Добірка наукової літератури з теми "Directional Microwave"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Directional Microwave".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Directional Microwave"

1

Timofeeva, M. A., A. B. Ustinov, and B. A. Kalinikos. "Microwave nonlinear spin wave directional coupler." Technical Physics Letters 32, no. 11 (November 2006): 979–81. http://dx.doi.org/10.1134/s1063785006110228.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lei, Lin, and Zhi Xiong Ouyang. "Microwave Power Real-Time Soft-Measuring Based on Improved BP Neural Network." Advanced Materials Research 301-303 (July 2011): 902–7. http://dx.doi.org/10.4028/www.scientific.net/amr.301-303.902.

Повний текст джерела
Анотація:
There are many faults in microwave power measurement in the working spots. In this paper, the novel technique of microwave power measurement and Schottky detector and the technique of soft-measuring based on improved BP neural network are presented. Making use of directional coupler, the part of power of microwave signal in transmission line was taken in the certain proportion. Then, the microwave power meter indicated the magnitude of power. The microwave power measurement system was composed of tuneable attenuator, directional coupler, matching load, peak-peak value detector, oscillograph, thermocouple, soft-measuring algorithm and so on. The low microwave power meter obtained the sample data of training BP neuron network. Then, the output of trained BP neural network may represent the result of high microwave power measurement. The experiments and applications in practice project prove that this new method has many advantages.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Khan, Tahsin Ashraf, Patrick A. Burr, David Payne, Mattias Juhl, Utshash Das, Brett Hallam, Darren Bagnall, and Binesh Puthen Veettil. "Molecular dynamic simulation on temperature evolution of SiC under directional microwave radiation." Journal of Physics: Condensed Matter 34, no. 19 (March 14, 2022): 195701. http://dx.doi.org/10.1088/1361-648x/ac553c.

Повний текст джерела
Анотація:
Abstract Silicon carbide (SiC) is widely used as the substrate for high power electronic devices as well as susceptors for microwave (MW) heating. The dynamics of microwave interaction with SiC is not fully understood, especially at the material boundaries. In this paper, we used the molecular dynamics simulation method to study the temperature evolution during the microwave absorption of SiC under various amplitudes and frequencies of the microwave electric field. Directional MW heating of a SiC crystal slab bounded by surfaces along [100] crystallographic direction shows significantly faster melting when the field is applied parallel to the surface compared to when applied perpendicular.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Islam, S. "Multiway uniform combline directional couplers for microwave frequencies." IEEE Transactions on Microwave Theory and Techniques 36, no. 6 (June 1988): 985–93. http://dx.doi.org/10.1109/22.3623.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sangster, A. J., and H. Y. Wang. "Omni-Directional Blade Antenna for Microwave Tumour Ablation." Journal of Electromagnetic Waves and Applications 19, no. 14 (January 2005): 1935–48. http://dx.doi.org/10.1163/156939305775570549.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hu, Yuan, Aiichiro Nakano, and Joseph Wang. "Directional melting of alumina via polarized microwave heating." Applied Physics Letters 110, no. 4 (January 23, 2017): 044102. http://dx.doi.org/10.1063/1.4973698.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lobato-Morales, H., A. Corona-Chavez, and J. Rodriguez-Asomoza. "Microwave directional filters using metamaterial closed-loop resonators." Microwave and Optical Technology Letters 51, no. 5 (March 13, 2009): 1155–56. http://dx.doi.org/10.1002/mop.24275.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wu, Dong Rong, He Jun Wu, and Xiao Lu Zhu. "Microwave Directional Wireless Power Transmission for Wireless Sensor Networks." Advanced Materials Research 756-759 (September 2013): 746–50. http://dx.doi.org/10.4028/www.scientific.net/amr.756-759.746.

Повний текст джерела
Анотація:
Power shortage is one of critical issues stalling the development of wireless sensor networks. This paper attempts to address this issue by means of microwave power transmission. In this paper, we propose a sensor node framework using a high-frequency microwave power transmitting module to allow sensor nodes to transmit power to others. We introduce the process of exchanging power between two adjacent sensor nodes and design a power transmission routing protocol called PTR in this paper. PTR optimizes the power transmission of a whole network so that the power of energy sources can efficiently reach any sensor node in the network. We have done simulations and analysis on this framework and the results are positive.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Shen, Aiguo, Yukai Lin, Chendong Yang, Guangsong Yang, Gaiyan Hong, and Dezhi Wei. "Design of branch line directional coupler for 5G millimeter wave communication." Journal of Physics: Conference Series 2384, no. 1 (December 1, 2022): 012019. http://dx.doi.org/10.1088/1742-6596/2384/1/012019.

Повний текст джерела
Анотація:
Abstract A directional coupler based on a microstrip branch line for 5G millimeter wave communication is designed. The branch line structure is simple and easy to implement. The comprehensive decomposition design method of the microwave system is proposed to improve the design efficiency. Based on the theoretical analysis of microwaves, the design method of combining automatic tuning and manual tuning optimization is used to optimize the schematic simulation. The layout simulation adopts iterative optimization to approximate the design index and reduce the influence of branch line connection loss. Finally, a millimeter wave branch line directional coupler is designed with a bandwidth of 24.25ghz to 27.5ghz, a coupling degree and insertion loss of about 5dB, and an isolation degree of more than 20dB. In the coming 6G, this design method has a certain forward-looking significance.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gimpilevich, Yu, I. Afonin, V. Vertegel, and Yu Tyschuk. "Technical realization of the device for integrated monitoring of the parameters of the microwave path." Journal of Physics: Conference Series 2094, no. 3 (November 1, 2021): 032040. http://dx.doi.org/10.1088/1742-6596/2094/3/032040.

Повний текст джерела
Анотація:
Abstract Two designs of a microwave sensor have been developed for a device for built-in monitoring of microwave path parameters, built on the basis of a broadband quadrature measurement method. The first sensor design is made on the basis of a symmetrical strip line, the second - on the basis of a segment of a coaxial line. Each of the microwave sensor designs consists of three parts: a directional coupler and two non-directional measuring probes. The microwave sensor is designed to operate in the 1 - 2 GHz frequency range. The paper also proposes a variant of the circuitry implementation of the built-in microwave control device, which implements the procedure for broadband automatic measurement of the complex reflection coefficient and the power level in the microwave path based on the method of quadrature measurements. The device solves the problem of long-term automatic monitoring of parameters and timely detection of the beginning degradation of the antenna-feeder path.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Directional Microwave"

1

Uysal, Sener. "Ultrawideband nonuniform quadrature directional couplers and their applications." Thesis, King's College London (University of London), 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339742.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Islam, S. "Multi-way mode-interference and warped-mode microwave combline directional couplers." Thesis, University of Cambridge, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383171.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Muller, Martinette. "Neural network models of slotted waveguide directional couplers." Thesis, Stellenbosch : Stellenbosch University, 2001. http://hdl.handle.net/10019.1/52354.

Повний текст джерела
Анотація:
Thesis (MScEng)--University of Stellenbosch, 2001.
ENGLISH ABSTRACT: The application of artificial neural networks to microwave circuits is investigated. A neural network model is developed for two parallel waveguides coupled by a longitudinal slot in the common broad wall. Training data is generated through a moment method solution of the integral equations that describe the structure. A systematic investigation of training options is carried out and the development of the model is described in detail. The model is evaluated and compared with an Adaptive Sampling Interpolation (ASI) Technique. The neural network is found to be less accurate than the ASI Technique at a much greater expense of development time and required user supervision.
AFRIKAANSE OPSOMMING: Die toepassing van neurale netwerke op mikrogolfbane is ondersoek. In Neurale netwerk-model is ontwikkel vir twee parallelle golfleiers met longitudinale gleufkoppeling in die gemeenskaplike bree wand. Data vir die opleiding van die netwerke is verkry deur In momentmetode-oplossing van die integraalvergelykings wat die struktuur beskryf. Verskillende ontwerpsopsies vir die netwerke is stelselmatig ondersoek en die ontwikkelingsproses van die netwerk is volledig beskryf. Die model is geevalueer en vergelyk met In Aanpasbare Monstering Interpolasietegniek (AMI). Daar is gevind dat die neurale netwerk minder akkuraat is as die AMI terwyl die koste aan ontwikkelingstyd en gebruikerstoesig hoer is.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

McWilliams, Brogan. "Approaches for improved precision of microwave thermal therapy." Thesis, Kansas State University, 2015. http://hdl.handle.net/2097/19088.

Повний текст джерела
Анотація:
Master of Science
Department of Electrical and Computer Engineering
Punit Prakash
Thermal therapies employing interstitial microwave applicators for hyperthermia or ablation are in clinical use for treatment of cancer and benign disease in various organs. However, treatment of targets in proximity to critical structures with currently available devices is risky due to unfocused deposition of energy into tissue. For successful treatment, complete thermal coverage of the tumor and margin of surrounding healthy tissue must be achieved, while precluding damage to critical structures. This thesis investigates two approaches to increase precision of microwave thermal therapy. Chapter 2 investigates a novel coaxial antenna design for microwave ablation (MWA) employing a hemi-cylinderical reflector to achieve a directional heating pattern. A proof of concept antenna with an S₁₁ of -29 dB at 2.45 GHz was used in ex vivo experiments to characterize the antennas’ heating pattern with varying input power and geometry of the reflector. Ablation zones up to 20 mm radially were observed in the forward direction, with minimal heating (less than 4 mm) behind the reflector. Chapter 3 investigates the use of magnetic nanoparticles (MNP) of varying size and geometry for enhancing microwave tissue heating. A conventional dipole, operating at 2.45 GHz and radiating 15 W, was inserted into a 20 mm radius sphere of distributed MNPs and heating measurements were taken 5 mm, 10 mm, and 15 mm radially away. A heating rate of 0.08°C/s was observed at 10 mm, an increase of 2-4 times that of the control measurement. These approaches provide strong potential for improving spatial control of tissue heating with interstitial and catheter-based microwave antennas.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhou, Mi. "Design of Tunable/Reconfigurable and Compact Microwave Devices." Thesis, University of North Texas, 2014. https://digital.library.unt.edu/ark:/67531/metadc500093/.

Повний текст джерела
Анотація:
With the rapid development of the modern technology, radio frequency and microwave systems are playing more and more important roles. Since the time the first microwave device was invented, they have been leading not only the military but also our daily life to a new era. In order to make the devices have more practical applications, more and more strict requirements have been imposed. For example, good adaptability, reduced cost and shrank size are highly required. In this thesis, three devices are designed based on this requirement. At first, a symmetric four-port microwave varactor based 90-degree directional coupler with tunable coupling ratios and reconfigurable responses is presented. The proposed coupler is designed based on the modified structure of a crossover, where varactors are loaded. Then, a novel reconfigurable 3-dB directional coupler is presented. Varactors and inductors are loaded to the device to realize the reconfigurable performance. By adjusting the voltage applied to the varactors, the proposed coupler can be reconfigured from a branch-line coupler (90-degree coupler) to a rat-race coupler (180 degree coupler) and vice versa. At last, two types (Type-I and Type-II) of microwave baluns with generalized structures are presented. Different from the conventional transmission-line-based baluns where λ/2 transmission lines or λ/4 coupled lines are used, the proposed baluns are constructed by transmission lines with arbitrary electrical lengths.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ozkal, Piroglu Sefika. "Analysis Of Coupled Lines In Microwave Printed Circuit Elements." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/2/12609047/index.pdf.

Повний текст джерела
Анотація:
Full wave analysis of microstrip lines at microwave frequencies is performed by using method of moments in conjunction with closed-form spatial domain Green&rsquo
s functions. The Green&rsquo
s functions are in general Sommerfeld-type integrals which are computationally expensive. To improve the efficiency of the technique, Green&rsquo
s functions are approximated by their closed-forms. Microstrip lines are excited by arbitrarily located current sources and are terminated by complex loads at both ends. Current distributions over microstrip lines are represented by rooftop basis functions. At first step, the current distribution over a single microstrip line is calculated. Next, the calculation of the current distributions over coupled microstrip lines is performed. The technique is then, applied to directional couplers. Using the current distributions obtained by the analysis, the scattering parameters of the structures are evaluated by using Prony&rsquo
s method. The results are compared with the ones gathered by using simulation software tools, CNL/2&trade
and Agilent Advanced Design System&trade
(ADS).
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Guerraou, Zaynab. "Rétrodiffusion micro-onde par la surface océanique en incidence élevée : approche conjointe expérimentale et théorique." Thesis, Toulon, 2017. http://www.theses.fr/2017TOUL0015/document.

Повний текст джерела
Анотація:
Un nombre croissant de données satellitaires et aéroportées acquises dans le domaine micro-ondes sur la surface demer est aujourd’hui disponible. L’interprétation correcte de ces observations dépend d’une part de la précision desmodèles de diffusion électromagnétiques, et d’une autre part de la maîtrise des propriétés hydrodynamiques etstatistiques de la surface. Ces dernières années ont connu une amélioration considérable des modèlesélectromagnétiques et spectraux. Cependant, certains phénomènes sont encore mal compris et non pris en comptepar ces modèles. En particulier, la variation angulaire de la surface de mer est à ce jour non totalement caractériséeet modélisée. Ce travail de thèse concerne l’étude de cette variation azimutale et des asymétries directionnelles de lasurface de mer. Une première étape consiste à effectuer une analyse expérimentale en se basant sur les données dela littérature mais également sur d’autres jeux de données acquises par l’ONERA et le DSTO. Cette analysepermettra de caractériser les asymétries directionnelles en fonction de la géométrie d’observation, l’état de mer et lafréquence électromagnétique. Une seconde étape consiste à proposer des mécanismes physiques pouvant être àl’origine des asymétries directionnelles. L’asymétrie upwind-crosswind étant essentiellement liée à la fonctiond’étalement du spectre directionnel, notre étude théorique a principalement porté sur la caractérisation del’asymétrie upwind-downwind. Nous étudions l’influence de la prise en compte des formes déferlantes, initialementà travers des formes simples de vagues fortement asymétriques, et ensuite à travers une distribution de pentesexpérimentale prenant en compte ces formes de vagues. Les asymétries obtenues par un modèle deux-échellesprenant en compte ces formes de vagues sont en accord qualitatif avec les asymétries observées pour les bandes defréquences X et L. Une étape supplémentaire consiste ensuite à calculer les asymétries obtenues par un code dediffusion rigoureux sur des profils numérisés d’une expérience en soufflerie et permet la validation des résultatsobtenus avec un modèle deux-échelles
An increasing number of airborne and spaceborne data acquired in the microwave regime on the sea surface is nowavailable. The appropriate interpretation of these observations depends on the precision of the electromagneticscattering models as well as the knowledge of hydrodynamic and statistical properties of the sea surface. Aconsiderable improvement has been realized in electromagnetic and spectral models in the recent years. However,some phenomena are still poorly understood and not correctly taken into account in these models. In particular, theangular variation of the sea surface is still not totally characterized and modeled. This PhD work concerns the studyof this azimuthal variation and the related directional asymmetries. A first step consists in carrying out anexperimental analysis based on data of the literature and other datasets acquired by ONERA and DSTO. Thisanalysis enables the characterization of the directional asymmetries with respect to acquisition geometry, sea stateand electromagnetic frequency. A second step consists in suggesting and testing physical mechanisms that may beat the origin of these directional asymmetries. As the upwind-crosswind asymmetry is essentially related to thespreading function of the directional spectrum, our theoretical study focused on the study of the upwind-downwindasymmetry. We investigate the influence of the presence breaking waves, initially through simple forms of stronglyasymmetric waves, and then through an experimental slope distribution including these wave forms. Theasymmetries obtained by a two-scale model taking into account these wave forms are in qualitative agreement withthe asymmetries observed at X and L bands. A further step consists in calculating the asymmetries using a rigorousmodel on digitized wind tank experiment profiles and allows the validation of the results previously obtained usinga two-scale model
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Melhem, Zeina. "Optimisation d'une structure résonante pour la réalisation d'un coupleur coplanaire miniature." Thesis, Saint-Etienne, 2012. http://www.theses.fr/2012STET4025.

Повний текст джерела
Анотація:
Les systèmes de télécommunications requièrent de plus en plus l’utilisation des composants passifs hyperfréquences. La commercialisation de ces composants nécessite la miniaturisation de leurs tailles, l’augmentation de leurs performances et la réduction de leurs coûts. Parmi ces composants passifs, nous citons le coupleur directionnel qui est un quadripôle destiné à répartir la puissance sur deux ports de sortie, le quatrième port reste isolé. Les travaux relatés dans ce manuscrit ont pour objectifs la conception et la réalisation d’un coupleur à accès coplanaires obtenu à partir d’un résonateur auquel nous avons appliqué des lignes de couplage. Un modèle équivalent approché a été mis en évidence par un logiciel de simulation circuit. Une étude paramétrique a été réalisée à l’aide d’un logiciel électromagnétique 3D pour fixer une règle de conception qui permet un dimensionnement convenable du composant pour un intervalle de fréquences prédéfinies. Un fonctionnement bi-bandes a été exploité pour chaque raccordement de la fréquence. Une deuxième structure de couplage a été déduite en reliant directement les lignes couplées sur le résonateur. Une étude paramétrique ainsi qu’une règle de conception ont mis en évidence un fonctionnement de coupleur mono-bande de cette structure à des fréquences prédéfinies. Une troisième structure qui fonctionne en coupleur a été exploitée en remplaçant le filtre résonateur par deux circuits en méandres. Ce nouveau coupleur à méandres présente des bandes passantes assez larges ainsi qu’un fonctionnement possible en bi-bandes. Ces coupleurs mis en œuvre peuvent assurer un couplage de l’ordre de 3 ; 6 ; 8 et 10 dB et d’un déphasage entre les deux ports de sortie de 180° pour les deux premières structures et de 90° pour le coupleur à méandres. Plusieurs séries de prototypes sont ensuite fabriquées à partir des structures optimisées en simulation. Les caractérisations hyperfréquences de ces composants montrent la performance des dispositifs réalisés
Telecommunications systems require more use of passive microwave components. The commercialization of these components requires the miniaturization of their size, increasing their performance and the reduction of their costs. Among these passive components we cited the directional coupler which is designated to spread the power between two outputs, the fourth port being isolated. The ambition of this work is to study and fabricate a coupler with coplanar access obtained from a resonator where we applied coupling lines. An equivalent approximate model was obtained using circuit simulation software. A parametric study was made using 3D electromagnetic software to fix a design rule that allows a suitable design for the component in a predefined frequency range. Dual-band operation has been exploited for each frequency. A second coupling structure was deduced by directly connecting the coupled lines to the resonator. A parametric study and a design rule have shown the operation of this structure as a single band coupler at predefined frequencies. A third structure which operates like a coupler has been exploited by replacing the resonator filter by two meandering circuits. This new meandering coupler presents a wide bandwidth and a possible operating in dual-band. These implemented couplers provided a coupling factor of 3, 6, 8 and 10 dB and a phase shift between the two output ports of 180° for the two first structures and a 90° phase shifter for the meandering coupler. Several sets of prototypes are then made. The microwave characterizations show the performance of the fabricated device
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Šikl, Tomáš. "Modelování dielektrických směrových odbočnic." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2011. http://www.nusl.cz/ntk/nusl-219120.

Повний текст джерела
Анотація:
Dielectric High-frequency transmission lines are natural alternative to the lines made of metal in term of low loss. These lines are mainly used in microwave techniques of measuring. The main object is to describe basic parameters of metal and dielectric transmission lines and their comparison. Next point is a basic overview of the excitation the lines from metal and it's application on dielectric transmission lines. Then make the simulation of microstrip directional couplers and coupler made by dielectric waveguides. The last point of work is construction these directional couplers and measuring their most important parameters.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Almustafa, Mohamad. "Modélisation des micro-plasmas, conception des circuits micro-ondes, Coupleur Directionnel Hybride pour Mesures et des applications en Télécommunication." Phd thesis, Toulouse, INPT, 2013. http://oatao.univ-toulouse.fr/14170/1/almustafa.pdf.

Повний текст джерела
Анотація:
L'intégration des nouveaux éléments basés sur la physique des plasmas dans le domaine des circuits et des systèmes micro-ondes est l'objectif de ce travail. En profitant des caractéristiques électromagnétiques des plasmas et en jouant sur leur architecture, on développe des micro-commutateurs micro-ondes et d'autres circuits radio et hyperfréquences en technologies microrubans ou en guide d'onde… La simulation de la propagation des ondes électromagnétiques dans un plasma et les études de l'interaction entre un plasma et les ondes électromagnétiques nécessite la connaissance des paramètres fondamentaux du plasma comme la permittivité. C'est pour cela qu'on étudie aussi les mesures plasmas par différents techniques comme la transmission/réflexion des ondes électromagnétiques, la perturbation des cavités résonnantes, ... Un schéma électrique équivalent modélisant un micro-commutateur hyperfréquence en plasma, est obtenu grâce aux mesures des courants de décharge électrique, à la rétro-simulation et aux techniques de modélisation numérique. Un coupleur directif hybride compact est utilisé pour les mesures plasmas en assurant la protection du matériel et de l'équipement de mesure des signaux d'un plasma.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Directional Microwave"

1

Malherbe, J. A. G. Microwave transmission line couplers. Norwood, MA: Artech House, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kennedy, K. Analysis of microwave directional couplers with phase variable mismatched loads. Dublin: University College Dublin, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Uysal, Sener. Nonuniform line microstrip directional couplers and filters. Boston: Artech House, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Elliott, Robert Stratman. An introduction to guided waves and microwave circuits. Englewood Cliffs, N.J: Prentice Hall, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gruszczyński, Sławomir. Design of quasi-ideal coupled lines and their applications in high-performance directional couplers. Kraków: AGH University of Science and Technology Press, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Elliott, Robert S. An introduction to guided waves and microwave circuits. Englewood Cliffs,N.J: Prentice Hall, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

An introduction to guided waves and microwavecircuits. Englewood Cliffs, N.J: Prentice Hall, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wincza, Krzysztof. Design of microwave networks with broadband directional couplers: Projektowanie układów mikrofalowych wykorzystujących szerokopasmowe sprzęgacze kierunkowe. Krakow: AGH University of Science and Technology Press, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lipsky, Stephen E. Microwave passive direction finding. New York: Wiley, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

K, Das Nirod, Bertoni Henry L, and International Symposium on Directions for the Next Generation of MMIC Devices and Systems (1996 : Brooklyn, New York, N.Y.), eds. Directions for the next generation of MMIC devices and systems. New York: Plenum Press, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Directional Microwave"

1

Owyang, Gilbert H. "Directional Couplers." In Foundations for Microwave Circuits, 261–323. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4613-8893-7_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jackson, F. C., and D. R. Lyzenga. "Microwave Techniques for Measuring Directional Wave Spectra." In Surface Waves and Fluxes, 221–64. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0627-3_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Takeda, A., M. Tokuda, and I. Watabe. "Measurements of Directional Sea Wave Spectra Using a Two-Frequency Microwave Scatterometer." In The Ocean Surface, 269–74. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-015-7717-5_36.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Archer, S. J. "Technical Update and Field Data from the New Generation Microwave Directional Wave Radar." In Advances in Underwater Technology, Ocean Science and Offshore Engineering, 3–17. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-3663-3_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cronin, N. J. "Microwave Mixers." In New Directions in Terahertz Technology, 29–51. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5760-5_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Michalski, Krzysztof A. "Integral Equation Analysis of Microwave Integrated Circuits." In Directions in Electromagnetic Wave Modeling, 347–54. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3677-6_33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Muntean, Cristina M., Gabriel Banciu, Onuc Cozar, and Andrei Ioachim. "Microwave response of DNA polymers with counterion distribution." In Spectroscopy of Biological Molecules: New Directions, 223–24. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4479-7_95.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Carsey, Frank D., Roger G. Barry, D. Andrew Rothrock, and Wilford F. Weeks. "Status and future directions for sea ice remote sensing." In Microwave Remote Sensing of Sea Ice, 443–46. Washington, D. C.: American Geophysical Union, 1992. http://dx.doi.org/10.1029/gm068p0443.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hayward, R. A., E. L. Rope, and G. Tricoles. "Diffracted Microwave Fields Near Dielectric Shells: Computation, Measurement, and Decomposition." In Directions in Electromagnetic Wave Modeling, 153–59. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3677-6_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Brehm, G., R. Peterson, H. Tserng, D. Purinton, A. Ketterson, and B. Ables. "Multilevel Packaging for Low Cost Microwave Functions." In Directions for the Next Generation of MMIC Devices and Systems, 61–68. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-1480-4_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Directional Microwave"

1

Bartik, Hynek. "Directional Attenuators." In 2008 14th Conference on Microwave Techniques (COMITE 2008). IEEE, 2008. http://dx.doi.org/10.1109/comite.2008.4569923.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yu, Chi Sun, Ka Tsun Mok, Wing Shing Chan, and Sai Wing Leung. "Switchless bi-directional amplifier." In 2006 Asia-Pacific Microwave Conference. IEEE, 2006. http://dx.doi.org/10.1109/apmc.2006.4429467.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hu, Nan, Qingsheng Zeng, Wenqing Xie, Shuang Liu, Jianrui Liu, Yanbin Luo, Yong Wu, Lixin Zhao, and Changyong Yuan. "Research on High Directional Waveguide Directional Coupler." In 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE, 2019. http://dx.doi.org/10.1109/icmmt45702.2019.8992547.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Turalchuk, Pavel, Irina Munina, Irina Vendik, Jia Ni, and Jiasheng Hong. "DC isolated directional coupler." In 2014 44th European Microwave Conference (EuMC). IEEE, 2014. http://dx.doi.org/10.1109/eumc.2014.6986377.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chun, Young-hoon, Jia-sheng Hong, Ju-young Moon, and Sang-won Yun. "High Directivity Directional Coupler using Metamaterial." In 2006 European Microwave Conference. IEEE, 2006. http://dx.doi.org/10.1109/eumc.2006.281323.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Awai, I., K. Hori, S. Yakuno, and K. Namikoshi. "Wireless power transmission based on directional coupler or directional filter." In 2010 IEEE/MTT-S International Microwave Symposium - MTT 2010. IEEE, 2010. http://dx.doi.org/10.1109/mwsym.2010.5515625.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Awai, Ikuo, Kunihito Hori, Shigeo Yakuno, and Kazuki Namikoshi. "Wireless power transmission based on directional coupler and directional filter." In 2010 IEEE/MTT-S International Microwave Symposium - MTT 2010. IEEE, 2010. http://dx.doi.org/10.1109/mwsym.2010.5518186.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Niyogi, Soumitra, James Scott, and Kamran Ghorbani. "Variable Directional Coupler Employing Microfluidics." In 2008 38th European Microwave Conference (EuMC). IEEE, 2008. http://dx.doi.org/10.1109/eumc.2008.4751424.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Drobotun, Nikolay, and Philipp Mikheev. "A 300khz-13.5ghz directional bridge." In 2015 European Microwave Conference (EuMC 2015). IEEE, 2015. http://dx.doi.org/10.1109/eumc.2015.7345756.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mangal, Vivek, Gabriele Atzeni, and Peter R. Kinget. "Multi-Antenna Directional Backscatter Tags." In 2018 48th European Microwave Conference (EuMC). IEEE, 2018. http://dx.doi.org/10.23919/eumc.2018.8541645.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Directional Microwave"

1

Xin, Hao. Human Ears Inspired Passive Microwave Direction Finding. Fort Belvoir, VA: Defense Technical Information Center, January 2009. http://dx.doi.org/10.21236/ada516464.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bernhard, J. T., P. E. Mayes, D. Schaubert, and R. J. Mailloux. A Commemoration of Deschamps� and Sichak�s �Microstrip Microwave Antennas�: 50 Years of Development, Divergence, and New Directions. Fort Belvoir, VA: Defense Technical Information Center, November 2006. http://dx.doi.org/10.21236/ada457574.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії