Добірка наукової літератури з теми "Discrétisation des intégrales stochastiques"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Discrétisation des intégrales stochastiques".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Дисертації з теми "Discrétisation des intégrales stochastiques"

1

Menozzi, Stephane. "Discrétisation de processus stochastiques, estimées de densités et applications." Habilitation à diriger des recherches, Université Paris-Diderot - Paris VII, 2010. http://tel.archives-ouvertes.fr/tel-00533333.

Повний текст джерела
Анотація:
Nous présentons dans ce mémoire un résumé des travaux concernant tout d'abord les discrétisations de processus stochastiques: processus de diffusion stoppés, équation différentielles stochastiques rétrogrades, développement d'erreur pour les densités d'EDS dirigées par des processus stables symétriques approchées par leur schéma d'Euler. Nous abordons ensuite les estimées de densité pour une certaine classe de processus dégénérés (processus de Langevin et théorème limite local associé, chaine d'oscillateurs bruités) ainsi que quelques applications (bornes de Monte Carlo non asymptotiques).
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tolentino, Marc. "Résolution hautes fréquence d'équations intégrales par une méthode de discrétisation microlocale." Phd thesis, Ecole des Ponts ParisTech, 1997. http://tel.archives-ouvertes.fr/tel-00005622.

Повний текст джерела
Анотація:
Ce travail a consisté en la présentation et la validation d'une nouvelle méthode ayant pour thème la simulation de la propagation d'ondes. Le problème analysé est celui de la diffraction d'ondes en régime harmonique par des obstacles tridimensionnels quelconques. Pour modéliser ces phénomènes, nous nous sommes intéressés aux équations intégrales. La méthodes proposée a pour objectif de les utiliser à hautes fréquences en réduisant la complexité du calcul et surtout en stockage mémoire. Son originalité réside en une approche en deux temps de la solution cherchée. Dans un premier temps, on utilise une discrétisation microlocale. Dans un second temps, on propose une transformation par ondelettes. L'approche microlocale, qui repose sur l'usage systèmatique d'une localisation en espace et en direction de propagation, conduit à inverser des matrices creuses mais très mal conditionnées. Pour surmonter cette difficulté, nous aovns considéré la seconde approche qui consiste à opérer un filtrage par ondelettes. Ces approximations se sont avérées particulièrement efficaces pour diminuer le remplissage et la taille des matrices issues de la résolutions d'équations intégrales.<br />Le développement et la mise au point d'un code ont été effectués au CERMICS-INRIA Sophia-Antipolis. La vérification de la validité de notre code s'appuie sur des calculs de surface équivalente radar. Des résultats numériques encourageants sont présentés pour des obstacles convexes et non-connexes.<br />La méthode est ensuite étendue aux opérateurs pseudo-différentiels et Fourier-intégraux. Ils interviennent dans le cas de milieux hétérogènes et anisotropes.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

TOLENTINO, MARC. "Résolution hautes fréquences d'équations intégrales par une méthode de discrétisation microlocale." Marne-la-vallée, ENPC, 1997. http://www.theses.fr/1997ENPC9727.

Повний текст джерела
Анотація:
Ce travail a consisté en la présentation et la validation d'une nouvelle méthode ayant pour thème la simulation numérique de la propagation d'ondes. Le problème analyse est celui de la diffraction d'ondes en régime harmonique par des obstacles tridimensionnels quelconques. Pour modéliser ces phénomènes, nous nous sommes intéresses aux équations intégrales. La méthode proposée a pour objectif de les utiliser à hautes fréquences en réduisant la complexité en calcul et surtout en stockage mémoire. Son originalité réside en une approche en deux temps de la solution cherchée. Dans un premier temps, on utilise une discrétisation micro locale. Dans un second temps, on propose une transformation par ondelettes. L’approche micro locale, qui repose sur l'usage systématique d'une localisation en espace et en direction de propagation, conduit à inverser des matrices creuses mais très mal conditionnées. Pour surmonter cette difficulté, nous avons considère la seconde approche qui consiste à opérer un filtrage par ondelettes. Ces approximations se sont avérées particulièrement efficaces pour diminuer le remplissage et la taille des matrices issues de la résolution d'équations intégrales. Le développement et la mise au point d'un code ont été effectues au cermics-inria Sophia Antipolis. La vérification de la validité de notre code s'appuie sur des calculs de surface équivalente radar. Des résultats numériques encourageants sont présents pour des obstacles convexes et non-convexes. La méthode est ensuite étendue aux opérateurs pseudo-différentiels et Fourier intégraux. Ils interviennent dans le cas de milieux hétérogènes et anisotropes.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Darrigrand, Éric. "Couplage méthodes multipôles-discrétisation microlocale pour les équations intégrales de l'électromagnétisme." Bordeaux 1, 2002. http://www.theses.fr/2002BOR12552.

Повний текст джерела
Анотація:
La résolution des équations intégrales liées aux problèmes de propagation des ondes est confrontée aux limitations des moyens informatiques pour la considération des problèmes à hautes fréquences. Nous proposons dans ce mémoire de thèse, un couplage de deux types de méthodes ayant pour but de réduire les coûts de calcul et la place mémoire consommée lors de la résolution de ces équations intégrales par méthode itérative. La méthode dediscrétisation microlocale introduite par T. Abboud, J. -C. Nédélec et B. Zhou, permet de réduire considérablement la taille du système par approximation de la phase de l'inconnue. Cependant, elle nécessite un précalcul très coûteux. Nous utilisons alors le principe des méthodes multipôles rapides introduites par V. Rokhlin, pour accélérer ce précalcul. Cette application originale des méthodes multipôles dans le cadre d'une discrétisation microlocale aboutit à une méthode dont l'application à la formulation intégrale de B. Després pour l'équation de Helmholtz est très efficace. Son application à la résolution des équations de Maxwell bien que moins spectaculaire est tout de même intéressante.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Walsh, Zuniga Alexander. "Calcul d'Itô étendu." Paris 6, 2011. http://www.theses.fr/2011PA066188.

Повний текст джерела
Анотація:
Nos différents résultats consistent principalement à établir des extensions du calcul stochastique classique. Pour (X_t) processus de Markov, il s'agissait à l'origine de donner dans les quatre cas suivants, la décomposition explicite de F(X_t,t) en tant que processus de Dirichlet, sous des conditions minimum sur F fonction déterministe à valeurs réelles. Dans le premier cas, X est un processus de Lévy réel avec composante brownienne. Dans le deuxième cas X est un processus de Lévy symétrique sans composante brownienne mais admettant des temps locaux en tant que processus de Markov. Dans le troisième cas, X est un processus de Markov symétrique général sans condition d'existence de temps locaux mais F(x,t) ne dépend pas de t. Dans le quatrième cas, nous supprimons l'hypothèse de symétrie du troisième cas. Dans chacun des trois premiers cas, on obtient une formule d'Itô à la seule condition que la fonction F admette des dérivées de Radon-Nikodym d'ordre 1 localement bornées. On rappelle que dans l'hypothèse où X est une semi-martingale, la formule d'Itô classique nécessite que F soit C^2. C'est l'hypothèse que nous devons prendre dans le quatrième cas. Le premier cas excepté, chacune des formules d'Itô obtenues s'appuie sur la construction de nouvelles intégrales stochastiques par rapport à des processus aléatoires qui ne sont pas des semi-martingales.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cai, Jiatu. "Méthodes asymptotiques en contrôle stochastique et applications à la finance." Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC338.

Повний текст джерела
Анотація:
Dans cette thèse, nous étudions plusieurs problèmes de mathématiques financières liés à la présence d’imperfections sur les marchés. Notre approche principale pour leur résolution est l’utilisation d’un cadre asymptotique pertinent dans lequel nous parvenons à obtenir des solutions approchées explicites pour les problèmes de contrôle associés. Dans la première partie de cette thèse, nous nous intéressons à l’évaluation et la couverture des options européennes. Nous considérons tout d’abord la problématique de l’optimisation des dates de rebalancement d’une couverture à temps discret en présence d’une tendance dans la dynamique du sous-jacent. Nous montrons que dans cette situation, il est possible de générer un rendement positif tout en couvrant l’option et nous décrivons une stratégie de rebalancement asymptotiquement optimale pour un critère de type moyenne-variance. Ensuite, nous proposons un cadre asymptotique pour la gestion des options européennes en présence de coûts de transaction proportionnels. En s’inspirant des travaux de Leland, nous développons une méthode alternative de construction de portefeuilles de réplication permettant de minimiser les erreurs de couverture. La seconde partie de ce manuscrit est dédiée à la question du suivi d’une cible stochastique. L’objectif de l’agent est de rester proche de cette cible tout en minimisant le coût de suivi. Dans une asymptotique de coûts petits, nous démontrons l’existence d’une borne inférieure pour la fonction valeur associée à ce problème d’optimisation. Cette borne est interprétée en terme du contrôle ergodique du mouvement brownien. Nous fournissons également de nombreux exemples pour lesquels la borne inférieure est explicite et atteinte par une stratégie que nous décrivons. Dans la dernière partie de cette thèse, nous considérons le problème de consommation et investissement en présence de taxes sur le rendement des capitaux. Nous obtenons tout d’abord un développement asymptotique de la fonction valeur associée que nous interprétons de manière probabiliste. Puis, dans le cas d’un marché avec changements de régime et pour un investisseur dont l’utilité est du type Epstein-Zin, nous résolvons explicitement le problème en décrivant une stratégie de consommation-investissement optimale. Enfin, nous étudions l’impact joint de coûts de transaction et de taxes sur le rendement des capitaux. Nous établissons dans ce cadre un système d’équations avec termes correcteurs permettant d’unifier les résultats de [ST13] et[CD13]<br>In this thesis, we study several mathematical finance problems related to the presence of market imperfections. Our main approach for solving them is to establish a relevant asymptotic framework in which explicit approximate solutions can be obtained for the associated control problems. In the first part of this thesis, we are interested in the pricing and hedging of European options. We first consider the question of determining the optimal rebalancing dates for a replicating portfolio in the presence of a drift in the underlying dynamics. We show that in this situation, it is possible to generate positive returns while hedging the option and describe a rebalancing strategy which is asymptotically optimal for a mean-variance type criterion. Then we propose an asymptotic framework for options risk management under proportional transaction costs. Inspired by Leland’s approach, we develop an alternative way to build hedging portfolios enabling us to minimize hedging errors. The second part of this manuscript is devoted to the issue of tracking a stochastic target. The agent aims at staying close to the target while minimizing tracking efforts. In a small costs asymptotics, we establish a lower bound for the value function associated to this optimization problem. This bound is interpreted in term of ergodic control of Brownian motion. We also provide numerous examples for which the lower bound is explicit and attained by a strategy that we describe. In the last part of this thesis, we focus on the problem of consumption-investment with capital gains taxes. We first obtain an asymptotic expansion for the associated value function that we interpret in a probabilistic way. Then, in the case of a market with regime-switching and for an investor with recursive utility of Epstein-Zin type, we solve the problem explicitly by providing a closed-form consumption-investment strategy. Finally, we study the joint impact of transaction costs and capital gains taxes. We provide a system of corrector equations which enables us to unify the results in [ST13] and [CD13]
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Loumi, Moulay Taïeb. "Intégration stochastique multivoque et application aux équations différentielles multivoques." Montpellier 2, 1986. http://www.theses.fr/1986MON20181.

Повний текст джерела
Анотація:
Dans ce travail, on etend au cas multivoque la notion d'integrale stochastique introduite par mc shane, puis on developpe les proprietes de cette integhrale. On expose aussi la representation de castaing d'un processus stochastique multivoque continue dans l**(2)::(p**(cfb)) par rapport a la seconde variable. Ce resultat est ensuite applique pour la resolution de l'equation differentielle stochastique
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Riviere, Olivier. "Equations différentielles stochastiques progressives rétrogrades couplées : équations aux dérivées partielles et discrétisation." Phd thesis, Université René Descartes - Paris V, 2005. http://tel.archives-ouvertes.fr/tel-00011231.

Повний текст джерела
Анотація:
Ce travail de thèse porte sur les équations différentielles stochastiques progressives rétrogrades, en particulier celles dont le coefficient de diffusion progressif dépend de toutes les inconnues. Nous proposons une manière originale d'aborder le problème, nous permettant de retrouver des résultats classiques d'existence et d'unicité de Pardoux-Tang ou Yong. Nous obtenons de surcroît, en adoptant l'approche Pardoux-Tang en solutions de viscosité, des représentations probabilistes de toute une nouvelle classe d'EDP paraboliques dont les coefficients de dérivation d'ordre 2 dépendent du gradient de la solution. Nous proposons également un schéma de discrétisation itératif dont nous prouvons la convergence et évaluons l'erreur sur un exemple bien particulier.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rivière, Olivier. "Equations différentielles stochastiques progressives rétrogrades couplées : équations aux dérivées partielles et discrétisation." Paris 5, 2005. http://www.theses.fr/2005PA05S028.

Повний текст джерела
Анотація:
Ce travail de thèse porte sur les équations différentielles stochastiques progressives rétrogrades, en particulier celles dont le coefficient de diffusion progressif dépend de toutes les inconnues. Nous proposons une manière originale d'aborder le problème, nous permettant de retrouver des résultats classiques d'existence et d'unicité de Pardoux-Tang ou Yong. Nous obtenons de surcroît, en adoptant l'approche Pardoux-Tang en solutions de viscosité, des représentations probabilistes de toute une nouvelle classe d'EDP paraboliques dont les coefficients de dérivation d'ordre 2 dépendent du gradient de la solution. Nous proposons également un schéma de discrétisation itératif dont nous prouvons la convergence et évaluons l'erreur sur un exemple bien particulier<br>This thesis deals with the forward backward stochastic differential equations, in particular those with a coefficient of progressive diffusion which depends on all unknowns of the problem. We propose an original way to get onto this subject, letting us to reobtain some classical results of existence and uniqueness in the spirit of Pardoux-Tang and Yong's results, and to find a probabilistic representation of a new class of parabolic PDE, in which derivation coefficient of order 2 depends on the gradient of the solution. We also propose an iterative discretization scheme. We prove its convergence and give an evaluation of the error on a particular example
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Patry, Christophe. "Couverture approchée optimale des options européennes." Paris 9, 2001. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=2001PA090006.

Повний текст джерела
Анотація:
Cette thèse porte sur l'étude de la couverture à temps discret des options européennes. Dans la première partie, on introduit des restrictions de couverture dans le modèle de black-scholes : on suppose que le market-maker ne peut se couvrir qu'un nombre maximum fixe de fois à des instants aléatoires de son choix. On identifie la stratégie qui minimise la variance de l'erreur de couverture. On montre que la variance minimale est solution d'une suite de problèmes d'arrêt optimal qui conduisent à des inéquations variationnelles (i. V. ). Via la technique des solutions de viscosité, on étudie l'existence et l'unicité de solutions de ces i. V. Et on montre la convergence de la solution du problème discretise par la méthode des différences finies vers la solution du problème continu. Enfin, on étend ces résultats à d'autres critères. Dans la deuxième partie, on détermine la plus petite richesse initiale nécessaire pour surcouvrir l'option dans le modèle de black-scholes dans le contexte réel suivant : le market-maker ne peut se couvrir qu'à des instants aléatoires de son choix. Lorsque le nombre de couvertures est fixe, on montre que ce prix correspond à la stratégie buy-and-hold pour un call, ou la stratégie correspondante pour toute option avec un payoff continue. Dans le cas ou le nombre peut dépendre de la trajectoire du spot et que le delta de l'option de black-scholes de l'actif contingent est un processus à variation finie (ce qui exclut toutes les options standards en général), on montre que le plus petit prix est le prix de black-scholes de l'option.
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії