Добірка наукової літератури з теми "Direct-flow and axial-radial seal"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Direct-flow and axial-radial seal".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Direct-flow and axial-radial seal"
Daniels, W. A., B. V. Johnson, D. J. Graber, and R. J. Martin. "Rim Seal Experiments and Analysis for Turbine Applications." Journal of Turbomachinery 114, no. 2 (April 1, 1992): 426–32. http://dx.doi.org/10.1115/1.2929161.
Повний текст джерелаSun, Dan, Yan Ting Ai, Wan Fu Zhang, and Jian Gang Yang. "Design of a New Kind of the Radial Annular Seal for the Aeroengine." Advanced Materials Research 621 (December 2012): 326–29. http://dx.doi.org/10.4028/www.scientific.net/amr.621.326.
Повний текст джерелаKirk, R. Gordon. "A Method for Calculating Labyrinth Seal Inlet Swirl Velocity." Journal of Vibration and Acoustics 112, no. 3 (July 1, 1990): 380–83. http://dx.doi.org/10.1115/1.2930519.
Повний текст джерелаStadnik, Mykola, Serhiy Shargorodskiy, and Volodymyr Rutkevych. "ENSURING CONTINUOUS HYSTERESIS OF SPROAD ACTION VALVE SAFETY VALVES." ENGINEERING, ENERGY, TRANSPORT AIC, no. 4(111) (December 18, 2020): 100–108. http://dx.doi.org/10.37128/2520-6168-2020-4-11.
Повний текст джерелаBayley, F. J., and C. A. Long. "A Combined Experimental and Theoretical Study of Flow and Pressure Distributions in a Brush Seal." Journal of Engineering for Gas Turbines and Power 115, no. 2 (April 1, 1993): 404–10. http://dx.doi.org/10.1115/1.2906723.
Повний текст джерелаKaneko, S. "Application of Porous Materials to Annular Plain Seals: Part 2—Dynamic Characteristics." Journal of Tribology 112, no. 4 (October 1, 1990): 624–30. http://dx.doi.org/10.1115/1.2920307.
Повний текст джерелаZhulyov, A., V. Martsinkovsky, and C. Kundera. "Analysis of Forced Spatial Vibrations of a Centrifugal Pump Impeller with Axial Forces Balancing Device." International Journal of Applied Mechanics and Engineering 21, no. 3 (August 1, 2016): 737–50. http://dx.doi.org/10.1515/ijame-2016-0043.
Повний текст джерелаArauz, Grigory L., and Luis San Andre´s. "Analysis of Two-Phase Flow in Cryogenic Damper Seals—Part II: Model Validation and Predictions." Journal of Tribology 120, no. 2 (April 1, 1998): 228–33. http://dx.doi.org/10.1115/1.2834414.
Повний текст джерелаChilds, D., and F. Garcia. "Test Results for Sawtooth-Pattern Damper Seals: Leakage and Rotordynamic Coefficients." Journal of Tribology 109, no. 1 (January 1, 1987): 124–28. http://dx.doi.org/10.1115/1.3261303.
Повний текст джерелаDogu, Yahya. "Investigation of Brush Seal Flow Characteristics Using Bulk Porous Medium Approach." Journal of Engineering for Gas Turbines and Power 127, no. 1 (January 1, 2005): 136–44. http://dx.doi.org/10.1115/1.1808425.
Повний текст джерелаДисертації з теми "Direct-flow and axial-radial seal"
Максюта, Дмитрий Игоревич. "Комбинированный метод аэродинамической оптимизации ступени осевой турбины". Thesis, НТУ "ХПИ", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/21648.
Повний текст джерелаThesis for degree of Candidate of Sciences in Technique for speciality 05.05.16 – turbomachinery and turbine-installations. – National Technical University "Kharkiv Polytechnical Institute", Kharkiv, 2016. This thesis deals with the development of the combined method of aerodynamic optimization of the axial turbine stage, based on the iterative usage of one-dimensional and three-dimensional theories, thereby can significantly improve the efficiency of the entire stage taking into account the nature of the flow around turbine profiles and the impact of leakage on it. Based on current trends of using computational fluid dynamic methods (CFD) while optimizing of the flow path of the axial turbines, with engaging the largest pos-sible number of control parameters in the optimization process, the combined optimization method is provided. Developed method uses one-dimensional and three-dimensional optimization theories and can noticeably improve aerodynamic efficiency of whole turbine stage, thus significantly saving the time required for the simulations. A three-step comprehensive comparison of the results of simulations with the experimental data confirmed the accuracy of CFD usage while developing the optimization method. To calculate amount of leakage in the radial clearance during one-dimensional optimization phase more accurate, the methodology of flow rate determining in axial-radial seals depending on geometrical, operational characteristics and considering rotor against stator displacement was developed using a series of CFD simulations. Advanced CFD study was conducted to compare the axial-radial seal with the straight-flow one and to identify the new more effective designs of seal. It was shown that creation of artificial roughness on the shaft of the straight-flow seal could reduce the leakage by 45 % compared to the axial-radial seal. Utilizing the developed optimization method and the methodology of leakage calculation in the axial-radial seal, the optimization of the 3rd stage of the high pressure turbine K-540-23,5 was made. As a result of the optimization a new stage with an absolute efficiency increase more than 1 % compared to the original design was obtained.
