Добірка наукової літератури з теми "Diodes à avalanche à photon unique"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Diodes à avalanche à photon unique".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Diodes à avalanche à photon unique"
Zunino, Alessandro, Giacomo Garrè, Eleonora Perego, Sabrina Zappone, Mattia Donato, and Giuseppe Vicidomini. "s2ISM: A Comprehensive Approach for Uncompromised Super-Resolution and Optical Sectioning in Image Scanning Microscopy." EPJ Web of Conferences 309 (2024): 04021. http://dx.doi.org/10.1051/epjconf/202430904021.
Повний текст джерелаLu, Z., X. Zheng, W. Sun, J. Campbell, X. Jiang, and M. A. Itzler. "InGaAs/InP Single Photon Avalanche Diodes." ECS Transactions 45, no. 33 (April 2, 2013): 37–43. http://dx.doi.org/10.1149/04533.0037ecst.
Повний текст джерелаGulinatti, Angelo. "Single photon avalanches diodes." Photoniques, no. 125 (2024): 63–68. http://dx.doi.org/10.1051/photon/202412563.
Повний текст джерелаXu, Qing Yao, Hong Pei Wang, Xiang Chao Hu, Hai Qian, Ying Cheng Peng, Xiao Hang Ren, and Yan Jie Li. "Quenching Circuit of Avalanche Diodes for Single Photon Detection." Applied Mechanics and Materials 437 (October 2013): 1073–76. http://dx.doi.org/10.4028/www.scientific.net/amm.437.1073.
Повний текст джерелаPetticrew, Jonathan D., Simon J. Dimler, Xinxin Zhou, Alan P. Morrison, Chee Hing Tan, and Jo Shien Ng. "Avalanche Breakdown Timing Statistics for Silicon Single Photon Avalanche Diodes." IEEE Journal of Selected Topics in Quantum Electronics 24, no. 2 (March 2018): 1–6. http://dx.doi.org/10.1109/jstqe.2017.2779834.
Повний текст джерелаPullano, Salvatore A., Giuseppe Oliva, Twisha Titirsha, Md Maruf Hossain Shuvo, Syed Kamrul Islam, Filippo Laganà, Antonio La Gatta, and Antonino S. Fiorillo. "Design of an Electronic Interface for Single-Photon Avalanche Diodes." Sensors 24, no. 17 (August 28, 2024): 5568. http://dx.doi.org/10.3390/s24175568.
Повний текст джерелаGhioni, Massimo, Angelo Gulinatti, Ivan Rech, Franco Zappa, and Sergio Cova. "Progress in Silicon Single-Photon Avalanche Diodes." IEEE Journal of Selected Topics in Quantum Electronics 13, no. 4 (2007): 852–62. http://dx.doi.org/10.1109/jstqe.2007.902088.
Повний текст джерелаZappa, F., A. Tosi, A. Dalla Mora, and S. Tisa. "SPICE modeling of single photon avalanche diodes." Sensors and Actuators A: Physical 153, no. 2 (August 2009): 197–204. http://dx.doi.org/10.1016/j.sna.2009.05.007.
Повний текст джерелаNeri, L., S. Tudisco, F. Musumeci, A. Scordino, G. Fallica, M. Mazzillo, and M. Zimbone. "Dead Time of Single Photon Avalanche Diodes." Nuclear Physics B - Proceedings Supplements 215, no. 1 (June 2011): 291–93. http://dx.doi.org/10.1016/j.nuclphysbps.2011.04.034.
Повний текст джерелаMita, R., G. Palumbo, and P. G. Fallica. "Accurate model for single-photon avalanche diodes." IET Circuits, Devices & Systems 2, no. 2 (2008): 207. http://dx.doi.org/10.1049/iet-cds:20070180.
Повний текст джерелаДисертації з теми "Diodes à avalanche à photon unique"
Bérubé, Benoît-Louis. "Conception de matrices de diodes avalanche à photon unique sur circuits intégrés CMOS 3D." Thèse, Université de Sherbrooke, 2014. http://savoirs.usherbrooke.ca/handle/11143/92.
Повний текст джерелаB??rub??, Beno??t-Louis. "Conception de matrices de diodes avalanche ?? photon unique sur circuits int??gr??s CMOS 3D." Thèse, Universit?? de Sherbrooke, 2014. http://savoirs.usherbrooke.ca/handle/11143/92.
Повний текст джерелаHelleboid, Rémi. "Advanced modeling and simulation of Single-Photon Avalanche Diodes." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST193.
Повний текст джерелаThis thesis advances the modeling, simulation, and optimization of Single-Photon Avalanche Diodes (SPADs), which detect individual photons with high sensitivity. SPADs are essential for applications in quantum communications, imaging, and time-of-flight measurements, where precise single-photon detection is crucial. However, SPADs operate through complex, stochastic processes such as avalanche multiplication, timing jitter, and quenching, making accurate modeling a challenge. This thesis addresses these complexities by developing advanced simulation models, applying optimization techniques, and exploring methods to enhance SPAD performance. The thesis starts by reviewing SPAD technology and principles. SPADs detect photons by triggering an avalanche process in a high electric field, which amplifies the photon's signal into a measurable pulse. This thesis extends the McIntyre model, traditionally used for avalanche devices, to three dimensions, allowing for more accurate simulations of complex SPAD geometries and electric fields. A core contribution is introducing Particle Swarm Optimization (PSO) coupled with a nonlinear Poisson solver to optimize SPAD parameters like breakdown voltage, depletion width, and timing jitter. PSO navigates the design space effectively, balancing competing performance requirements and enabling customized SPADs for different applications, from low-light imaging to fast photon counting. To improve SPAD simulation accuracy, the thesis develops an Advection-Diffusion Monte Carlo (ADMC) method, which combines advection and diffusion processes for a realistic model of carrier transport, especially in high-field regions where avalanches occur. This model overcomes limitations of traditional Monte Carlo methods, achieving accurate representations of timing jitter, breakdown probability, and dark count rate. The thesis culminates in a self-consistent Monte Carlo-Poisson model for transient SPAD simulations. By combining ADMC with a 3D Poisson solver, this model captures critical SPAD behaviors like avalanche initiation, field depletion, and quenching in real time. This feedback loop is essential for understanding transient SPAD behaviors, as carriers impact the electric field as they accumulate. The model is especially useful for studying the stochastic nature of quenching, which influences SPAD reliability and timing. In summary, this thesis makes significant contributions to SPAD modeling, simulation, and optimization. By creating a self-consistent Monte Carlo-Poisson model and integrating advanced optimization techniques, this work provides a comprehensive framework for improving SPAD performance and supports further advances in high-precision applications
Sicre, Mathieu. "Study of the noise aging mechanisms in single-photon avalanche photodiode for time-of-flight imaging." Electronic Thesis or Diss., Lyon, INSA, 2023. http://www.theses.fr/2023ISAL0104.
Повний текст джерелаSingle-Photon Avalanche Diode (SPAD) are used for Time-of-Flight (ToF) sensors to determine distance from a target by measuring the travel time of an emitted pulsed signal. These photodetectors work by triggering an avalanche of charge carriers upon photon absorption, resulting in a substantial amplification which can be detected. However, they are subject to spurious triggering by parasitic generated charge carriers, quantified as Dark Count Rate (DCR), which can compromise the accuracy of the measured distance. Therefore, it is crucial to identify and eliminate the potential source of DCR. To tackle this issue, a simulation methodology has been implemented to assess the DCR. This is achieved by simulating the avalanche breakdown probability, integrated with the carrier generation rate from defects. The breakdown probability can be simulated either in a deterministically, based on electric-field streamlines, or stochastically, by means of drift-diffusion simulation of the random carrier path. This methodology allows for the identification of the potential sources of pre-stress DCR by comparing simulation results to experimental data over a wide range of voltage and temperature. To ensure the accuracy of distance range measurements over time, it is necessary to predict the DCR level under various operating conditions. The aforementioned simulation methodology is used to identify the potential sources of post-stress DCR by comparing simulation results to stress experiments that evaluate the principal stress factors, namely temperature, voltage and irradiance. Furthermore, a Monte-Carlo study has been conducted to examine the device-to-device variation along stress duration. For an accurate Hot-Carrier Degradation (HCD) kinetics model, it is essential to consider not only the carrier energy distribution function but also the distribution of Si−H bond dissociation energy distribution at the Si/SiO2 interface. The number of available hot carriers is estimated from the carrier current density according to the carrier energy distribution simulated by means of a full-band Monte-Carlo method. The impact-ionization dissociation probability is employed to model the defect creation process, which exhibits sub-linear time dependence due to the gradual exhaustion of defect precursors. Accurate distance ranging requires distinguishing the signal from ambient noise and the DCR floor, and ensuring the target’s accumulated photon signal dominates over other random noise sources. An analytical formula allows to estimate the maximum distance ranging using the maximum signal strength, ambient noise level, and confidence levels. The impact of DCR can be estimated by considering the target’s reflectance and the ambient light conditions. In a nutshell, this work makes use of a in-depth characterization and simulation methodology to predict DCR in SPAD devices along stress duration, thereby allowing the assessment of its impact on distance range measurements
Panglosse, Aymeric. "Modélisation pour la simulation et la prédiction des performances des photodiodes à avalanche en mode Geiger pour Lidars spatiaux." Thesis, Toulouse, ISAE, 2019. http://www.theses.fr/2019ESAE0046.
Повний текст джерелаThis work focuses on modelling for simulation and prediction purposes ofCMOS SPADs performance parameters used in spaceborne Lidars. The innovative side ofthis work lies in a new methodology based on physical models for semiconductor devices,measurements performed on the targeted CMOS process and commercial simulation tools topredict CMOS SPADs performances. This method allows to get as close as possible to theprocess reality and to improve predictions. A set of SPAD has been designed and fabricated,and is used for measurements and model validation. SPAD design has been done with respectto CNES and Airbus Defence Space Lidar specification, in order to produce devices that willimprove our knowledge in terms of understanding of the involved physical mechanisms, SPADsdesign and test method, for a possible integration within their future spaceborne Lidars
Pellegrini, Sara. "InGaAs/InP single-photon avalanche diodes." Thesis, Heriot-Watt University, 2005. http://hdl.handle.net/10399/49.
Повний текст джерелаRochas, Alexis. "Single photon avalanche diodes in CMOS technology /." [S.l.] : [s.n.], 2003. http://library.epfl.ch/theses/?nr=2814.
Повний текст джерелаChitnis, Danial. "Single photon avalanche diodes for optical communications." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:5fd582dd-8167-4fe4-88f8-871ba905ade1.
Повний текст джерелаAlsolami, Ibrahim. "Visible light communications with single-photon avalanche diodes." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:744eeb47-8bb6-4776-8b8f-f7b6374d89bd.
Повний текст джерелаJouni, Ali. "Space radiation effects on CMOS single photon avalanche diodes (SPADs)." Electronic Thesis or Diss., Toulouse, ISAE, 2024. http://www.theses.fr/2024ESAE0012.
Повний текст джерелаThe subject of this thesis deals with the effects of space radiation on CMOS avalanche detectors, particularly on Single Photon Avalanche Diodes (SPADs). These photodiodes exhibit nearly infinite internal gain and are therefore sensitive to very low light conditions. Thus, with excellent temporal resolution, these sensors can be very interesting for space applications requiring time-of-flight measurements, such as the topography of celestial objects or space Rendezvous. However, space is a hostile environment due to radiation from the Sun, particles trapped in the Earth’s magnetosphere, and beyond the solar system. Consequently, within the framework of this thesis work, a model is established to predict thedegradation of the dark current of SPADs, the Dark Count Rate (DCR), after proton irradiations. Experimentally, two SPAD array technologies are irradiated with protons, X-rays, and γ rays. Hence, ionizing and non-ionizing effects are investigated for these avalanche sensors, and differences compared to pixels of standard image sensors are highlighted. Subsequently, the characteristics of defects induced by the creation of interface traps between oxides and silicon and atomic displacement damage in the substrate are examined, including the presence of Random Telegraph Signal (RTS) behaviors. Finally, the nature of these defects is identified through isochronal annealing after irradiations of the SPAD arrays using the three different radiation types mentioned above
Книги з теми "Diodes à avalanche à photon unique"
Dandin, Marc, Nicole McFarlane, Md Sakibur Sajal, Fahimeh Dehghandehnavi, and Babak Nouri. Single-Photon Avalanche Diodes and Photon Counting Systems. Cham: Springer Nature Switzerland, 2025. http://dx.doi.org/10.1007/978-3-031-64334-7.
Повний текст джерелаDolgos, Denis. Full-band Monte Carlo simulation of single photon avalanche diodes. Konstanz: Hartung-Gorre Verlag, 2012.
Знайти повний текст джерелаDandin, Marc, Nicole McFarlane, Sakibur Sajal, Fahimeh Dehghandehnavi, and Babak Nouri. Single-Photon Avalanche Diodes and Photon Counting Systems: From Phototransduction to Circuit Architecture. Springer, 2024.
Знайти повний текст джерелаWright, A. G. Why photomultipliers? Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199565092.003.0001.
Повний текст джерелаЧастини книг з теми "Diodes à avalanche à photon unique"
Dandin, Marc, Nicole McFarlane, Md Sakibur Sajal, Fahimeh Dehghandehnavi, and Babak Nouri. "Perimeter-Gated Single-Photon Avalanche Diodes." In Single-Photon Avalanche Diodes and Photon Counting Systems, 21–50. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-64334-7_2.
Повний текст джерелаCharbon, Edoardo, and Matthew W. Fishburn. "Monolithic Single-Photon Avalanche Diodes: SPADs." In Springer Series in Optical Sciences, 123–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18443-7_7.
Повний текст джерелаDandin, Marc, Nicole McFarlane, Md Sakibur Sajal, Fahimeh Dehghandehnavi, and Babak Nouri. "Perimeter-Gated Single-Photon Avalanche Diode Imagers." In Single-Photon Avalanche Diodes and Photon Counting Systems, 73–89. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-64334-7_4.
Повний текст джерелаDandin, Marc, Nicole McFarlane, Md Sakibur Sajal, Fahimeh Dehghandehnavi, and Babak Nouri. "Optoelectronic Characteristics of Perimeter-Gated Single-Photon Avalanche Diodes." In Single-Photon Avalanche Diodes and Photon Counting Systems, 51–72. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-64334-7_3.
Повний текст джерелаDandin, Marc, Nicole McFarlane, Md Sakibur Sajal, Fahimeh Dehghandehnavi, and Babak Nouri. "Perimeter-Gated Single-Photon Avalanche Diode Arrays as Hardware Security Primitives." In Single-Photon Avalanche Diodes and Photon Counting Systems, 91–116. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-64334-7_5.
Повний текст джерелаDandin, Marc, Nicole McFarlane, Md Sakibur Sajal, Fahimeh Dehghandehnavi, and Babak Nouri. "Conclusions, Contributions, and Future Work." In Single-Photon Avalanche Diodes and Photon Counting Systems, 179–82. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-64334-7_9.
Повний текст джерелаDandin, Marc, Nicole McFarlane, Md Sakibur Sajal, Fahimeh Dehghandehnavi, and Babak Nouri. "Silicon Photomultipliers." In Single-Photon Avalanche Diodes and Photon Counting Systems, 117–34. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-64334-7_6.
Повний текст джерелаDandin, Marc, Nicole McFarlane, Md Sakibur Sajal, Fahimeh Dehghandehnavi, and Babak Nouri. "Dead Time Correction in Single-Photon Avalanche Diode Front Ends." In Single-Photon Avalanche Diodes and Photon Counting Systems, 165–78. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-64334-7_8.
Повний текст джерелаDandin, Marc, Nicole McFarlane, Md Sakibur Sajal, Fahimeh Dehghandehnavi, and Babak Nouri. "Readout Strategies and Asynchronous Architectures." In Single-Photon Avalanche Diodes and Photon Counting Systems, 135–63. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-64334-7_7.
Повний текст джерелаDandin, Marc, Nicole McFarlane, Md Sakibur Sajal, Fahimeh Dehghandehnavi, and Babak Nouri. "Fundamentals of Phototransduction in Semiconductors." In Single-Photon Avalanche Diodes and Photon Counting Systems, 1–19. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-64334-7_1.
Повний текст джерелаТези доповідей конференцій з теми "Diodes à avalanche à photon unique"
Fu, Jing, Anran Guo, Hongbo Zhang, Guowei Li, Huaping Ma, Ruizhi Li, and Yuwei Chen. "Modeling of Silicon Single-Photon Avalanche Diodes for Process and Design Optimization." In 2024 IEEE 17th International Conference on Solid-State & Integrated Circuit Technology (ICSICT), 1–3. IEEE, 2024. https://doi.org/10.1109/icsict62049.2024.10831093.
Повний текст джерелаCho, Youngmin, and Jinwook Burm. "Calibrating the Dark Count Rate of Single Photon Avalanche Diodes Using Linear Regression." In 2024 21st International SoC Design Conference (ISOCC), 296–97. IEEE, 2024. http://dx.doi.org/10.1109/isocc62682.2024.10762487.
Повний текст джерелаPark, Eunsung, Woo-Young Choi, and Myung-Jae Lee. "Optical and Electrical Characterization of Single-Photon Avalanche Diodes Fabricated in CMOS Technology." In 2024 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), 1–3. IEEE, 2024. https://doi.org/10.1109/icce-asia63397.2024.10773713.
Повний текст джерелаLouis, Thomas A. "Investigation of Picosecond Time-Resolved Photoluminescence in Gallium Arsenide with 3-μm Spatial Resolution". У Picosecond Electronics and Optoelectronics. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/peo.1989.hsmt39.
Повний текст джерелаCampbell, Joe C. "Single photon avalanche diodes." In 2013 71st Annual Device Research Conference (DRC). IEEE, 2013. http://dx.doi.org/10.1109/drc.2013.6633855.
Повний текст джерелаItzler, Mark A., Xudong Jiang, Bruce Nyman, Rafael Ben-Michael, and Krystyna Slomkowski. "InP-based single photon avalanche diodes." In LEOS 2008 - 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS 2008). IEEE, 2008. http://dx.doi.org/10.1109/leos.2008.4688571.
Повний текст джерелаPellegrini, S., and B. Rae. "Fully industrialised single photon avalanche diodes." In SPIE Commercial + Scientific Sensing and Imaging, edited by Mark A. Itzler and Joe C. Campbell. SPIE, 2017. http://dx.doi.org/10.1117/12.2264364.
Повний текст джерелаAnti, Michele, Fabio Acerbi, Alberto Tosi, and Franco Zappa. "Integrated simulator for single photon avalanche diodes." In 2011 11th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). IEEE, 2011. http://dx.doi.org/10.1109/nusod.2011.6041130.
Повний текст джерелаMahnkopf, S., A. Giudice, D. Demmer, T. Haslett, and G. Simmerle. "Optoelectronic packaging of single photon avalanche diodes." In SPIE LASE, edited by Alexei L. Glebov and Paul O. Leisher. SPIE, 2017. http://dx.doi.org/10.1117/12.2255556.
Повний текст джерелаMarisaldi, Martino, Piera Maccagnani, Francesco Moscatelli, Claudio Labanti, Fabio Fuschino, Michela Prest, Alessandro Berra, et al. "Single Photon Avalanche Diodes for space applications." In 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference (2011 NSS/MIC). IEEE, 2011. http://dx.doi.org/10.1109/nssmic.2011.6154465.
Повний текст джерела