Добірка наукової літератури з теми "Discrete memoryless channels"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Discrete memoryless channels".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Discrete memoryless channels"

1

Sahebi, Aria G., and S. Sandeep Pradhan. "Multilevel Channel Polarization for Arbitrary Discrete Memoryless Channels." IEEE Transactions on Information Theory 59, no. 12 (December 2013): 7839–57. http://dx.doi.org/10.1109/tit.2013.2282611.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Huang, Da Zu, Zhi Gang Chen, Xin Li, and Ying Guo. "Quantum Polarization Codes for Capacity-Achieving in Discrete Memoryless Quantum Channel." Applied Mechanics and Materials 44-47 (December 2010): 2978–82. http://dx.doi.org/10.4028/www.scientific.net/amm.44-47.2978.

Повний текст джерела
Анотація:
Quantum channel combining and splitting, called quantum channel polarization, is suggested to design qubit sequences that achieve the symmetric capacity for any given discrete memoryless quantum channels. The polarized quantum channels can be well-conditioned for quantum channel codes, through which one need to send data at rate 1 by employing quantum channels with capacity near 1 and at rate 0 by employing the remaining quantum channels.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Steiner, M. "Constructive codes for arbitrary discrete memoryless channels." IEEE Transactions on Information Theory 40, no. 3 (May 1994): 929–34. http://dx.doi.org/10.1109/18.335905.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dabirnia, Mehdi, A. Korhan Tanc, Shahrouz Sharifi, and Tolga M. Duman. "Code Design for Discrete Memoryless Interference Channels." IEEE Transactions on Communications 66, no. 8 (August 2018): 3368–80. http://dx.doi.org/10.1109/tcomm.2018.2817233.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kurkoski, Brian M., and Hideki Yagi. "Quantization of Binary-Input Discrete Memoryless Channels." IEEE Transactions on Information Theory 60, no. 8 (August 2014): 4544–52. http://dx.doi.org/10.1109/tit.2014.2327016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sreekumar, Sreejith, and Deniz Gunduz. "Distributed Hypothesis Testing Over Discrete Memoryless Channels." IEEE Transactions on Information Theory 66, no. 4 (April 2020): 2044–66. http://dx.doi.org/10.1109/tit.2019.2953750.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Piantanida, Pablo, Gerald Matz, and Pierre Duhamel. "Outage Behavior of Discrete Memoryless Channels Under Channel Estimation Errors." IEEE Transactions on Information Theory 55, no. 9 (September 2009): 4221–39. http://dx.doi.org/10.1109/tit.2009.2025574.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhang, Qiaosheng, and Vincent Y. F. Tan. "Covert Identification Over Binary-Input Discrete Memoryless Channels." IEEE Transactions on Information Theory 67, no. 8 (August 2021): 5387–403. http://dx.doi.org/10.1109/tit.2021.3089245.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Grant, A. J., B. Rimoldi, R. L. Urbanke, and P. A. Whiting. "Rate-splitting multiple access for discrete memoryless channels." IEEE Transactions on Information Theory 47, no. 3 (March 2001): 873–90. http://dx.doi.org/10.1109/18.915637.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Telatar, I. E. "Zero-error list capacities of discrete memoryless channels." IEEE Transactions on Information Theory 43, no. 6 (1997): 1977–82. http://dx.doi.org/10.1109/18.641560.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Discrete memoryless channels"

1

Griffiths, Wayne Bradley. "On a posteriori probability decoding of linear block codes over discrete channels." University of Western Australia. School of Electrical, Electronic and Computer Engineering, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0156.

Повний текст джерела
Анотація:
One of the facets of the mobile or wireless environment is that errors quite often occur in bursts. Thus, strong codes are required to provide protection against such errors. This in turn motivates the employment of decoding algorithms which are simple to implement, yet are still able to attempt to take the dependence or memory of the channel model into account in order to give optimal decoding estimates. Furthermore, such algorithms should be able to be applied for a variety of channel models and signalling alphabets. The research presented within this thesis describes a number of algorithms which can be used with linear block codes. Given the received word, these algorithms determine the symbol which was most likely transmitted, on a symbol-by-symbol basis. Due to their relative simplicity, a collection of algorithms for memoryless channels is reported first. This is done to establish the general style and principles of the overall collection. The concept of matrix diagonalisation may or may not be applied, resulting in two different types of procedure. Ultimately, it is shown that the choice between them should be motivated by whether storage space or computational complexity has the higher priority. As with all other procedures explained herein, the derivation is first performed for a binary signalling alphabet and then extended to fields of prime order. These procedures form the paradigm for algorithms used in conjunction with finite state channel models, where errors generally occur in bursts. In such cases, the necessary information is stored in matrices rather than as scalars. Finally, by analogy with the weight polynomials of a code and its dual as characterised by the MacWilliams identities, new procedures are developed for particular types of Gilbert-Elliott channel models. Here, the calculations are derived from three parameters which profile the occurrence of errors in those models. The decoding is then carried out using polynomial evaluation rather than matrix multiplication. Complementing this theory are several examples detailing the steps required to perform the decoding, as well as a collection of simulation results demonstrating the practical value of these algorithms.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