Максюта, Дмитро Ігорович. "Комбінований метод аеродинамічної оптимізації ступеня осьової турбіни". Thesis, НТУ "ХПІ", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/21646.
Повний текст джерелаThesis for degree of Candidate of Sciences in Technique for speciality 05.05.16 – turbomachinery and turbine-installations. – National Technical University "Kharkiv Polytechnical Institute", Kharkiv, 2016. This thesis deals with the development of the combined method of aerodynamic optimization of the axial turbine stage, based on the iterative usage of one-dimensional and three-dimensional theories, thereby can significantly improve the efficiency of the entire stage taking into account the nature of the flow around turbine profiles and the impact of leakage on it. Based on current trends of using computational fluid dynamic methods (CFD) while optimizing of the flow path of the axial turbines, with engaging the largest pos-sible number of control parameters in the optimization process, the combined optimization method is provided. Developed method uses one-dimensional and three-dimensional optimization theories and can noticeably improve aerodynamic efficiency of whole turbine stage, thus significantly saving the time required for the simulations. A three-step comprehensive comparison of the results of simulations with the experimental data confirmed the accuracy of CFD usage while developing the optimization method. To calculate amount of leakage in the radial clearance during one-dimensional optimization phase more accurate, the methodology of flow rate determining in axial-radial seals depending on geometrical, operational characteristics and considering rotor against stator displacement was developed using a series of CFD simulations. Advanced CFD study was conducted to compare the axial-radial seal with the straight-flow one and to identify the new more effective designs of seal. It was shown that creation of artificial roughness on the shaft of the straight-flow seal could reduce the leakage by 45 % compared to the axial-radial seal. Utilizing the developed optimization method and the methodology of leakage calculation in the axial-radial seal, the optimization of the 3rd stage of the high pressure turbine K-540-23,5 was made. As a result of the optimization a new stage with an absolute efficiency increase more than 1 % compared to the original design was obtained.
Stieha, Joseph K. "INVESTIGATION OF AN AXIAL FLOW ROTARY VALVE SEAL." UKnowledge, 2017. https://uknowledge.uky.edu/me_etds/101.
Повний текст джерелаDahlqvist, Johan. "Cavity Purge Flows in High Pressure Turbines." Doctoral thesis, KTH, Kraft- och värmeteknologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-218468.
Повний текст джерелаStrömningsmaskinen i dess olika variationer bildar den främsta drivmotorn inom kraftproduktion och flygindustrin. En förbättring av denna väldiga maskinpark har potentialen till betydande inverkan på globala utsläpp. Områden som identifierats kunna dra nytta av vidare forskning är ombandningsprocesser och kylning. Dessa områden är inneboende i stationära gasturbiner och jetmotorer på grund av de heta gaser som används. Kylning uppnås genom injektion av kall luft i kritiska områden och försäkrar därmed säker drift. Kylningen kommer dock till en kostnad. På cykelnivå krävs arbete för att komprimera flödet till korrekt tryck. Dessutom medför injektionen i sig förluster som kan härledas till omblandningsprocessen. Syftet med detta arbete är att samtidigt undersöka de fördelaktiga kylegenskaperna som nackdelarna med inblandning för att på så sätt bestämma den uppoffring som måste göras för en viss kylning. Alla förbättringar tros dock inte behöva föregås av en uppoffring. Om påverkan av kylningen på huvudflödet är välförstådd kan designen justeras för att ta hänsyn till denna förändring och minimera inverkan. Denna metodologi riktar sig mot ett särskilt kylflöde, kavitetsrensningsflödet, som har till uppgift att avlägsna het luft från den kavitet som uppkommer uppströms rotorskivan i ett högtrycksturbinsteg. Studien kretsar kring en turbinprovanläggning som möjliggör detaljerade strömningsmätningar i ett roterande turbinsteg under inverkan av kavitetsrensningsflödet. Högtrycksturbinsteget som används för undersökningen är av låg reaktionsgrad. Här kvantifieras generell prestanda genom mätning av vridmomentet på utgående axel. Flödesfältet kvantifieras med pneumatiska sonder, och kylningsprestandan predikteras genom gaskoncentrationsmätningar. Resultaten visar avvägningen och sambandet mellan turbinverkningsgrad och kylning i kavitet samt huvudkanal. Flödet mäts i detalj, och de effekter som kan förväntas uppkomma då ett turbinsteg utsätts för en viss mängd av kylflödet kvantifieras. De kvantitativa resultaten för det undersökta steget visar på en förlust i verkningsgrad på 1.2 procentenheter för varje procentenhet av kavitetsrensningsflödet i termer om massflödesförhållande. Samtidigt ses kyleffektiviteten öka med 40 procentenheter. Den lokala inverkan på flödesfältet nedströms rotorn för det undersökta steget är 2° i flödesvinken och en ändring på 0.01 i Machnummer för varje procentenhet av kylflödet. Dessa ändringar ses i form av ökad omlänkning och reducerad hastighet nära hubben, och vice versa omkring halva spännvidden. Inverkan av aktuell driftpunkt understryks genom arbetet. Det har också visats att ett läckage som kringgår rotorbladen i vissa kan fall ge fördelaktig kylning i områden nedströms. Denna kombinerade kunskap kan användas för design av turbiner med så låg mängd kylning som möjligt samtidigt som säker drift bibehålls. Den negativa inverkan av den återstående kylningen kan minimeras genom kunskapen om hur flödesfältet påverkas. Genom detta optimeras stegverkningsgraden aerodynamiskt, omblandningsförluster minimeras, och cykeleffekten maximeras genom det minskade kompressionsarbetet till följd av de reducerade kylmängderna. Kombinationen kan ge en betydande förbättring för turbinindustrin och minskade utsläpp.
QC 20171129
Flores, Diego [Verfasser], and Jörg [Akademischer Betreuer] Seume. "Influence of labyrinth seals in cavities on the flow of an axial compressor / Diego Flores ; Betreuer: Jörg Seume." Hannover : Gottfried Wilhelm Leibniz Universität Hannover, 2018. http://d-nb.info/1168379962/34.
Повний текст джерелаFlores, Galindo Diego Rodrigo [Verfasser], and Jörg [Akademischer Betreuer] Seume. "Influence of labyrinth seals in cavities on the flow of an axial compressor / Diego Flores ; Betreuer: Jörg Seume." Hannover : Gottfried Wilhelm Leibniz Universität Hannover, 2018. http://nbn-resolving.de/urn:nbn:de:101:1-2018100402081060711538.
Повний текст джерелаFiore, Maxime. "Influence of cavity flow on turbine aerodynamics." Thesis, Toulouse, ISAE, 2019. http://www.theses.fr/2019ESAE0013/document.
Повний текст джерелаIn order to deal with high temperatures faced by the components downstreamof the combustion chamber, some relatively cold air is bled at the compressor.This air feeds the cavities under the turbine main annulus and cool down the rotordisks ensuring a proper and safe operation of the turbine. This thesis manuscriptintroduces a numerical study of the effect of the cavity flow close to the turbine hubon its aerodynamic performance. The interaction phenomena between the cav-ity andmain annulus flow are not currently fully understood. The study of these phenomenais performed based on different numerical approaches (RANS, LES and LES-LBM)applied to two configurations for which experimental results are avail-able. A linearcascade configuration with an upstream cavity and various rim seal geometries(interface between rotor and stator platform) and cavity flow rate avail-able. Arotating configuration that is a two stage turbine including cavities close to realisticindustrial configurations. Additional losses incurred by the cavity flow are measuredand studied using a method based on exergy (energy balance in the purpose togenerate work)
"Experimental Study of Main Gas Ingestion in a Subscale 1.5-stage Axial Flow Air Turbine." Master's thesis, 2015. http://hdl.handle.net/2286/R.I.36468.
Повний текст джерелаDissertation/Thesis
Masters Thesis Engineering 2015
Частини книг з теми "Direct-flow and axial-radial seal"
Rajesh, P., J. Sharana Basavaraja, and V. Arun Kumar. "Experimental Analysis for Leakage Flow in a Newly Designed Finger Seal with Axial Wedge." In Lecture Notes in Mechanical Engineering, 138–40. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9949-8_27.
Повний текст джерелаRajesh, P., J. Sharana Basavaraja, and V. Arun Kumar. "Comparison of Leakage Flow Performance Analysis of Newly Designed Finger Seal with Radial Wedge." In Lecture Notes in Mechanical Engineering, 135–37. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9949-8_26.
Повний текст джерелаAnker, Jan E., Jürgen F. Mayer, and Heinz Stetter. "Computational Study of the Flow in an Axial Turbine with Emphasis on the Interaction of Labyrinth Seal Leakage Flow and Main Flow." In High Performance Computing in Science and Engineering ’01, 363–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56034-7_35.
Повний текст джерелаTaviani, M. "Axial sedimentation of the Red Sea Transitional Region (22°–25° N): pelagic, gravity flow and sapropel deposition during the late Quaternary." In Sedimentation and Tectonics in Rift Basins Red Sea:- Gulf of Aden, 467–78. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4930-3_25.
Повний текст джерелаRoy, Apurba Kumar, Supriyo Roy, and Kaushik Kumar. "Strategic Designing and Optimization of Mixed Flow Impeller Blades for Maritime Applications." In Handbook of Research on Military, Aeronautical, and Maritime Logistics and Operations, 470–508. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9779-9.ch025.
Повний текст джерелаBerthier, Y., P. Jacquemard, and M. H. Meurisse. "From Phenomenology to the Concepts which flow from the Third Body. Application to Radial Face Seal." In Tribology Series, 91–102. Elsevier, 1996. http://dx.doi.org/10.1016/s0167-8922(08)70773-9.
Повний текст джерела"*! few inches up to around 3 ft depending on the manufacturer. The impellers are of cast construction, which reduces the cost but also obviates customizing of the impeller with-out incurring added cost. Propeller mixers can be installed on a vertical centerline, on an angle off the vertical, or through the sidewall of the process vessel. Centerline installation requires the use of baffles in the vessel. Side-entering designs offer the advantage of very ef-fective pumping for low horsepower and low initial cost in large vessels over 1000 gal. However, side-entering designs must have a seal that has to contend with side loads of the candlevered shaft. This has been a problem in some critical sanitary applications. However, if the batches are very large, a side-entering prop mixer may be a logical alternative to top-centerline-installed axial- and radial-flow turbines. The most often used installation configuration is the top-entering angled method. This method produces a good circulation pattern in the process mixing tank without the." In Pharmaceutical Dosage Forms, 334. CRC Press, 1998. http://dx.doi.org/10.1201/9781420000955-38.
Повний текст джерелаТези доповідей конференцій з теми "Direct-flow and axial-radial seal"
Wang, Cheng-Zhang, Bruce V. Johnson, Frederick De Jong, T. K. Vashist, and Rajib Dutta. "Comparison of Flow Characteristics in Axial-Gap Seals for Close- and Wide-Spaced Turbine Stages." In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27909.
Повний текст джерелаChen, Shuxian, Zhigang Li, Jun Li, Xin Yan, and Liming Song. "Numerical Investigations on the Sealing Effectiveness of Turbine Groove Radial Rim Seal." In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-90205.
Повний текст джерелаXie, Lei, Qiang Du, Guang Liu, Zengyan Lian, and Ran Ren. "Investigation of Unsteady Flow Characteristics in Axial Rim Seal." In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-58822.
Повний текст джерелаMizuta, H., S. Nakaoka, Y. Sato, and J. Sugimura. "Simulation of Gas Transportation in Radial Shaft Seal With Model Surfaces." In STLE/ASME 2010 International Joint Tribology Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ijtc2010-41260.
Повний текст джерелаLi, Zhigang, Jun Li, Liming Song, Qing Gao, Xin Yan, and Tieyu Gao. "Effect of Outer Fin Axial Gap on the Sealing Effectiveness and Fluid Dynamics of Radial Rim Seal." In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-63505.
Повний текст джерелаDa Soghe, Riccardo, Cosimo Bianchini, Carl M. Sangan, James A. Scobie, and Gary D. Lock. "Numerical Characterization of Hot Gas Ingestion Through Turbine Rim Seals." In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-57421.
Повний текст джерелаInnocenti, Luca, Stefania Ricupero, Rajeev Kumar Pandit, and Nuo Sheng. "Experimental Analysis of Abradable Labyrinth Seal Leakage With Simulated Groove: Part 2." In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-95646.
Повний текст джерелаBohn, Dieter E., Achim Decker, Nils Ohlendorf, and Ralf Jakoby. "Influence of an Axial and Radial Rim Seal Geometry on Hot Gas Ingestion Into the Upstream Cavity of a 1.5-Stage Turbine." In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90453.
Повний текст джерелаLei, Xie, Wang RuoNan, Liu Guang, Lian ZengYan, and Du Qiang. "Numerical Investigation on Unsteady Characteristics in Different Rim Seal Geometries: Part A." In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-14832.
Повний текст джерелаBayley, F. J., and C. A. Long. "A Combined Experimental and Theoretical Study of Flow and Pressure Distributions in a Brush Seal." In ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/92-gt-355.
Повний текст джерела