Guang-Lei, Hong-Ya Xu, and Ying-Cheng Lai. "Can a photonic thermalization gap arise in disordered non-Hermitian Hamiltonian systems?" EPL (Europhysics Letters) 125, no. 3 (February 26, 2019): 30003. http://dx.doi.org/10.1209/0295-5075/125/30003.
Повний текст джерелаSarma, Raktim, Abigail Pribisova, Bjorn Sumner, and Jayson Briscoe. "Classification of Intensity Distributions of Transmission Eigenchannels of Disordered Nanophotonic Structures Using Machine Learning." Applied Sciences 12, no. 13 (June 30, 2022): 6642. http://dx.doi.org/10.3390/app12136642.
Повний текст джерелаRicouvier, Joshua, Patrick Tabeling, and Pavel Yazhgur. "Foam as a self-assembling amorphous photonic band gap material." Proceedings of the National Academy of Sciences 116, no. 19 (April 24, 2019): 9202–7. http://dx.doi.org/10.1073/pnas.1820526116.
Повний текст джерелаBin Tarik, Farhan, Azadeh Famili, Yingjie Lao, and Judson D. Ryckman. "Robust optical physical unclonable function using disordered photonic integrated circuits." Nanophotonics 9, no. 9 (July 3, 2020): 2817–28. http://dx.doi.org/10.1515/nanoph-2020-0049.
Повний текст джерелаWang, Michelle, Cooper Doyle, Bryn Bell, Matthew J. Collins, Eric Magi, Benjamin J. Eggleton, Mordechai Segev, and Andrea Blanco-Redondo. "Topologically protected entangled photonic states." Nanophotonics 8, no. 8 (May 9, 2019): 1327–35. http://dx.doi.org/10.1515/nanoph-2019-0058.
Повний текст джерелаДисертації з теми "Disordered photonic systems"
Hang, Zhihong. "Experimental investigation on the effect of disorder in metallo-photonic band gap system /." View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?PHYS%202004%20HANG.
Повний текст джерелаSchneider, Michael Peter. "A theoretical framework for waveguide quantum electrodynamics and its application in disordered systems." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2016. http://dx.doi.org/10.18452/17415.
Повний текст джерелаWaveguide quantum electrodynamics (waveguide QED) can be considered as a building block for many prospective technologies like quantum computing. A prototypical system consists of a two-level system (TLS) coupled to a one-dimensional waveguide. The waveguide is characterized by its dispersion relation and can also feature a band edge/slow-light regime. In this thesis we have presented a new theoretical framework for waveguide QED, based on quantum field theory. The framework provides the Green''s functions of the system in the single- and two-excitation sectors for an arbitrary dispersion relation. We have calculated the scattering matrix and the spectral density in both sectors. Furthermore, we have also represented the Green''s functions in the form of Feynman diagrams, from which we can identify the underlying physical processes. A special property of the system is that it behaves nonlinear in the case of two or more photons. This is rooted in the structure of the TLS, which can at most absorb one excitation. The nonlinearity leads to two effects: photon bunching and the efficient excitation of an atom-photon bound state. We have found both effects within our framework and we were able to assign them individual terms in the perturbation series of the Green''s function. Furthermore, we have used the Green''s function in space-time domain to propagate Gaussian one- and two-photon wavepackets. Here, we have identified the ratio of the pulsewidth and the spontaneous emission time as the parameter which governs both the scattering behavior of the photons and the maximal TLS excitation. Eventually, we have investigated the effects of disorder in the waveguide on the decay properties of the TLS. We have found here that the atom-photon bound state is stable for small disorder, but breaks down at sufficiently strong disorder. Furthermore, we have identified a special class of diagrams which render the system non-Markovian even for energies far away from the band edge.
Ruess, Frank Joachim Physics Faculty of Science UNSW. "Atomically controlled device fabrication using STM." Awarded by:University of New South Wales. Physics, 2006. http://handle.unsw.edu.au/1959.4/24855.
Повний текст джерелаCASELLI, NICCOLO'. "Imaging and engineering optical localized modes at the nanoscale." Doctoral thesis, 2015. http://hdl.handle.net/2158/1022507.
Повний текст джерелаBendix, Oliver. "Transport in nicht-hermiteschen niedrigdimensionalen Systemen." Doctoral thesis, 2011. http://hdl.handle.net/11858/00-1735-0000-0006-B542-6.
Повний текст джерелаКниги з теми "Disordered photonic systems"
America, Optical Society of, and Laser Institute of America, eds. Advances in optical imaging and photon migration: March 8-11, 1998, Sheraton World Resort Orlando, Orlando, Florida. Washington, DC: The Society, 1998.
Знайти повний текст джерелаChadwick, David, Alastair Compston, Michael Donaghy, Nicholas Fletcher, Robert Grant, David Hilton-Jones, Martin Rossor, Peter Rothwell, and Neil Scolding. Investigations. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780198569381.003.0100.
Повний текст джерелаЧастини книг з теми "Disordered photonic systems"
van Rossum, M. C. W., Th M. Nieuwenhuizen, E. Hofstetter, and M. Schreiber. "Band Tails in a Disordered System." In Photonic Band Gaps and Localization, 509–13. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1606-8_40.
Повний текст джерелаJohansen, Villads Egede, Olimpia Domitilla Onelli, Lisa Maria Steiner, and Silvia Vignolini. "Photonics in Nature: From Order to Disorder." In Biologically-Inspired Systems, 53–89. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-74144-4_3.
Повний текст джерелаFreilikher, Valentin. "1-D Disordered System with Absorption as a Model of Real Media of Propagation." In Photonic Band Gaps and Localization, 471–78. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1606-8_36.
Повний текст джерелаWiel, W. G., T. H. Oosterkamp, S. Franceschi, C. J. P. M. Harmans, and L. P. Kouwenhoven. "Photon Assisted Tunneling in Quantum Dots." In Strongly Correlated Fermions and Bosons in Low-Dimensional Disordered Systems, 43–68. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0530-2_3.
Повний текст джерелаMcGurn, Arthur R. "Disordered systems: site impurities and random media." In Introduction to Nonlinear Optics of Photonic Crystals and Metamaterials (Second Edition). IOP Publishing, 2021. http://dx.doi.org/10.1088/978-0-7503-3579-9ch10.
Повний текст джерелаBarlow, Richard J. "Lasers and flashlamps in the treatment of skin disorders." In Oxford Textbook of Plastic and Reconstructive Surgery, edited by Nigel Mercer and Mark Soldin, 1347—C12.3.S46. Oxford University PressOxford, 2021. http://dx.doi.org/10.1093/med/9780199682874.003.0175.
Повний текст джерелаKinoshita, S., and Y. Kanematsu. "Linear and Nonlinear Optical Spectroscopy of Molecules in Disordered Systems." In Advances in Multi-Photon Processes and Spectroscopy, 3–141. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789812798459_0001.
Повний текст джерелаRobertson, Chelsea L., Steven M. Berman, and Edythe D. London. "Molecular Imaging in Addictive Disorders." In Neurobiology of Mental Illness, edited by Antonello Bonci and Nora D. Volkow, 716–18. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199934959.003.0054.
Повний текст джерелаAli Raza Naqvi, Syed, and Muhammad Babar Imran. "Single-Photon Emission Computed Tomography (SPECT) Radiopharmaceuticals." In Medical Isotopes. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.93449.
Повний текст джерелаAli Raza Naqvi, Syed, and Muhammad Babar Imran. "Single-Photon Emission Computed Tomography (SPECT) Radiopharmaceuticals." In Medical Isotopes. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.93449.
Повний текст джерелаТези доповідей конференцій з теми "Disordered photonic systems"
Cerjan, Alexander, Sheng Huang, Mohan Wang, Kevin P. Chen, and Mikael C. Rechtsman. "Thouless Pumping in Disordered Photonic Systems." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cleo_qels.2020.fm1a.6.
Повний текст джерелаChurkin, Dmitry V., Ilya Vatnik, Alexey Tikan, and Andrey Sukhorukov. "Localization in disordered potential in photonic lattice realized in time domain." In Laser Components, Systems, and Applications, edited by Lan Jiang, Shibin Jiang, Lijun Wang, and Long Zhang. SPIE, 2017. http://dx.doi.org/10.1117/12.2285481.
Повний текст джерелаMoritake, Yuto, Takuo Tanaka, and Masaya Notomi. "Fabrication and characterization of zig-zag chains with photonic topological edges states." In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2019. http://dx.doi.org/10.1364/jsap.2019.18p_e208_3.
Повний текст джерелаDogariu, Aristide. "Optics and Photonics of Disordered Systems." In Frontiers in Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/fio.2013.fm4c.6.
Повний текст джерелаMiyake, Hirokazu, Sabyasachi Bank, Wade DeGottardi, Edo Waks, and Mohammad Hafezi. "Observation of Edge States in Nanoscale Topological Photonic Crystals." In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2017. http://dx.doi.org/10.1364/jsap.2017.8a_a409_8.
Повний текст джерелаBhattacharjee, Paraj T., Netanel H. Lindner, Mikael C. Rechtsman, and Gil Refael. "Disorder-induced Floquet Topological Insulators in Photonic Systems." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/cleo_qels.2014.fth3c.6.
Повний текст джерелаRohlig, David, Eduard Kuhn, Angela Thranhardt, Thomas Otto, and Thomas Blaudeck. "The Role of Disorder in Elementary Photonic Components." In 2022 Smart Systems Integration (SSI). IEEE, 2022. http://dx.doi.org/10.1109/ssi56489.2022.9901424.
Повний текст джерелаZhu, J. X., P. M. Chaikin, Li Min, W. B. Russel, W. V. Meyer, and Richard B. Rogers. "The Structure and Dynamics of Hard Sphere Colloidal Crystals under Micro-Gravity with Quasi-Elastic Light Scattering." In Photon Correlation and Scattering. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/pcs.1996.thd.1.
Повний текст джерелаLi, Yuan, and Xiankai Sun. "Anisotropic Dirac cone and slow edge states in a photonic Floquet lattice." In CLEO: QELS_Fundamental Science. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_qels.2022.ftu1b.5.
Повний текст джерелаGentilini, Silvia, and Claudio Conti. "Optomechanics of random media: Large scale massively-parallel analysis of optical pressure in disordered systems." In 2015 Photonics North. IEEE, 2015. http://dx.doi.org/10.1109/pn.2015.7292486.
Повний текст джерела