Статті в журналах з теми "Discrete location"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Discrete location.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Discrete location".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Salhi, Said, Pitu B. Mirchandani, and Richard L. Francis. "Discrete Location Theory." Journal of the Operational Research Society 42, no. 12 (December 1991): 1124. http://dx.doi.org/10.2307/2582961.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Salhi, Said. "Discrete Location Theory." Journal of the Operational Research Society 42, no. 12 (December 1991): 1124–25. http://dx.doi.org/10.1057/jors.1991.208.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sarker, Bhaba R. "Discrete location theory." European Journal of Operational Research 52, no. 3 (June 1991): 388–89. http://dx.doi.org/10.1016/0377-2217(91)90179-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Daham, Hajem Ati. "Neutrosophic Discrete Facility Location Problems." International Journal of Neutrosophic Science 19, no. 1 (2022): 29–47. http://dx.doi.org/10.54216/ijns.190102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Discrete facility location problems are classified as types of facility location problems, wherein decisions on choosing facilities in specific locations are made to serve the demand points of customers, thus minimizing the total cost. The covering- and median-based problems are the common classified types of discrete facility location problems, which both comprise different classes of discrete problems as reviewed in this research. However, the discrete facility location problems shown in deterministic and known information and data under uncertain, vague, and ambiguous environments have usually been solved using intuitionistic fuzzy approaches. Neutrosophic is recently applied to tackle the uncertainty and ambiguity of information and data. This paper considered solving the discrete facility location problems under the neutrosophic environment, wherein the information of the locations, distances, times, and costs is uncertain. The mathematical models for the main types of neutrosophic discrete facility location problems, which remain unclear till now despite previous related works, are formulated in this study. Numerical examples demonstrated testing of the neutrosophic discrete models and comparison with the optimization solutions obtained from the normal situations.
5

Louveaux, F. V. "Discrete stochastic location models." Annals of Operations Research 6, no. 2 (February 1986): 21–34. http://dx.doi.org/10.1007/bf02027380.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Abdullah, Makola M. "Optimal Location and Gains of Feedback Controllers at Discrete Locations." AIAA Journal 36, no. 11 (November 1998): 2109–16. http://dx.doi.org/10.2514/2.314.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Abdullah, Makola M. "Optimal location and gains of feedback controllers at discrete locations." AIAA Journal 36 (January 1998): 2109–16. http://dx.doi.org/10.2514/3.14092.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Herger, Nils, and Steve McCorriston. "On discrete location choice models." Economics Letters 120, no. 2 (August 2013): 288–91. http://dx.doi.org/10.1016/j.econlet.2013.04.015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tuy, Hoang, Michel Minoux, and N. T. Hoai-Phuong. "Discrete Monotonic Optimization with Application to a Discrete Location Problem." SIAM Journal on Optimization 17, no. 1 (January 2006): 78–97. http://dx.doi.org/10.1137/04060932x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Vasilyev, I. L., and A. V. Ushakov. "Discrete Facility Location in Machine Learning." Journal of Applied and Industrial Mathematics 15, no. 4 (November 2021): 686–710. http://dx.doi.org/10.1134/s1990478921040128.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Vasilyev, I. L., and A. V. Ushakov. "Discrete facility location in machine learning." Diskretnyi analiz i issledovanie operatsii 28, no. 4 (November 29, 2021): 5–60. http://dx.doi.org/10.33048/daio.2021.28.714.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Marín, Alfredo. "Discrete location for bundled demand points." TOP 18, no. 1 (May 2, 2009): 242–56. http://dx.doi.org/10.1007/s11750-009-0097-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Cánovas, Lázaro, Alfredo Marín, and Mercedes Landete. "Extreme points of discrete location polyhedra." Top 9, no. 1 (June 2001): 115–38. http://dx.doi.org/10.1007/bf02579074.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Mirchandani, P. B., and J. M. Reilly. "“Spatial nodes” in discrete location problems." Annals of Operations Research 6, no. 7 (July 1986): 201–22. http://dx.doi.org/10.1007/bf02024583.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Erkut, Erhan, Thomas Baptie, and Balder von Hohenbalken. "The discrete p-Maxian location problem." Computers & Operations Research 17, no. 1 (January 1990): 51–61. http://dx.doi.org/10.1016/0305-0548(90)90027-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Moya-Martínez, Alejandro, Mercedes Landete, and Juan Francisco Monge. "Close-Enough Facility Location." Mathematics 9, no. 6 (March 21, 2021): 670. http://dx.doi.org/10.3390/math9060670.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper introduces the concept of close-enough in the context of facility location. It is assumed that customers are willing to move from their homes to close-enough pickup locations. Given that the number of pickup locations is expanding every day, it is assumed that pickup locations can be placed everywhere. Conversely, the set of potential location for opening facilities is discrete as well as the set of customers. Opening facilities and pickup points entails an installation budget and a distribution cost to transport goods from facilities to customers and pickup locations. The (p,t)-Close-Enough Facility Location Problem is the problem of deciding where to locate p facilities among the finite set of candidates, where to locate t pickup points in the plane and how to allocate customers to facilities or to pickup points so that all the demand is satisfied and the total cost is minimized. In this paper, it is proved that the set of initial infinite number of pickup locations is finite in practice. Two mixed-integer linear programming models are proposed for the discrete problem. The models are enhanced with valid inequalities and a branch and price algorithm is designed for the most promising model. The findings of a comprehensive computational study reveal the performance of the different models and the branch and price algorithm and illustrate the value of pickup locations.
17