MEDEIROS, Rex Antonio da Costa. "Zero-Error capacity of quantum channels." Universidade Federal de Campina Grande, 2008. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1320.

Повний текст джерела
Анотація:
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-01T21:11:37Z No. of bitstreams: 1 REX ANTONIO DA COSTA MEDEIROS - TESE PPGEE 2008..pdf: 1089371 bytes, checksum: ea0c95501b938e0d466779a06faaa4f6 (MD5)
Made available in DSpace on 2018-08-01T21:11:37Z (GMT). No. of bitstreams: 1 REX ANTONIO DA COSTA MEDEIROS - TESE PPGEE 2008..pdf: 1089371 bytes, checksum: ea0c95501b938e0d466779a06faaa4f6 (MD5) Previous issue date: 2008-05-09
Nesta tese, a capacidade erro-zero de canais discretos sem memória é generalizada para canais quânticos. Uma nova capacidade para a transmissão de informação clássica através de canais quânticos é proposta. A capacidade erro-zero de canais quânticos (CEZQ) é definida como sendo a máxima quantidade de informação por uso do canal que pode ser enviada através de um canal quântico ruidoso, considerando uma probabilidade de erro igual a zero. O protocolo de comunicação restringe palavras-código a produtos tensoriais de estados quânticos de entrada, enquanto que medições coletivas entre várias saídas do canal são permitidas. Portanto, o protocolo empregado é similar ao protocolo de Holevo-Schumacher-Westmoreland. O problema de encontrar a CEZQ é reformulado usando elementos da teoria de grafos. Esta definição equivalente é usada para demonstrar propriedades de famílias de estados quânticos e medições que atingem a CEZQ. É mostrado que a capacidade de um canal quântico num espaço de Hilbert de dimensão d pode sempre ser alcançada usando famílias compostas de, no máximo,d estados puros. Com relação às medições, demonstra-se que medições coletivas de von Neumann são necessárias e suficientes para alcançar a capacidade. É discutido se a CEZQ é uma generalização não trivial da capacidade erro-zero clássica. O termo não trivial refere-se a existência de canais quânticos para os quais a CEZQ só pode ser alcançada através de famílias de estados quânticos não-ortogonais e usando códigos de comprimento maior ou igual a dois. É investigada a CEZQ de alguns canais quânticos. É mostrado que o problema de calcular a CEZQ de canais clássicos-quânticos é puramente clássico. Em particular, é exibido um canal quântico para o qual conjectura-se que a CEZQ só pode ser alcançada usando uma família de estados quânticos não-ortogonais. Se a conjectura é verdadeira, é possível calcular o valor exato da capacidade e construir um código de bloco quântico que alcança a capacidade. Finalmente, é demonstrado que a CEZQ é limitada superiormente pela capacidade de Holevo-Schumacher-Westmoreland.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bharadwaj, Vinay K. "Joint source/channel coding for discrete memoryless channels: Lessons to learn." Thesis, 2000. http://hdl.handle.net/1911/17324.

Повний текст джерела
Анотація:
The design of optimal joint source/channel coding and decoding is examined for discrete memoryless channels with end-to-end distortion as the criterion for reliable communication. Joint source/channel encoders which map sequences of source symbols directly to sequences of channel symbols without any intermediate "bit" representation of source are considered. Optimum joint source/channel decoder that minimizes end-to-end distortion for a given encoder mapping is derived. The encoder mapping can be many to one, in the sense that many source sequences can be mapped to one sequence of channel symbols. To begin with, as an exercise, random coding bound on end-to-end distortion is derived for a general Maximum A Posteriori (MAP) decoder which has some estimate on the apriori probabilities of source symbols. It is shown that, the KL distance of the actual apriori probabilities with the estimated ones plays an important role. Then, a random coding bound on end-to-end distortion is derived with our optimal minimum distortion decoder mentioned above for the case when all source symbols are equally likely. It is shown that the performance increase with minimum distortion decoding as opposed to MAP (same as Maximum Likelihood (ML) decoding in this case when all source symbols are equally likely) is characterized by the faster decay of end-to-end distortion with respect to channel use.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

"Zero error decision feedback capacity of discrete memoryless channels." Massachusetts Institute of Technology, Laboratory for Information and Decision Systems], 1989. http://hdl.handle.net/1721.1/3166.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lin, Hsuan-Yin, and 林玄寅. "Optimal Ultra-Small Block-Codes for Binary Input Discrete Memoryless Channels." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/20041495285802019942.

Повний текст джерела
Анотація:
博士
國立交通大學
電信工程研究所
101
Optimal block-codes with a very small number of codewords are investigated for the binary input discrete memoryless channels. Those channels are the binary asymmetric channel (BAC), including the two special cases of the binary symmetric channel (BSC) and the Z-channel (ZC). The binary erasure channel (BEC) is a common used channel with ternary output. For the asymmetric channels, a general BAC, it is shown that so-called flip codes are optimal codes with two codewords. The optimal (in the sense of minimum average error probability, using maximum likelihood decoding) code structure is derived for the ZC in the cases of two, three, and four codewords and an arbitrary finite blocklength. For the symmetric channels, the BSC and the BEC, the optimal code structure is derived with at most three codewords and an arbitrary finite blocklength, a statement for linear optimal codes with four codes is also given. The derivation of these optimal codes relies heavily on a new approach of constructing and analyzing the codebook matrix not row-wise (codewords), but column-wise. This new tool allows an elegant definition of interesting code families that is recursive in the blocklength n and admits their exact analysis of error performance that is not based on the union bound or other approximations.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhong, Yangfan. "Joint Source-Channel Coding Reliability Function for Single and Multi-Terminal Communication Systems." Thesis, 2008. http://hdl.handle.net/1974/1207.

Повний текст джерела
Анотація:
Traditionally, source coding (data compression) and channel coding (error protection) are performed separately and sequentially, resulting in what we call a tandem (separate) coding system. In practical implementations, however, tandem coding might involve a large delay and a high coding/decoding complexity, since one needs to remove the redundancy in the source coding part and then insert certain redundancy in the channel coding part. On the other hand, joint source-channel coding (JSCC), which coordinates source and channel coding or combines them into a single step, may offer substantial improvements over the tandem coding approach. This thesis deals with the fundamental Shannon-theoretic limits for a variety of communication systems via JSCC. More specifically, we investigate the reliability function (which is the largest rate at which the coding probability of error vanishes exponentially with increasing blocklength) for JSCC for the following discrete-time communication systems: (i) discrete memoryless systems; (ii) discrete memoryless systems with perfect channel feedback; (iii) discrete memoryless systems with source side information; (iv) discrete systems with Markovian memory; (v) continuous-valued (particularly Gaussian) memoryless systems; (vi) discrete asymmetric 2-user source-channel systems. For the above systems, we establish upper and lower bounds for the JSCC reliability function and we analytically compute these bounds. The conditions for which the upper and lower bounds coincide are also provided. We show that the conditions are satisfied for a large class of source-channel systems, and hence exactly determine the reliability function. We next provide a systematic comparison between the JSCC reliability function and the tandem coding reliability function (the reliability function resulting from separate source and channel coding). We show that the JSCC reliability function is substantially larger than the tandem coding reliability function for most cases. In particular, the JSCC reliability function is close to twice as large as the tandem coding reliability function for many source-channel pairs. This exponent gain provides a theoretical underpinning and justification for JSCC design as opposed to the widely used tandem coding method, since JSCC will yield a faster exponential rate of decay for the system error probability and thus provides substantial reductions in complexity and coding/decoding delay for real-world communication systems.
Thesis (Ph.D, Mathematics & Statistics) -- Queen's University, 2008-05-13 22:31:56.425
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Discrete memoryless channels"

1

Statistical analysis of memoryless discrete channels. Berlin: Humboldt-Universität zu Berlin, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Discrete memoryless channels"

1

Winter, Andreas, Anderson C. A. Nascimento, and Hideki Imai. "Commitment Capacity of Discrete Memoryless Channels." In Cryptography and Coding, 35–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-40974-8_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ahlswede, Rudolf. "Identification via Discrete Memoryless Wiretap Channels." In Identification and Other Probabilistic Models, 117–30. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65072-8_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ooi, James M. "Discrete Memoryless Channels: An Introduction to the Framework." In Coding for Channels with Feedback, 9–60. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5719-7_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

"Discrete memoryless channels and their capacity–cost functions." In The Theory of Information and Coding, 50–74. Cambridge University Press, 2004. http://dx.doi.org/10.1017/cbo9780511819896.007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

"Discrete memoryless channels and their capacity–cost functions." In The Theory of Information and Coding, 50–74. Cambridge University Press, 2002. http://dx.doi.org/10.1017/cbo9780511606267.007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yuksel, Melda, and Elza Erkip. "Information Theoretical Limits on Cooperative Communications." In Cooperative Communications for Improved Wireless Network Transmission, 1–28. IGI Global, 2010. http://dx.doi.org/10.4018/978-1-60566-665-5.ch001.

Повний текст джерела
Анотація:
This chapter provides an overview of the information theoretic foundations of cooperative communications. Earlier information theoretic achievements, as well as the more recent developments, are discussed. The analysis accounts for full/half-duplex node, and for multiple relays. Various channel models such as discrete memoryless, additive white Gaussian noise (AWGN), and fading channels are considered. Cooperative communication protocols are investigated using capacity, diversity, and diversity-multiplexing tradeoff (DMT) as performance metrics. Overall, this chapter provides a comprehensive view on the foundations of and the state-of-the-art reached in the theory of cooperative communications.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

"Lower Bounds to Error Probability for Coding on Discrete Memoryless Channels. I." In Claude E. Shannon. IEEE, 2009. http://dx.doi.org/10.1109/9780470544242.ch23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

"Lower Bounds to Error Probability for Coding on Discrete Memoryless Channels. II." In Claude E. Shannon. IEEE, 2009. http://dx.doi.org/10.1109/9780470544242.ch24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Discrete memoryless channels"

1

Tepedelenlioglu, Cihan. "Channel Inclusion Beyond Discrete Memoryless Channels." In 2021 IEEE International Symposium on Information Theory (ISIT). IEEE, 2021. http://dx.doi.org/10.1109/isit45174.2021.9517862.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sasoglu, Eren, Emre Telatar, and Erdal Arikan. "Polarization for arbitrary discrete memoryless channels." In 2009 IEEE Information Theory Workshop (ITW 2009). IEEE, 2009. http://dx.doi.org/10.1109/itw.2009.5351487.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Guo, Ying, Moon Ho Lee, and Jun Li. "A novel channel polarization on binary discrete memoryless channels." In 2010 IEEE International Conference on Communication Systems (ICCS). IEEE, 2010. http://dx.doi.org/10.1109/iccs.2010.5685897.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jiang, Jinhua, Yan Xin, and Hari Krishna Garg. "Discrete Memoryless Interference Channels with Fee back." In 2007 41st Annual Conference on Information Sciences and Systems. IEEE, 2007. http://dx.doi.org/10.1109/ciss.2007.4298375.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lima, João de Deus, and Reginaldo Palazzo Jr. "Topological structures associated with discrete memoryless channels." In 2002 International Telecommunications Symposium. Sociedade Brasileira de Telecomunicações, 2002. http://dx.doi.org/10.14209/its.2002.210.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yagi, Hideki, and Te Sun Han. "Variable-Length Channel Resolvability for Discrete Memoryless Sources and Channels." In 2018 IEEE International Symposium on Information Theory (ISIT). IEEE, 2018. http://dx.doi.org/10.1109/isit.2018.8437858.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tope, Michael A., and Joel M. Morris. "On channel rate discovery for discrete memoryless binary output channels." In 2017 IEEE 38th Sarnoff Symposium. IEEE, 2017. http://dx.doi.org/10.1109/sarnof.2017.8080389.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nguyen, Thuan, and Thinh Nguyen. "On Closed Form Capacities of Discrete Memoryless Channels." In 2018 IEEE 87th Vehicular Technology Conference (VTC Spring). IEEE, 2018. http://dx.doi.org/10.1109/vtcspring.2018.8417505.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nguyen, Thuan, Yu-Jung Chu, and Thinh Nguyen. "On the Capacities of Discrete Memoryless Thresholding Channels." In 2018 IEEE 87th Vehicular Technology Conference (VTC Spring). IEEE, 2018. http://dx.doi.org/10.1109/vtcspring.2018.8417506.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dazu Huang, Jianquan Xie, and Ying Guo. "Fast polarization construction on binary discrete memoryless channels." In 2010 International Conference on Progress in Informatics and Computing (PIC). IEEE, 2010. http://dx.doi.org/10.1109/pic.2010.5687583.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії