Добірка наукової літератури з теми "Dioxide de vanadium"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Dioxide de vanadium".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Dioxide de vanadium":

1

Pergament, Alexander, Genrikh Stefanovich, and Andrey Velichko. "Oxide Electronics and Vanadium Dioxide Perspective: A Review." Journal on Selected Topics in Nano Electronics and Computing 1, no. 1 (December 2013): 24–43. http://dx.doi.org/10.15393/j8.art.2013.3002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wang, Xiaoyan, Yanfei Liu, Yilin Jia, Ningning Su, and Qiannan Wu. "Ultra-Wideband and Narrowband Switchable, Bi-Functional Metamaterial Absorber Based on Vanadium Dioxide." Micromachines 14, no. 7 (July 6, 2023): 1381. http://dx.doi.org/10.3390/mi14071381.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A switchable ultra-wideband THz absorber based on vanadium dioxide was proposed, which consists of a lowermost gold layer, a PMI dielectric layer, and an insulating and surface vanadium dioxide layer. Based on the phase transition properties of vanadium dioxide, switching performance between ultra-broadband and narrowband can achieve a near-perfect absorption. The constructed model was simulated and analyzed using finite element analysis. Simulations show that the absorption frequency of vanadium dioxide above 90% is between 3.8 THz and 15.6 THz when the vanadium dioxide is in the metallic state. The broadband absorber has an absorption bandwidth of 11.8 THz, is insensitive to TE and TM polarization, and has universal incidence angle insensitivity. When vanadium dioxide is in the insulating state, the narrowband absorber has a Q value as high as 1111 at a frequency of 13.89 THz when the absorption is more excellent than 99%. The absorber proposed in this paper has favorable symmetry properties, excellent TE and TM wave insensitivity, overall incidence angle stability, and the advantages of its small size, ultra-widebands and narrowbands, and elevated Q values. The designed absorber has promising applications in multifunctional devices, electromagnetic cloaking, and optoelectronic switches.
3

Luo, Min, Ji Qiang Gao, Xiao Zhang, Da Ouyang, Jian Feng Yang, and Jian Feng Zhu. "Synthesis of VO2 Nanocrystalline via Hydrothermal Method." Key Engineering Materials 336-338 (April 2007): 2021–23. http://dx.doi.org/10.4028/www.scientific.net/kem.336-338.2021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Vanadium dioxide nanocrystalline of various morphology have been synthesized from V2O5 sol and organic molecules as the structure-directing templates under hydrothermal conditions. XRD, TEM and SEM are applied to study the characteristics of samples. Cetyltrimethylammonium bromide (CTAB) and sodium dodecylbenzenesulfonate (SDBS) are demonstrated to be appropriate templates for the formation of vanadium dioxide nanocrystalline. The probable formation mechanisms of the vanadium dioxide are also discussed.
4

Ojha, P. K., and S. K. Mishra. "Synthesis & characterization of nanostructure VO2 thin film." Journal of Physics: Conference Series 2070, no. 1 (November 1, 2021): 012098. http://dx.doi.org/10.1088/1742-6596/2070/1/012098.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Vanadium dioxides are strongly correlated systems which undergo an insulator-metal transition (IMT) from a low-temperature semiconducting phase to a high-temperature metallic phase. Among them, Vanadium dioxide (VO2) undergoes IMT close to room temperature, accompanied by a structural transition resulting change of several orders of magnitude in the electrical and optical properties. Here, we present the synthesis of VO2 by sol-gel process which employs cost-effective precursors to synthesize pure phase of VO2 thin films. The synthesized thin films were characterized using an X-ray diffraction (XRD) to confirm phase purity and high resolution scanning electron microscope (HR-SEM) to study the crystallite and particle size for the synthesized films. The film’s surface was analyzed by X-ray photoelectron spectroscopy (XPS) to determine the valence state and chemical composition of vanadium dioxide.
5

Shi, Jia, Robijn Bruinsma, and Alan R. Bishop. "Theory of vanadium dioxide." Synthetic Metals 43, no. 1-2 (June 1991): 3527–30. http://dx.doi.org/10.1016/0379-6779(91)91342-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Marucco, J. F., B. Poumellec, and F. Lagnel. "Stoichiometry of vanadium dioxide." Journal of Materials Science Letters 5, no. 1 (January 1986): 99–100. http://dx.doi.org/10.1007/bf01671452.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rakotoniaina, J. C., R. Mokrani-Tamellin, J. R. Gavarri, G. Vacquier, A. Casalot, and G. Calvarin. "The Thermochromic Vanadium Dioxide." Journal of Solid State Chemistry 103, no. 1 (March 1993): 81–94. http://dx.doi.org/10.1006/jssc.1993.1081.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pinto, H. M., Joao Correia, Russell Binions, Clara Piccirillo, Ivan P. Parkin, and Vasco Teixeira. "Determination of the Optical Constants of VO2 and Nb-Doped VO2 Thin Films." Materials Science Forum 587-588 (June 2008): 640–44. http://dx.doi.org/10.4028/www.scientific.net/msf.587-588.640.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A numerical model was developed which enables the calculation of the optical constants (refractive index, n and extinction coefficient, k) of thermochromic coatings based in undoped and doped vanadium dioxide thin coatings deposited on glass for use as an intelligent window - a window that can change the optical properties in response to the temperature. From experimental results it can be seen that the vanadium dioxide coating prepared by Atmospheric Chemical Vapour Deposition shows a switching efficiency of about 30% at 2500 nm. In the visible range the transmittance and the reflectance does not change with the temperature both for the undoped and Nb doped VO2. For the Nb doped vanadium dioxide coating the switching efficiency is about 20% at 2500 nm. From the numerical simulations a n=2.89 and k=1.33 above Tc and n=2.39 and k=0.52 below Tc (at wavelength of 2500 nm) were determined for the undoped vanadium dioxide coating. The Nb doped vanadium dioxide coating calculations results on n= 2.45 and k=1.56 above Tc and n=1.92 and k=0.88 below Tc.
9

Neustroev, Ilya D., Tatyana K. Legkova, Andrey A. Tsymbalyuk, and Andrey E. Komlev. "Thin Vanadium Dioxide Films for Use in Microwave Keys with Electric Control." Journal of the Russian Universities. Radioelectronics 26, no. 3 (July 6, 2023): 48–57. http://dx.doi.org/10.32603/1993-8985-2023-26-3-48-57.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Introduction. In view of the ever-tightening bandwidth requirements for wireless communication systems, the use of tunable or switching devices based on microwave keys is becoming increasingly popular. Currently, the development of microwave keys based on nonlinear materials, such as vanadium dioxide, is a relevant research direction. The keys based on this material are distinguished by a planar and simple design, thus being suitable for creating microwave devices using hybrid technology.Aim. To study the properties of thin vanadium dioxide films and to develop a microwave switch with electrical switching on their basis.Materials and methods. Experimental samples of thin vanadium dioxide films were obtained by magnetron sputtering. The phase transition parameters of the samples obtained experimentally were used in computer simulation of a planar two-electrode structure of a microwave key by the finite element method.Results. Experimental samples of vanadium dioxide films were manufactured, and the dependences of their resistivity on temperature were studied. The resistance of the obtained vanadium dioxide films was found to change threefold. A microwave key design based on vanadium dioxide films was developed. The formation of a currentconducting channel in vanadium dioxide films was simulated when a control voltage was applied. The threshold voltage of the element was estimated depending on its design parameters.Conclusion. The use of experimental data as a basis for computer simulation made it possible to determine the threshold values of currents depending on the topology and design of the proposed microwave key. The results of simulating the key structure showed the formed conductive channel to have clearly defined boundaries in terms of distribution of both current density and temperature across the film surface.
10

Jiang, Yuanyuan, Man Zhang, Weihua Wang, and Zhengyong Song. "Reflective and transmissive cross-polarization converter for terahertz wave in a switchable metamaterial." Physica Scripta 97, no. 1 (January 1, 2022): 015501. http://dx.doi.org/10.1088/1402-4896/ac46f5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Utilizing the phase transition characteristic of vanadium dioxide, we present a metamaterial configuration to achieve both reflective and transmissive cross-polarization converters. When vanadium dioxide is metal, the design behaves as a reflective cross-polarization converter. It consists of metallic grating, topas spacer, and vanadium dioxide film. Polarization conversion ratio is more than 90% in the frequency range from 4.80 THz to 13.13 THz. When vanadium dioxide is insulator, the design behaves as a transmissive cross-polarization converter using cascaded metallic gratings with rotation angle 45°. High-efficiency broadband cross-polarization wave conversion is achieved in the frequency band of 0.50–4.75 THz. Effect of oblique incidence is studied on polarization conversion. Results tell that cross-polarization conversion is better when incident angle is in the range of 0°–40°. The designed metamaterial may have a certain inspiration for the research of terahertz multifunctional polarization converter.

Дисертації з теми "Dioxide de vanadium":

1

Thery, Virginie. "Etude de la microstructure et des transitions de phases électroniques et cristallines de couches épitaxiales de VO₂ déposées sur différents substrats." Thesis, Limoges, 2017. http://www.theses.fr/2017LIMO0059/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les travaux de recherche présentés dans ce manuscrit concernent l'étude du rôle des déformations (épitaxiale et d'origine thermique) sur les transitions structurales et électriques du dioxyde de vanadium. A cet effet, nous avons synthétisé des films minces de VO₂ par évaporation à faisceau d'électrons et par ablation laser. La géométrie des déformations est contrôlée en modifiant, d'une part, la nature des substrats et, d'autre part, l'épaisseur des dépôts. Dans le cas de la croissance sur des substrats de saphir (Al₂ O₃ ) orientés (001), le fort désaccord de réseau entraîne une croissance par coïncidence de domaine, de sorte que les déformations résiduelles résultent exclusivement du désaccord de coefficient de dilatation entre la couche et le substrat. L'étude de la transition structurale par diffraction des rayons X et l'étude de la résistivité électrique via un dispositif 4 pointes ont montré que la déformation en tension selon l'axe cᵣ conduit à une augmentation de la température de transition (> 68◦ C). L'apparition d'une phase intermédiaire a été mise en évidence au cours de l'étude structurale en température. La croissance sur des substrats de TiO₂ orientés (001) et (111) est caractérisée par un désaccord de réseau de plus faible (∼ 1%) avec une épaisseur critique de 4 nm, à partir de laquelle des dislocations sont créées en vue de relaxer l'énergie élastique. L'étude des transitions électriques et structurales a mis en évidence que l'évolution des transitions résulte d'une compétition entre les déformations épitaxiales, les déformations d'origine thermique et la présence de lacunes d'oxygène à l'interface
The research presented in this manuscript deals the study of the effect of strain (epitaxial or thermal) on the structural and the electrical transitions of vanadium dioxide. VO₂ thin films have been synthesized by e-beam deposition and Pulsed Laser Deposition methods. The strain geometry is controlled by modifying, on the one hand, the nature of the substrates and, on the other hand, the thickness of thin films. In the case of (001) sapphire substrates (Al₂ O₃ ), the important lattice mismatch leads to a domain matching epitaxial growth mechanism, so that the residual strain solely result from the film/substrate thermal expansion mismatch. The study of the structural phase transition, using X-ray diffraction, and the study of the metal-insulator transition, using a 4-probes device, showed that the tensile strain along the cᵣ axis leads to an increase of the transition temperature (> 68◦ C). The appearance of an intermediate phase was demonstrated during the study of the structural phase transition. Growth on (001)- and (111)-TiO₂ substrates is characterized by a weaker lattice mismatch (∼ 1%), with a critical thickness of 4 nm, from which dislocations are created to relax the elastic energy. The study of electrical and structural transitions has shown that the evolution of transitions results from a competition between epitaxial distorsion, thermal distorsions and the presence of oxygen vacancies at the interface
2

Pan, Kuan-Chang. "Vanadium Dioxide Based Radio Frequency Tunable Devices." University of Dayton / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=dayton154341840843132.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Safi, Taqiyyah(Taqiyyah Sariyah). "Tunable spin-charge conversion in vanadium dioxide." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122767.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 52-58).
Spin-based electronic devices rely on the interplay of spin and charge degree of freedom of electrons and are emerging as a promising beyond CMOS technology. Fast, scalable, low energy consumption magnetic memories and nonvolatile spin logic devices have been demonstrated utilizing spin-orbit-torque based magnetization switching. A large, pure spin current is crucial for these applications and significant effort is geared towards finding materials with large charge-to-spin conversion efficiency to exploit the full potential of spintronics. The charge-to-spin conversion efficiency is an inherent property of the spintronics materials and cannot be easily modified without changing the chemical or structural properties of the material. To date most of the explored materials, have significant electrical conductivity and are in their pure, stable, intrinsic structural form. Most importantly, they exhibit negligible variation in the electrical and structural properties.
In this thesis we investigate spin-charge conversion efficiency in the transition metal oxide, vanadium dioxide (VO₂), which exhibits structural phase transition subject to external stimuli. We demonstrate tunable charge-to-spin conversions in this material across the phase transition. Vanadium dioxide is a prototypical metal-insulator transition material and has the unique property of a dramatic and abrupt structural phase transition under external stimuli such as heat, strain, and electric field etc. Due to its unique properties, it has gained much interest from both fundamental research and applications perspective but its spin related properties remain largely unexplored. In this thesis, we demonstrate the successful tuning of charge-spin conversion efficiency via the metal-insulator transition in this quintessential strongly correlated electron compound.
We inject a pure spin current through ferromagnetic resonance driven spin pumping and measure the temperature dependent inverse spin Hall effect voltage across VO₂ We found a swift, dramatic change in the spin pumping signal (decrease by >80%) and charge-spin conversion efficiency (increase by five times) upon transition. The swift, dramatic change in the structural and electrical properties of this material therefore provides additional knobs to modulate the conversion efficiency. This work leads to extra flexibilities in spintronic device design and opens up new avenues for variable spintronics.
by Taqiyyah Safi.
S.M.
S.M. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
4

Meling, Artur. "Scattering of vibrationally excited NO from vanadium dioxide." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2020. http://hdl.handle.net/21.11130/00-1735-0000-0005-12F9-E.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gaudin, Michael. "Ablation laser impulsionnelle : source de nanoparticules en vol et de films minces : Développement de matériaux nanostructurés à base d'argent, de vanadium et de dioxyde de vanadium." Thesis, Limoges, 2017. http://www.theses.fr/2017LIMO0025/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ces travaux de thèse portent sur le développement d’un dispositif de synthèse de nanoparticules (NPs) par une voie physique basée sur la pulvérisation laser d’une cible suivie d’une trempe du panache plasma ainsi formé. L’association de cette source à une enceinte d’ablation laser conventionnelle a permis de synthétiser des NPs d’argent et de vanadium empilées sur des substrats ou noyées dans des matrices synthétisées par ablation laser. Des analyses par microscopie électronique en transmission (MET) et microscope à force atomique (AFM) ont révélé des NPs cristallisées en vol, de forme sphérique et de tailles relativement monodisperses (~ 3 nm de diamètre) fonction de leur temps de séjour dans la cavité de nucléation. La réalisation de nanocomposites Al2O3 amorphe dopée par des NPs d’argent métallique de différentes tailles a montré l’influence de la taille de ces entités nanométriques sur la position et la largeur de la résonance plasmon de surface (RPS) du matériau nanostructuré. Les NPs gardent leur forme originelle après impact sur le substrat ce qui conduit à des empilements de nanoparticules fortement poreux (de l’ordre de 50%). Des NPs de dioxyde de vanadium ont pu être synthétisées par recuit d’empilements de NPs de vanadium. Du fait de leur individualité, les NPs de VO2 présentent une température de transition plus faible (~50°C) et une largeur d’hystérésis plus importante (~10-30°C) qu’un film mince (température de transition d’environ 68°C et largeur d’hystérésis d’environ 3°C). En associant un film mince synthétisé par PLD à un empilement de NPs il est alors possible de combiner leurs propriétés et d’obtenir un matériau nanocomposite présentant une transition par palier
The work presented in this thesis is focused on the development of an experimental setup for the synthesis of nanoparticles (NPs) by a physical route, based on the laser vaporization of a target and followed by the rapid quenching of the plasma plume. Combining such a NP source with conventional laser ablation makes possible to synthesize silver and vanadium NPs in stacks on substrates or embedded in different matrices synthesized by laser ablation. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) analysis revealed crystallized spherical NPs relatively monodisperse in size (~ 3 nm in diameter) depending on the residence time in the nucleation cavity. The synthesis of amorphous Al2O3 nanocomposites doped with metallic silver NPs of different sizes showed the influence of the size on the position and the width of the surface plasmon resonance (SPR) of the nanostructured material. The NPs keep their original shape during impact on the substrate, leading to highly porous NPs stacks (approximately 50%). Vanadium dioxide nanoparticles (VO2 NPs) have been synthesized by annealing vanadium NPs stacks. Due to their individual behaviour, VO2NPs exhibit lower transition temperature (~ 50°C) and larger hysteresis width (~ 10-30°C) than thin films (transition temperature around 68°C and hysteresis width around 3°C). By coupling a PLD thin film and a NPs stack, it is possible to combine their properties and obtain a nanostructured material having a step transition
6

Huffman, Tyler J. "Shining Light on The Phase Transitions of Vanadium Dioxide." W&M ScholarWorks, 2017. https://scholarworks.wm.edu/etd/1499450049.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The salient feature of the familiar structural transition accompanying the thermally-driven metal-insulator transition in bulk vanadium dioxide (VO2) is a pairing of all the vanadium ions in the monoclinic M¬1 insulating phase. Whether this pairing (unit cell doubling) alone is sufficient to open the energy gap has been the central question of a classic debate which has continued for almost sixty years. Interestingly, there are two less familiar insulating states, monoclinic M2 and triclinic, which are accessible via strain or chemical doping. These phases are noteworthy in that they exhibit distinctly different V-V pairing. With infrared and optical photon spectroscopy, we investigate how the changes in crystal structure affect the electronic structure. We find that the energy gap and optical inter-band transitions are insensitive to changes in the vanadium-vanadium pairing. This result is confirmed by DFT+U and HSE calculations. Hence, our work conclusively establishes that intra-atomic Coulomb repulsion between electrons provides the dominant contribution to the energy gap in all insulating phases of VO2. VO2 is a candidate material for novel technologies, including ultrafast data storage, memristors, photonic switches, smart windows, and transistors which move beyond the limitations of silicon. The attractiveness of correlated materials for technological application is due to their novel properties that can be tuned by external factors such as strain, chemical doping, and applied fields. For advances in fundamental physics and applications, it is imperative that these properties be measured over a wide range of regimes. Towards this end, we study a single domain VO2 crystal with polarized light to characterize the anisotropy of the optical properties. In addition, we study the effects of compressive strain in a VO2 thin film in which we observe remarkable changes in electronic structure and transition temperature. Furthermore, we find evidence that electronic correlations are active in the metallic rutile phase as well. VO2 films exhibit phase coexistence in the vicinity of the metal-insulator transition. Using scanning near-field infrared microscopy, we have studied the patterns of phase coexistence in the same area on repeated heating and cooling cycles. We find that the pattern formation is reproducible each time. This is an unexpected result from the viewpoint of classical nucleation theory that anticipates some degree of randomness. The completely deterministic nature of nucleation and growth of domains in a VO2 film with imperfections is a fundamental finding. This result also holds promise for producing reliable nanoscale VO2 devices.
7

Madaras, Scott. "Insulator To Metal Transition Dynamics Of Vanadium Dioxide Thin Films." W&M ScholarWorks, 2020. https://scholarworks.wm.edu/etd/1616444322.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Vanadium Dioxide (VO2) is a strongly correlated material which has been studied for many decades. VO2 has been proposed for uses in technologies such as optical modulators, IR modulators, optical switches and Mott memory devices. These technologies are taking advantage of VO2’s insulator to metal transition (IMT) and the corresponding changes to the optical and material properties. The insulator to metal transition in VO2 can be accessed by thermal heating, applied electric field, or ultra-fast photo induced processes. Recently, thin films of VO2 grown on Titanium Dioxide doped with Niobium (TiO2:Nb), have shown promise as a possible UV photo detector with high quantum efficiency which utilizes a heterostructure between these two materials. In this work, the dynamics of the IMT on thin films of VO2 is explored. We show that surface plasmons generated in an Au thin film can induce the insulator to metal transition in a thin film of VO2 due to the enhanced electric field as well as help detect the IMT via changes in its resonance condition. Time resolved pump probe studies were also done on thin films of VO2 grown on TiO2 and TiO2:Nb, using UV photon energy of 3.1 eV (400nm wavelength). The fluence threshold of the IMT at 3.1 eV was significantly lower than published values for the 1.55 eV pump fluence. The time response of the IMT shows uncommon reflectivity dynamics in these samples. The response was partially attributed to internal interference of the reflected probe beam from the inhomogeneous layers formed inside the film by different phases of VO2, and can be elucidated by a diffusion model with respect to its optical properties. Finally, the photocurrent generation time constants for the sample with highest quantum efficiency are given and compared to its ultrafast photo induced IMT time constants.
8

Rivera, Felipe. "Electron Microscopy Characterization of Vanadium Dioxide Thin Films and Nanoparticles." BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/2975.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Vanadium dioxide (VO_2) is a material of particular interest due to its exhibited metal to insulator phase transition at 68°C that is accompanied by an abrupt and significant change in its electronic and optical properties. Since this material can exhibit a reversible drop in resistivity of up to five orders of magnitude and a reversible drop in infrared optical transmission of up to 80%, this material holds promise in several technological applications. Solid phase crystallization of VO_2 thin films was obtained by a post-deposition annealing process of a VO_{x,x approx 2} amorphous film sputtered on an amorphous silicon dioxide (SiO_2) layer. Scanning electron microscopy (SEM) and electron-backscattered diffraction (EBSD) were utilized to study the morphology of the solid phase crystallization that resulted from this post-deposition annealing process. The annealing parameters ranged in temperature from 300°C up to 1000°C and in time from 5 minutes up to 12 hours. Depending on the annealing parameters, EBSD showed that this process yielded polycrystalline vanadium dioxide thin films, semi-continuous thin films, and films of isolated single-crystal particles. In addition to these films on SiO_2, other VO_2 thin films were deposited onto a-, c-, and r-cuts of sapphire and on TiO_2(001) heated single-crystal substrates by pulsed-laser deposition (PLD). The temperature of the substrates was kept at ~500°C during deposition. EBSD maps and orientation imaging microscopy were used to study the epitaxy and orientation of the VO_2 grains deposited on the single crystal substrates, as well as on the amorphous SiO_2 layer. The EBSD/OIM results showed that: 1) For all the sapphire substrates analyzed, there is a predominant family of crystallographic relationships wherein the rutile VO_2{001} planes tend to lie parallel to the sapphire's {10-10} and the rutile VO_2{100} planes lie parallel to the sapphire's {1-210} and {0001}. Furthermore, while this family of relationships accounts for the majority of the VO_2 grains observed, due to the sapphire substrate's geometry there were variations within these rules that changed the orientation of VO_2 grains with respect to the substrate's normal direction. 2) For the TiO_2, a substrate with a lower lattice mismatch, we observe the expected relationship where the rutile VO_2 [100], [110], and [001] crystal directions lie parallel to the TiO_2 substrate's [100], [110], and [001] crystal directions respectively. 3) For the amorphous SiO_2 layer, all VO_2 crystals that were measurable (those that grew to the thickness of the deposited film) had a preferred orientation with the the rutile VO_2[001] crystal direction tending to lie parallel to the plane of the specimen. The use of transmission electron microscopy (TEM) is presented as a tool for further characterization studies of this material and its applications. In this work TEM diffraction patterns taken from cross-sections of particles of the a- and r-cut sapphire substrates not only solidified the predominant family mentioned, but also helped lift the ambiguity present in the rutile VO_2{100} axes. Finally, a focused-ion beam technique for preparation of cross-sectional TEM samples of metallic thin films deposited on polymer substrates is demonstrated.
9

Kumar, Sachin. "Gas Phase Oxidation of Dimethyl Sulfide by Titanium Dioxide Based Catalysts." Miami University / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=miami1081780904.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Vernardou, Dimitra. "The growth of thermochromic vanadium dioxide films by chemical vapour deposition." Thesis, University of Salford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.419082.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Dioxide de vanadium":

1

Long, Yi, and Yanfeng Gao. Vanadium Dioxide-Based Thermochromic Smart Windows. Taylor & Francis Group, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Long, Yi, and Yanfeng Gao. Vanadium Dioxide-Based Thermochromic Smart Windows. Jenny Stanford Publishing, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Long, Yi, and Yanfeng Gao. Vanadium Dioxide-Based Thermochromic Smart Windows. Jenny Stanford Publishing, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Long, Yi, and Yanfeng Gao. Vanadium Dioxide-Based Thermochromic Smart Windows. Jenny Stanford Publishing, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Dioxide de vanadium":

1

Torres, D., Sarah Dooley, La Vern Starman, and Nelson Sepúlveda. "Programming Vanadium Dioxide Based MEMS Mirror." In Mechanics of Biological Systems & Micro-and Nanomechanics, Volume 4, 17–19. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95062-4_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ruzmetov, Dmitry, and Shriram Ramanathan. "Metal-Insulator Transition in Thin Film Vanadium Dioxide." In Thin Film Metal-Oxides, 51–94. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0664-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chao, Dongliang. "Vanadium Dioxide for Li- and Na-Ion Storage." In Springer Theses, 51–73. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3080-3_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zouini, Mohammed, Abderrahim Ben Chaib, Yassine Anigrou, and El Mehdi El Khattabi. "Literature Review on Vanadium Dioxide (VO2): An Intelligent Material." In Springer Proceedings in Energy, 524–31. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-57022-3_64.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wang, Xin, Junyi Xiang, Jiawei Ling, Qingyun Huang, and Xuewei Lv. "Comprehensive Utilization of Vanadium Extraction Tailings: A Brief Review." In Energy Technology 2020: Recycling, Carbon Dioxide Management, and Other Technologies, 327–34. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36830-2_31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hilton, D. J., R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Keiffer, A. J. Taylor, and R. D. Averitt. "Enhanced photosusceptibility in the insulator-to-metal phase transition in vanadium dioxide." In Ultrafast Phenomena XV, 600–602. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-68781-8_193.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nazari, M., Y. Zhao, Y. Zhu, V. V. Kuryatkov, Z. Y. Fan, A. A. Bernussi, and M. Holtz. "Optical Properties of Vanadium Dioxide Grown on Sapphire Substrate with Different Orientations." In TMS2013 Supplemental Proceedings, 933–40. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118663547.ch116.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Garg, Manu, Khanjan Joshi, Dhairya S. Arya, Sushil Kumar, Mujeeb Yousuf, Ankur Goswami, and Pushpapraj Singh. "Ultrasensitive Reduced Vanadium Dioxide-Based MEMS Pirani Gauge with Extended Dynamic Range." In Springer Proceedings in Physics, 311–18. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1571-8_37.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kim, Jihoon, Kyongsoo Park, Sungwook Choi, Seul-Lee Lee, Jun Hyeok Jeong, Sun Jae Jeong, Nouaze Joseph Christian, Bong-Jun Kim, and Yong Wook Lee. "Multiple Resistance States in Vanadium-Dioxide-Based Memristive Device Using 966 nm Laser Diode." In AETA 2016: Recent Advances in Electrical Engineering and Related Sciences, 390–94. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-50904-4_40.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Krishna, K. V., J. J. Delima, A. J. Snell, and A. E. Owen. "Electrical and Optical Characteristics of Vanadium Doped Amorphous Silicon Dioxide Films Prepared by CVD." In The Physics and Technology of Amorphous SiO2, 231–35. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1031-0_31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Dioxide de vanadium":

1

Wei Wang, Min Qiu, and Qiang Li. "Switchable absorber by vanadium dioxide." In 2016 15th International Conference on Optical Communications and Networks (ICOCN). IEEE, 2016. http://dx.doi.org/10.1109/icocn.2016.7875771.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Field, M., C. Hillman, P. Stupar, J. Hacker, Z. Griffith, and K. J. Lee. "Vanadium dioxide phase change switches." In SPIE Defense + Security, edited by Raja Suresh. SPIE, 2015. http://dx.doi.org/10.1117/12.2179851.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Anagnostou, Dimitris E., Tarron S. Teeslink, David Torres, and Nelson Sepulveda. "Vanadium dioxide reconfigurable slot antenna." In 2016 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2016. http://dx.doi.org/10.1109/aps.2016.7696235.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Woolf, David N., Koushik Ramadoss, Justin M. Brown, Shriram Ramanathan, and Joel M. Hensley. "Switchable Vanadium Dioxide Kerker Metasurface." In Novel Optical Materials and Applications. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/noma.2019.now3b.4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

James, T. D., S. Earl, J. Valentine, T. J. Davis, J. McCallum, R. F. Haglund, and A. Roberts. "Vanadium Dioxide based tunable plasmonic antennas." In 2012 Conference on Optoelectronic and Microelectronic Materials & Devices (COMMAD 2012). IEEE, 2012. http://dx.doi.org/10.1109/commad.2012.6472386.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hilton, D. J., R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt. "Time resolved conductivity dynamics in vanadium dioxide." In 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference. IEEE, 2006. http://dx.doi.org/10.1109/cleo.2006.4629013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Miller, Kevin J., Petr Markov, Robert E. Marvel, Richard F. Haglund, and Sharon M. Weiss. "Hybrid silicon-vanadium dioxide electro-optic modulators." In SPIE OPTO, edited by Graham T. Reed and Andrew P. Knights. SPIE, 2016. http://dx.doi.org/10.1117/12.2213372.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Blodgett, David W., Charles H. Lange, and Philip J. McNally. "Vanadium-dioxide-based infrared spatial light modulators." In Optical Engineering and Photonics in Aerospace Sensing, edited by Gerald C. Holst. SPIE, 1993. http://dx.doi.org/10.1117/12.154728.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ji, Yaping, Adam Ollanik, Mason Belue, and Matthew D. Escarra. "Dynamically Tunable, Vanadium Dioxide Huygens Source Metasurfaces." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleo_at.2018.jw2a.109.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ollanik, Adam, Nathan Kurtz, Elise Moore, and Matthew D. Escarra. "Dynamically Tunable, Vanadium Dioxide Huygens Source Metasurfaces." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/cleo_qels.2017.fm4g.7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Dioxide de vanadium":

1

Haule, Kristjan, Gabriel Kotliar, Bence Lazarovits, and Kyoo Kim. A Theoretical Exploration of the Metal Insulator Transition in Vanadium Dioxide with an Eye Towards Applications: A First Principles Approach. Fort Belvoir, VA: Defense Technical Information Center, June 2009. http://dx.doi.org/10.21236/ada515855.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Elliot R. Bernsteinq. Interactions of Neutral Vanadium Oxide & Titanium Oxide Clusters with Sufur Dioxides, Nitrogen Oxides and Water. Office of Scientific and Technical Information (OSTI), August 2006. http://dx.doi.org/10.2172/890716.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії