Добірка наукової літератури з теми "Dipole trapping"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Dipole trapping".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Dipole trapping"
Al-Marzoug, S. M. "Scattering of a discrete soliton by impurity in dipolar Bose–Einstein condensates." International Journal of Modern Physics B 28, no. 30 (December 4, 2014): 1450214. http://dx.doi.org/10.1142/s0217979214502142.
Повний текст джерелаWebster, S. A., G. Hechenblaikner, S. A. Hopkins, J. Arlt, and C. J. Foot. "Dipole force trapping of caesium atoms." Journal of Physics B: Atomic, Molecular and Optical Physics 33, no. 19 (September 15, 2000): 4149–55. http://dx.doi.org/10.1088/0953-4075/33/19/323.
Повний текст джерелаWilliams, J. F., J. B. Wang, and C. J. Carter. "A Monte Carlo Study of Radiation Trapping Effects." Australian Journal of Physics 50, no. 3 (1997): 645. http://dx.doi.org/10.1071/p96099.
Повний текст джерелаSripakdee, Chatchawal. "The Investigation of WGM Effective Potential from Micro PANDA Ring Resonator." Applied Mechanics and Materials 866 (June 2017): 337–40. http://dx.doi.org/10.4028/www.scientific.net/amm.866.337.
Повний текст джерелаGoldstein, E., P. Pax, K. J. Schernthanner, B. Taylor, and P. Meystre. "Influence of the dipole-dipole interaction on velocity-selective coherent population trapping." Applied Physics B Laser and Optics 60, no. 2-3 (1995): 161–67. http://dx.doi.org/10.1007/bf01135858.
Повний текст джерелаDAVYDOVA, T. A., and V. M. LASHKIN. "Drift-wave trapping by drift vortices." Journal of Plasma Physics 58, no. 1 (July 1997): 11–18. http://dx.doi.org/10.1017/s002237789700562x.
Повний текст джерелаHu, Fang-Qi, and Ju-Kui Xue. "Breathing dynamics of a trapped impurity in a dipolar Bose gas." Modern Physics Letters B 28, no. 22 (August 30, 2014): 1450185. http://dx.doi.org/10.1142/s0217984914501851.
Повний текст джерелаDubau-Assibat, Nathalie, Antoine Baceiredo, and Guy Bertrand. "Lawesson's Reagent: An Efficient 1,3-Dipole Trapping Agent." Journal of Organic Chemistry 60, no. 12 (June 1995): 3904–6. http://dx.doi.org/10.1021/jo00117a050.
Повний текст джерелаAldossary, O. M. "Bottle atom trapping configuration by optical dipole forces." Journal of King Saud University - Science 26, no. 1 (January 2014): 29–35. http://dx.doi.org/10.1016/j.jksus.2013.08.002.
Повний текст джерелаLee, Jong-Hoon, Junghwan Kim, Geunjin Kim, Dongguen Shin, Song Yi Jeong, Jinho Lee, Soonil Hong, et al. "Introducing paired electric dipole layers for efficient and reproducible perovskite solar cells." Energy & Environmental Science 11, no. 7 (2018): 1742–51. http://dx.doi.org/10.1039/c8ee00162f.
Повний текст джерелаДисертації з теми "Dipole trapping"
Harsono, Andrian. "Dipole trapping and manipulation of ultra-cold atoms." Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.437007.
Повний текст джерелаLevonian, David (David S. ). "A Cavity-stabilized diode laser for dipole trapping of ytterbium." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/105998.
Повний текст джерелаThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 99-103).
Bad-cavity lasers using a gain medium with a narrower linewidth than the laser cavity have the potential to achieve very narrow linewidths and extremely long coherence times. Such lasers could serve as active frequency standards or enable very-long-baseline interferometric telescopes at optical frequencies. The 6s6p³P₀ to 6s²¹S₀ ground state transition in ¹⁷¹Yb is a promising candidate for the gain medium of a bad-cavity laser due to its 44 mHz linewidth. For ytterbium to be used efficiently as a gain medium, its inhomogeneous broadening must be suppressed to a level lower than the linewidth of its gain transition. In this thesis, I design, implement, and characterize an optical lattice trap for ytterbium atoms. The trap consists of a diode laser which is frequency stabilized to an adjustable-length cavity where the ytterbium atoms are trapped. The length of this cavity is then locked by comparison of the laser frequency to a stable reference cavity. The resulting standing wave has high enough intensity that the recoil energy of the gain transition is smaller than the energy spacing between motional modes of the trapped atoms. This situation is known as the Lamb-Dicke regime and means that there is an absence of recoil broadening. The large spacing between motional modes of the trap also enables sideband resolved cooling of the atoms, which allows cooling to temperatures of 3 [mu]K, near the ground state of the trapping potential. Additionally, if the wavelength of the optical lattice is chosen to be at the magic wavelength for ytterbium, where the relative AC Stark shift for the two levels of the gain transition is zero to first order, there is no broadening due to varying intensity in the trap. Since the Doppler effect, recoil broadening and the AC Stark shift are the main sources of inhomogeneous broadening, this trapping scheme is expected to suppress inhomogeneous broadening to a level of 1 Hz.
by David Levonian.
M. Eng.
Van, Dongen Janelle. "Simultaneous cooling and trapping of 6Li and 85/87Rb." Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/351.
Повний текст джерелаGatto, Alexandro [Verfasser]. "Trapping fermionic potassium atoms in a quasi-electrostatic optical dipole potential / Alexandro Gatto." Bonn : Universitäts- und Landesbibliothek Bonn, 2012. http://d-nb.info/104408149X/34.
Повний текст джерелаWebster, Stephen. "Prospects for Bose-Einstein condensation in caesium : cold collisions and dipole-force trapping." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325563.
Повний текст джерелаBlackhurst, Tyler D. "Numerical Investigation of Internal Wave-Vortex Dipole Interactions." BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3133.
Повний текст джерелаKalita, Mukut R. "Search for a Permanent Electric Dipole Moment of 225Ra." UKnowledge, 2015. http://uknowledge.uky.edu/physastron_etds/34.
Повний текст джерелаKrasselt, Cornelius. "Dynamik der Photo-Lumineszenz-Unterbrechung von Halbleiter-Nanokristallen in elektrischen Feldern." Doctoral thesis, Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-172910.
Повний текст джерелаKondo, Jorge Douglas Massayuki. "Estudo de colisões entre átomos de Rydberg ultrafrios em amostras atômicas aprisionadas numa armadilha óptica de dipolo." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/76/76131/tde-03022015-171234/.
Повний текст джерелаIn this paper, we study collisions between ultracold Rydberg atoms in a high density atomic sample trapped in an optical dipole trap (ODT), type QUEST (Quasi Electrostatic Trap). Our goals included testing the manifestation of many-body phenomena and to study anisotropy effects in collisional processes involving two Rydberg atoms. In order to do this, we have chosen the collision process described by 5/2+5/2(+2)3/2+(2)7/2 in the range of 37 ≤ ≤47. The process was studied in the presence and absence of a dc static electric field, also known as Förster resonances. The results show that even at high atomic density, two-body interaction dominates de process, despite the clear manifestation of Rydberg blockade. After several improvements in our experimental setup, we have studied also a Förster resonance peak 375/2+375/2393/2+357/2 as a function of the magnitude of the dc static electric field as well as the angle between this field and the longitudinal axis of the ODT. We discuss the results and future challenges of the experiment.
Xiao, Hau-Yl, and 蕭豪毅. "Trapping Cold Atoms with an Optical Dipole Trap." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/14163296521974752188.
Повний текст джерелаКниги з теми "Dipole trapping"
Evans, D. R. Non-dipolar magnetic field models and patterns of radio emission: Uranus and Neptune compared : final report. [Washington, DC: National Aeronautics and Space Administration, 1994.
Знайти повний текст джерелаUnited States. National Aeronautics and Space Administration., ed. Non-dipolar magnetic field models and patterns of radio emission: Uranus and Neptune compared : final report. [Washington, DC: National Aeronautics and Space Administration, 1994.
Знайти повний текст джерелаUnited States. National Aeronautics and Space Administration., ed. Non-dipolar magnetic field models and patterns of radio emission: Uranus and Neptune compared : final report. [Washington, DC: National Aeronautics and Space Administration, 1994.
Знайти повний текст джерелаTrenkwalder, Andreas. Design of a Resonator Dipole Trap: A Report About the Design of a Resonator Enhanced Optical Dipole Trap Aimed for Trapping a Mixture of Fermionic Species. VDM Verlag Dr. Mueller E.K., 2008.
Знайти повний текст джерелаWolf, E. L. More about the Atmosphere, Molecules, and their Interaction with Radiation. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198769804.003.0007.
Повний текст джерелаЧастини книг з теми "Dipole trapping"
"Spinor Condensates in Optical Dipole Traps." In Optical Trapping and Manipulation of Neutral Particles Using Lasers, 291–93. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774897_0018.
Повний текст джерела"Trapping of Single Atoms in an Off-Resonance Optical Dipole Trap." In Optical Trapping and Manipulation of Neutral Particles Using Lasers, 333–36. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774897_0022.
Повний текст джерелаShimoda, Koichi. "Trapping and Cooling of Neutral Atoms with the Dipole Force of a Laser Beam." In Laser Spectroscopy, 16–19. Elsevier, 1989. http://dx.doi.org/10.1016/b978-0-12-251930-7.50009-1.
Повний текст джерела"Relationships Among Ferroelectric Fatigue, Electronic Charge Trapping, Defect-Dipoles, and Oxygen Vacancies in Perovskite Oxides." In Science and Technology of Integrated Ferroelectrics, 519–28. CRC Press, 2001. http://dx.doi.org/10.1201/9781482283365-46.
Повний текст джерелаRaspertova, Ilona, and Rostyslav Lampeka. "NITRONE AS LIGANDS: STRUCTURE, PROPERTIES AND FUNCTIONALITY." In Development of scientific, technological and innovation space in Ukraine and EU countries. Publishing House “Baltija Publishing”, 2021. http://dx.doi.org/10.30525/978-9934-26-151-0-36.
Повний текст джерелаТези доповідей конференцій з теми "Dipole trapping"
Watts, Molly, Gadi Afek, Sarah Dickson, Fernando Monteiro, Luke Mozarsky, Juan Recoaro, Benjamin Siegel, Yu-Han Tseng, Jiaxiang Wang, and David C. Moore. "Controlling electric dipole moments in levitated optomechanics." In Optical Trapping and Optical Micromanipulation XIX, edited by Kishan Dholakia and Gabriel C. Spalding. SPIE, 2022. http://dx.doi.org/10.1117/12.2634071.
Повний текст джерелаBradac, C., M. L. Juan, B. Besga, G. Molina-Terriza, and T. Volz. "Observation of Atomic Dipole Forces in Optically Trapped Nanodiamonds Containing NV Centres, in a Liquid Environment." In Optical Trapping Applications. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/ota.2015.ott1d.6.
Повний текст джерелаAntipov, Sergey, and Sergei Nagaitsev. "Electron cloud trapping in combined function dipole magnets." In 38th International Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.282.0773.
Повний текст джерелаZhang, Weihua, and Olivier J. F. Martin. "Optical trapping and sensing with plasmonic dipole antennas." In SPIE NanoScience + Engineering, edited by Mark I. Stockman. SPIE, 2010. http://dx.doi.org/10.1117/12.864225.
Повний текст джерелаChu, Steven. "Laser cooling and trapping." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.tujj1.
Повний текст джерелаLee, Heun-Jin, Charles Adams, Nir Davidson, Brent Young, Martin Weitz, Mark Kasevich, Steven Chu, D. J. Wineland, C. E. Wieman, and S. J. Smith. "Dipole Trapping, Cooling in Traps, and Long Coherence Times." In ATOMIC PHYSICS 14: Fourteenth International Conference on Atomic Physics. AIP, 1994. http://dx.doi.org/10.1063/1.2946010.
Повний текст джерелаBrandt, L., C. Muldoon, E. Brainis, and A. Kuhn. "Towards a scalable dipole-trapping scheme for neutral atoms." In 2008 Conference on Lasers and Electro-Optics (CLEO). IEEE, 2008. http://dx.doi.org/10.1109/cleo.2008.4551977.
Повний текст джерелаGould, P. L., A. L. Migdall, H. J. Metcalf, and W. D. Phillips. "Dipole laser trap for neutral atoms." In International Laser Science Conference. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/ils.1986.wf3.
Повний текст джерелаGarcía, Luis D., Lawrence C. Cheung, James C. Mikkelsen, Juan G. Santiago, Anthony F. Bernhardt, and Vincent Malba. "A Sub-Millimeter Solenoid Device for Trapping Paramagnetic Microbeads." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/mems-23880.
Повний текст джерелаScielzo, N. D. "Progress Towards Laser Trapping of 225Ra for an Electric Dipole Moment Measurement." In PARTICLES AND NUCLEI: Seventeenth Internatinal Conference on Particles and Nuclei. AIP, 2006. http://dx.doi.org/10.1063/1.2220382.
Повний текст джерела