Brown, Colin G., and Ross G. Drynan. "PLANT LOCATION ANALYSIS USING DISCRETE STOCHASTIC PROGRAMMING1*." Australian Journal of Agricultural Economics 30, no. 1 (April 1986): 1–22. http://dx.doi.org/10.1111/j.1467-8489.1986.tb00449.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

MELACHRINOUDIS, EMANUEL. "A DISCRETE LOCATION ASSIGNMENT PROBLEM WITH CONGESTION." IIE Transactions 26, no. 6 (November 1994): 83–89. http://dx.doi.org/10.1080/07408179408966641.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Körkel, Manfred. "Discrete facility location with nonlinear facility costs." RAIRO - Operations Research 25, no. 1 (1991): 31–43. http://dx.doi.org/10.1051/ro/1991250100311.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Krarup, Jakob, David Pisinger, and Frank Plastria. "Discrete location problems with push–pull objectives." Discrete Applied Mathematics 123, no. 1-3 (November 2002): 363–78. http://dx.doi.org/10.1016/s0166-218x(01)00346-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Espejo, Inmaculada, Alfredo Marín, and Antonio M. Rodríguez-Chía. "Closest assignment constraints in discrete location problems." European Journal of Operational Research 219, no. 1 (May 2012): 49–58. http://dx.doi.org/10.1016/j.ejor.2011.12.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Campbell, James F. "Continuous and discrete demand hub location problems." Transportation Research Part B: Methodological 27, no. 6 (December 1993): 473–82. http://dx.doi.org/10.1016/0191-2615(93)90018-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Berman, Oded, and Jiamin Wang. "Probabilistic location problems with discrete demand weights." Networks 44, no. 1 (2004): 47–57. http://dx.doi.org/10.1002/net.20015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Kanellopoulos, Panagiotis, Alexandros A. Voudouris, and Rongsen Zhang. "On Discrete Truthful Heterogeneous Two-Facility Location." SIAM Journal on Discrete Mathematics 37, no. 2 (June 6, 2023): 779–99. http://dx.doi.org/10.1137/22m149908x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Plastria, Frank, and Lieselot Vanhaverbeke. "Discrete models for competitive location with foresight." Computers & Operations Research 35, no. 3 (March 2008): 683–700. http://dx.doi.org/10.1016/j.cor.2006.05.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Lančinskas, Algirdas, Julius Žilinskas, Pascual Fernández, and Blas Pelegrín. "Solution of asymmetric discrete competitive facility location problems using ranking of candidate locations." Soft Computing 24, no. 23 (June 29, 2020): 17705–13. http://dx.doi.org/10.1007/s00500-020-05106-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Mickey, Brian J., and John C. Middlebrooks. "Sensitivity of Auditory Cortical Neurons to the Locations of Leading and Lagging Sounds." Journal of Neurophysiology 94, no. 2 (August 2005): 979–89. http://dx.doi.org/10.1152/jn.00580.2004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We recorded unit activity in the auditory cortex (fields A1, A2, and PAF) of anesthetized cats while presenting paired clicks with variable locations and interstimulus delays (ISDs). In human listeners, such sounds elicit the precedence effect, in which localization of the lagging sound is impaired at ISDs ≲10 ms. In the present study, neurons typically responded to the leading stimulus with a brief burst of spikes, followed by suppression lasting 100–200 ms. At an ISD of 20 ms, at which listeners report a distinct lagging sound, only 12% of units showed discrete lagging responses. Long-lasting suppression was found in all sampled cortical fields, for all leading and lagging locations, and at all sound levels. Recordings from awake cats confirmed this long-lasting suppression in the absence of anesthesia, although recovery from suppression was faster in the awake state. Despite the lack of discrete lagging responses at delays of 1–20 ms, the spike patterns of 40% of units varied systematically with ISD, suggesting that many neurons represent lagging sounds implicitly in their temporal firing patterns rather than explicitly in discrete responses. We estimated the amount of location-related information transmitted by spike patterns at delays of 1–16 ms under conditions in which we varied only the leading location or only the lagging location. Consistent with human psychophysical results, transmission of information about the leading location was high at all ISDs. Unlike listeners, however, transmission of information about the lagging location remained low, even at ISDs of 12–16 ms.
28

Gao, Xuehong, Chanseok Park, Xiaopeng Chen, En Xie, Guozhong Huang, and Dingli Zhang. "Globally Optimal Facility Locations for Continuous-Space Facility Location Problems." Applied Sciences 11, no. 16 (August 9, 2021): 7321. http://dx.doi.org/10.3390/app11167321.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The continuous-space single- and multi-facility location problem has attracted much attention in previous studies. This study focuses on determining the globally optimal facility locations for two- and higher-dimensional continuous-space facility location problems when the Manhattan distance is considered. Before we propose the exact method, we start with the continuous-space single-facility location problem and obtain the global minimizer for the problem using a statistical approach. Then, an exact method is developed to determine the globally optimal solution for the two- and higher-dimensional continuous-space facility location problem, which is different from the previous clustering algorithms. Based on the newly investigated properties of the minimizer, we extend it to multi-facility problems and transfer the continuous-space facility location problem to the discrete-space location problem. To illustrate the effectiveness and efficiency of the proposed method, several instances from a benchmark are provided to compare the performances of different methods, which illustrates the superiority of the proposed exact method in the decision-making of the continuous-space facility location problems.
29

Luo, Xiaoling, Wenbo Fan, Yangsheng Jiang, and Jun Zhang. "Optimal Design of Bus Stop Locations Integrating Continuum Approximation and Discrete Models." Journal of Advanced Transportation 2020 (September 7, 2020): 1–10. http://dx.doi.org/10.1155/2020/8872748.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Although transit stop location problem has been extensively studied, the two main categories of modeling methodologies, i.e., discrete models and continuum approximation (CA) ones, seem have little intersection. Both have strengths and weaknesses, respectively. This study intends to integrate them by taking the advantage of CA models’ parsimonious property and discrete models’ fine consideration of practical conditions. In doing so, we first employ the state-of-the-art CA models to yield the optimal design, which serves as the input to the next discrete model. Then, the stop location problem is formulated into a multivariable nonlinear minimization problem with a given number of stop location variables and location constraint. The interior-point algorithm is presented to find the optimal design that is ready for implementation. In numerical studies, the proposed model is applied to a variety of scenarios with respect to demand levels, spatial heterogeneity, and route length. The results demonstrate the consistent advantage of the proposed model in all scenarios as against its counterparts, i.e., two existing recipes that convert CA model-based solution into real design of stop locations. Lastly, a case study is presented using real data and practical constraints for the adjustment of a bus route in Chengdu (China). System cost saving of 15.79% is observed by before-and-after comparison.
30

Iimura, Takuya, and Pierre von Mouche. "Discrete hotelling pure location games: potentials and equilibria." ESAIM: Proceedings and Surveys 71 (August 2021): 163–74. http://dx.doi.org/10.1051/proc/202171163.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We study two-player one-dimensional discrete Hotelling pure location games assuming that demand f(d) as a function of distance d is constant or strictly decreasing. We show that this game admits a best-response potential. This result holds in particular for f(d) = wd with 0 < w ≤ 1. For this case special attention will be given to the structure of the equilibrium set and a conjecture about the increasingness of best-response correspondences will be made.
31

Salhi, S., and M. Daskin. "Network and Discrete Location: Models, Algorithms and Applications." Journal of the Operational Research Society 48, no. 7 (July 1997): 763. http://dx.doi.org/10.2307/3010074.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Salhi, S., and A. I. Barros. "Discrete and Fractional Programming Techniques for Location Models." Journal of the Operational Research Society 50, no. 7 (July 1999): 775. http://dx.doi.org/10.2307/3010333.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Gluszak, Michal, and Bartlomiej Marona. "Discrete choice model of residential location in Krakow." Journal of European Real Estate Research 10, no. 1 (May 2, 2017): 4–16. http://dx.doi.org/10.1108/jerer-01-2016-0006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Purpose This paper aims to discuss the link between socio-economic characteristics of house buyers and their housing location choices. The major objective of the study is an examination of the role of household socio-economic characteristics. The research addresses the importance of previous residence location and latent housing motives for intra-urban housing mobility. Design/methodology/approach The research examines housing preferences structure and analyzes housing location choices in the city of Krakow (Poland) using discrete choice model (conditional logit model). The research is based on stated preference data from Krakow. Findings The results of this study suggest that demand for housing alternatives is negatively linked to the distance from current residence. Other factors stay equal, the further the distance, the less likely a household is willing to choose a location within the metropolitan area. The study indicates that housing motives can help explain housing location decisions. Practical implications The paper provides an empirical assessment of housing decisions in Krakow, one of the major metropolitan areas in Poland. Originality/value The paper contributes to a better understanding of the nature of housing decision and housing preferences in emerging markets in Central and Eastern Europe. As a result, presented research helps to fill the gap in housing market and urban economics literature.
34

Martinec, I. "Methods for a class of discrete location problems." Optimization 16, no. 4 (January 1985): 581–95. http://dx.doi.org/10.1080/02331938508843052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Goodman, Allen C., Harold D. Holder, Eleanor Nishiura, and Janet R. Hankin. "A Discrete Choice Model of Alcoholism Treatment Location." Medical Care 30, no. 12 (December 1992): 1097–110. http://dx.doi.org/10.1097/00005650-199212000-00003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Daskin, M. "Network and Discrete Location: Models, Algorithms and Applications." Journal of the Operational Research Society 48, no. 7 (July 1997): 763–64. http://dx.doi.org/10.1057/palgrave.jors.2600828.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Dinwoodie, John. "Network and discrete location: Models, algorithms and applications." Journal of Transport Geography 4, no. 4 (December 1996): 302–3. http://dx.doi.org/10.1016/s0966-6923(97)89394-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Plastria, Frank. "Network and discrete location models, algorithms and applications." Location Science 4, no. 1-2 (May 1996): 117–19. http://dx.doi.org/10.1016/s0966-8349(97)84406-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Cappanera, P., G. Gallo, and F. Maffioli. "Discrete facility location and routing of obnoxious activities." Discrete Applied Mathematics 133, no. 1-3 (November 2003): 3–28. http://dx.doi.org/10.1016/s0166-218x(03)00431-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Li, Xiaohua, and Lansun Shen. "Fast text location based on discrete wavelet transform." Journal of Electronics (China) 22, no. 4 (July 2005): 385–94. http://dx.doi.org/10.1007/bf02687926.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Venkateshan, Prahalad, Ronald H. Ballou, Kamlesh Mathur, and Arulanantha P. P. Maruthasalam. "A Two-echelon joint continuous-discrete location model." European Journal of Operational Research 262, no. 3 (November 2017): 1028–39. http://dx.doi.org/10.1016/j.ejor.2017.03.077.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Hosage, C. M., and M. F. Goodchild. "Discrete space location-allocation solutions from genetic algorithms." Annals of Operations Research 6, no. 2 (February 1986): 35–46. http://dx.doi.org/10.1007/bf02027381.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Kozhamkulova, Zhadra, Mukhit Maikotov, Bibinur Kirkizbayeva, Zhumakyz Chingenzhinova, Gulzhan Sapieva, and Venera Kerimbaeva. "EXTENSION METHOD FOR LOCATION PROBLEMS WITH DISCRETE OBJECTS." Theoretical & Applied Science 58, no. 02 (February 28, 2018): 64–69. http://dx.doi.org/10.15863/tas.2018.02.58.16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Daskin, M. "Network and Discrete Location: Models, Algorithms and Applications." Journal of the Operational Research Society 48, no. 7 (1997): 763. http://dx.doi.org/10.1038/sj.jors.2600828.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Chen, Guihua, Zhihong Huang, and Zhijie Mai. "Two-dimensional discrete Anderson location in waveguide matrix." Journal of Nonlinear Optical Physics & Materials 23, no. 03 (September 2014): 1450033. http://dx.doi.org/10.1142/s0218863514500337.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Anderson location is an important wave phenomenon when the system contains disorder. Anderson location of light is a significant topic in optical science. Arrays of evanescently coupled waveguides made of nonlinear materials are the fundamental model of discrete nonlinear optics. Guided propagation of light in such arrays emulates electronic wave functions in fundamental periodic and disordered potentials of solid state physics. In this work, the Anderson location effect in a two-dimensional waveguide matrix is studied, and the influence of the nonlinearity on the localized effect induced by the disorder of the system is considered.
46

Campbell, James F. "Integer programming formulations of discrete hub location problems." European Journal of Operational Research 72, no. 2 (January 1994): 387–405. http://dx.doi.org/10.1016/0377-2217(94)90318-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Darzentas, J. "A discrete location model with fuzzy accessibility measures." Fuzzy Sets and Systems 23, no. 1 (July 1987): 149–54. http://dx.doi.org/10.1016/0165-0114(87)90106-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Lančinskas, Algirdas, Pascual Fernández, Blas Pelegín, and Julius Žilinskas. "Improving solution of discrete competitive facility location problems." Optimization Letters 11, no. 2 (August 7, 2015): 259–70. http://dx.doi.org/10.1007/s11590-015-0930-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Zhang, Hao, Ying Xiong, Mingke He, and Chongchong Qu. "Location Model for Distribution Centers for Fulfilling Electronic Orders of Fresh Foods under Uncertain Demand." Scientific Programming 2017 (2017): 1–13. http://dx.doi.org/10.1155/2017/3423562.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The problem of locating distribution centers for delivering fresh food as a part of electronic commerce is a strategic decision problem for enterprises. This paper establishes a model for locating distribution centers that considers the uncertainty of customer demands for fresh goods in terms of time-sensitiveness and freshness. Based on the methodology of robust optimization in dealing with uncertain problems, this paper optimizes the location model in discrete demand probabilistic scenarios. In this paper, an improved fruit fly optimization algorithm is proposed to solve the distribution center location problem. An example is given to show that the proposed model and algorithm are robust and can effectively handle the complications caused by uncertain demand. The model proposed in this paper proves valuable both theoretically and practically in the selection of locations of distribution centers.
50

Durmaz, Engin, Necati Aras, and İ. Kuban Altınel. "Discrete approximation heuristics for the capacitated continuous location–allocation problem with probabilistic customer locations." Computers & Operations Research 36, no. 7 (July 2009): 2139–48. http://dx.doi.org/10.1016/j.cor.2008.08.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії