Добірка наукової літератури з теми "Dihydrogen Ligands"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Dihydrogen Ligands".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Dihydrogen Ligands"

1

Jacobsen, Heiko. "Localized-orbital locator (LOL) profiles of transition-metal hydride and dihydrogen complexes,." Canadian Journal of Chemistry 87, no. 7 (July 2009): 965–73. http://dx.doi.org/10.1139/v09-060.

Повний текст джерела
Анотація:
A bond descriptor based on the kinetic-energy density, the localized-orbital locator (LOL), is used to characterize the nature of the chemical bond in transition-metal hydride and dihydrogen complexes. Cationic complexes of the iron triad [MH3(PMe3)4]+ (M = Fe, Ru, Os) serve as model compounds for transition-metal hydrogen bonding, since these complexes not only present examples for hydride as well as dihydrogen complexes, but for certain representatives, the two different types of metal–hydrogen bonds are realized within the same molecule. Both types of ligands show characteristic LOL profiles: (3,–3) Γ attractors in close vicinity to the H-atom for hydride ligands, and (3,–3) Γ attractors located between the two atoms for a dihydrogen ligand with νΓ-values of 0.8 and 0.9, respectively. In-between structures combine elements of the hydride and dihydrogen ligands. Relativistic effects on the relative stability of various isomers for the set of model compounds have been evaluated.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Li, Gang, Deven P. Estes, Jack R. Norton, Serge Ruccolo, Aaron Sattler, and Wesley Sattler. "Dihydrogen Activation by Cobaloximes with Various Axial Ligands." Inorganic Chemistry 53, no. 19 (September 18, 2014): 10743–47. http://dx.doi.org/10.1021/ic501975r.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jagirdar, Balajir, and Nisha Mathew. "Chemistry of dihydrogen complexes containing only phosphorus co-ligands." Journal of Chemical Sciences 114, no. 4 (August 2002): 285–89. http://dx.doi.org/10.1007/bf02703821.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bardají, Manuel, Anne-Marie Caminade, Jean-Pierre Majoral, and Bruno Chaudret. "Ruthenium Hydride and Dihydrogen Complexes with Dendrimeric Multidentate Ligands." Organometallics 16, no. 15 (July 1997): 3489–97. http://dx.doi.org/10.1021/om970092+.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cano, Israel, Luis M. Martínez-Prieto, and Piet W. N. M. van Leeuwen. "Heterolytic cleavage of dihydrogen (HCD) in metal nanoparticle catalysis." Catalysis Science & Technology 11, no. 4 (2021): 1157–85. http://dx.doi.org/10.1039/d0cy02399j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ghosh, Shishir, Katherine B. Holt, Shariff E. Kabir, Michael G. Richmond та Graeme Hogarth. "Electrocatalytic proton reduction catalysed by the low-valent tetrairon-oxo cluster [Fe4(CO)10(κ2-dppn)(μ4-O)]2− [dppn = 1,1′-bis(diphenylphosphino)naphthalene]". Dalton Transactions 44, № 11 (2015): 5160–69. http://dx.doi.org/10.1039/c4dt03323j.

Повний текст джерела
Анотація:
[Fe4(CO)102-dppn)(μ4-O)]2− reduces protons and DFT calculations support the sequential formation of hydride and dihydrogen ligands at the unique iron centre.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Avdeeva, Varvara V., Anna V. Vologzhanina, Elena A. Malinina, and Nikolai T. Kuznetsov. "Dihydrogen Bonds in Salts of Boron Cluster Anions [BnHn]2− with Protonated Heterocyclic Organic Bases." Crystals 9, no. 7 (June 28, 2019): 330. http://dx.doi.org/10.3390/cryst9070330.

Повний текст джерела
Анотація:
Dihydrogen bonds attract much attention as unconventional hydrogen bonds between strong donors of H-bonding and polyhedral (car)borane cages with delocalized charge density. Salts of closo-borate anions [B10H10]2− and [B12H12]2− with protonated organic ligands 2,2’-dipyridylamine (BPA), 1,10-phenanthroline (Phen), and rhodamine 6G (Rh6G) were selectively synthesized to investigate N−H...H−B intermolecular bonding. It was found that the salts contain monoprotonated and/or diprotonated N-containing cations at different ratios. Protonation of the ligands can be implemented in an acidic medium or in water because of hydrolysis of metal cations resulting in the release of H3O+ cations into the reaction solution. Six novel compounds were characterized by X-ray diffraction and FT-IR spectroscopy. It was found that strong dihydrogen bonds manifest themselves in FT-IR spectra that allows one to use this technique even in the absence of crystallographic data.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Freitag, Kerstin, Mariusz Molon, Paul Jerabek, Katharina Dilchert, Christoph Rösler, Rüdiger W. Seidel, Christian Gemel, Gernot Frenking, and Roland A. Fischer. "Zn⋯Zn interactions at nickel and palladium centers." Chemical Science 7, no. 10 (2016): 6413–21. http://dx.doi.org/10.1039/c6sc02106a.

Повний текст джерела
Анотація:
Zinc–zinc interactions on nickel and palladium centers are highly dependent on the co-ligands. These dependencies are also found for the formation of dihydrogen vs. dihydride complexes and underline the analogy [Zn2Cp*2] ↔ H2.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Barthazy, Peter, Diego Broggini, and Antonio Mezzetti. "Making a 16-electron bromo (or iodo) complex of ruthenium(II) and a C—F bond in one pot." Canadian Journal of Chemistry 79, no. 5-6 (May 1, 2001): 904–14. http://dx.doi.org/10.1139/v01-049.

Повний текст джерела
Анотація:
The 16e– bromo or iodo complexes [RuX(dppp)2]+ (dppp = 1,3-bis(diphenylphosphino)propane, X = Br (1c), I (1d)) and [RuX(dppe)2]+ (dppe = 1,2-bis(diphenylphosphino)ethane, X = Br (2c), I (2d)) have been prepared exploiting the reaction of the fluoro complexes [RuF(dppp)2]+ (1a) and [Tl(µ-F)2Ru(dppe)2]+ (3) with activated alkyl bromides or iodides. The X-ray structures of 1c, 1d, 2c, and 2d suggest that the distortion of the Y-shaped trigonal-bipyramidal structure of [MX(P∩P)2]+ is possibly related to the formation of intramolecular hydrogen bonds between the halide ligand and the ortho-hydrogen atoms of the neighbouring phenyl rings. The five-coordinate species 1c, 1d, 2c, and 2d react with H2 to form the dihydrogen complexes [RuX(η2-H2)(P∩P)2]+. The reaction of the dppp derivatives 1c and 1d with H2 (P = 1 atm, 1 atm = 101.322 kPa) is an equilibrium. Quantitative formation of [RuBr(η2-H2)(dppp)2] (4c) is obtained under H2 pressure (100 bar, 1 bar = 100 kPa), whereas the iodo analogue is not stable under analogous conditions. The less crowded dppe derivatives 2c and 2d react quantitatively with H2 under ambient pressure. The iodo and bromo derivatives [RuX(η2-H2)(P∩P)2]+ contain elongated dihydrogen ligands, as indicated by their transverse relaxation times T1 (min). The present data suggest that Cl, Br, and I have similar donor properties in these dihydrogen complexes, and that the different chemical behaviour in the Cl, Br, I series is mainly a result of steric effects.Key words: 16e– complexes, ruthenium, fluoro complexes, bromo complexes, iodo complexes, dihydrogen complexes.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Eckert, J. "Interconversion of dihydrogen and hydride ligands in transition metal complexes." Acta Crystallographica Section A Foundations of Crystallography 58, s1 (August 6, 2002): c219. http://dx.doi.org/10.1107/s0108767302093765.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Dihydrogen Ligands"

1

Sivakumar, V. "Influence Of The Bite Angles Of Chelating Diphosphine Ligands In The Chemistry Of Ruthenium Hydride And Dihydrogen Complexes." Thesis, Indian Institute of Science, 2006. http://hdl.handle.net/2005/293.

Повний текст джерела
Анотація:
The bite angle of a diphosphine ligand plays an important role in determining the reactivity of a transition metal complex. The coordinated dihydrogen on a transition metal center can be activated toward homolysis or heterolysis depending upon the nature of the metal center and the ancillary ligand environment. The present work deals with our investigations on the effect of the bite angle of the chelating diphosphine ligands in the chemistry of certain ruthenium hydride and dihydrogen complexes. Protonation of the ds-[Ru(H)2(dppm)(PPh3)2] (dppm = Ph2PCH2PPh2) using HBF4-Et2O resulted in the dihydrogen/hydride complex trans-(Formula). This species shows dynamic exchange of the H-atom between the dihydrogen and the hydride ligands. The H-atom site exchange was studied by NMR spectroscopy. Attempts to prepare the ruthenium dihydride complexes, cis-[Ru(H)2(dppe)(PPh3)2] (dppe = Ph2PCH2CH2PPh2) and cw-[Ru(H)2(dppp)(PPh3)2] (dppp = Ph2PCH2CH2CH2PPh2) with larger bite-angled diphosphines dppe and dppp were unsuccessful. Earlier work in our group on the effect of trans nitrile ligands in a series of complexes of the type (Formula)howed that the properties of the bound H2 are almost invariant with a change in the R group of the nitrile. hi an effort to compare those results with analogous ruthenium complexes bearing smaller bite-angled diphosphine, dppm, we synthesized and characterized a series of complexes of the type (Formula). We found that the properties of the bound H2 were once again invariant with a change in the R group of the nitrile. In an effort to compare the effect of having two diphosphine ligands of different bite angles with systems containing symmetrical diphosphine ligands reported by our group,3 we synthesized a series of complexes of the type (Formula). These complexes exhibit hybrid properties in comparison to systems with symmetrical diphosphine ligands in terms of spectroscopic features and chemical reactivity. Thus, the bite angle of the diphosphine ligand has a definite influence on the properties of the bound H2 ligand.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cherdo, Stéphanie. "Des complexes cage aux nanoparticules, nouveaux catalyseurs pour la production du dihydrogène." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-01071035.

Повний текст джерела
Анотація:
Ce travail porte sur les complexes des métaux de transitions pour la catalyse de la réduction des protons en hydrogène. La nature de l'espèce catalytiquement active mise en jeu lors du processus de réduction a été étudiée par voltampérométrie cyclique afin de comprendre le rôle et le mode d'action de ces complexes. Le premier chapitre introduit le contexte et les principaux objectifs de ce travail. Le deuxième chapitre propose une étude électochimique de complexes de cobalt et de nickel à ligands bis(glyoxime) et clathrochélates en phase homogène. Leur comportement en présence d'acide et en condition réductrice est décrit et un mécanisme réactionnel associé est proposé. L'influence des ligands de la sphère de coordination sur le comportement électrochimique de ces complexes a été rationalisé par le biais de substitution des groupements présents sur les ligands bis(glyoxime) et clathrochélates. Le troisième chapitre aborde le rôle de pré-catalyseur que peuvent tenir ces complexes en condition d'électrolyse réductrice et en milieu acide. L'électrosynthèse de nanoparticules catalytiques à partir de ces complexes a mis en évidence le rôle majeur des ligands bis(glyoxime) et clathrochélates dans ce phénomène d'électrodéposition. Ces résultats montrent que ces ligands peuvent être utilisés pour contrôler la nature et l'activité de nanoparticules catalytiques pour la réduction des protons en dihydrogène. Le quatrième chapitre vise à immobiliser les complexes de cobalt à ligand clathrochélate au sein de réseaux de coordination afin d'optimiser leur activité catalytique. Malgré la faible solubilité et l'encombrement stérique de ces complexes, des synthèses en conditions très douces ont abouti à la formation de réseaux mono et bi-dimensionels à base d'ions cadmium(II).
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Guari, Yannick. "Complexes du ruthenium comportant un ligand dihydrogene etire. Proprietes spectroscopiques et application a l'activation de liaisons carbone-hydrogene." Toulouse 3, 1998. http://www.theses.fr/1998TOU30209.

Повний текст джерела
Анотація:
Une serie de complexes hydruro(dihydrogene) dont le ligand dihydrogene est etire a ete obtenue a partir du complexe ruh#2(h#2)#2(pcy#3)#2 $$1 ou a partir de ru(cod)(cot). Leurs syntheses et leurs caracterisations, la description de leurs proprietes spectroscopiques ainsi que leur reactivite et leur activite catalytique sont donnes dans ce memoire. Le chapitre i est une mise au point bibliographique sur l'activation de liaisons carbone-hydrogene en milieu homogene. Le chapitre ii est consacre a la synthese et a la caracterisation de complexes hydruro(dihydrogene) du ruthenium (ii), comportant deux ligands phosphine en position trans et un ligand chelatant orthometalle. Le complexe ruh(pyph)(h#2)(p#ipr#3)#2 presente en rmn des couplages d'echange quantique qui n'avaient jusqu'alors jamais ete observes pour un complexe hydruro(dihydrogene). Nous detaillons l'etude de ces couplages d'echange au cours du chapitre iii. La reactivite de ce complexe vis-a-vis de co, n#2 et o#2 est donnee au cours de ce meme chapitre. Nous presentons dans le chapitre iv la reactivite inhabituelle des complexes ruh(pyx)(h#2)(pcy#3)#2 (x = o, nh) et ruh(quo)(h#2)(pcy#3)#2 vis-a-vis du triethylvinylsilane pour donner les complexes hydruro(vinylidene) correspondants. La mise en evidence spectroscopique d'interactions de type liaison hydrogene entre l'hydrure du complexe ruh(pyo)(h#2)(pcy#3)#2 et le proton de differents alcools est egalement discutee ainsi que l'influence de cette liaison sur sa reactivite. Nous decrivons egalement au cours de ce chapitre l'utilisation du complexe $$1 comme catalyseur pour le couplage de liaisons carbone-carbone entre l'ethylene et l'acetophenone ou la benzophenone en position ortho du groupement phenyle. Les conditions experimentales utilisees ainsi que le mecanisme reactionnel sont discutes. Le dernier chapitre est consacre aux essais exploratoires effectues a l'aide des deux complexes bis(dihydrogene) $$1 et tp*ruh(h#2)#2 pour l'activation d'alcanes.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Goursot, Pierre. "Dinickel Complexes of the "Two-In-One" Pincer scaffold." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2019. http://hdl.handle.net/21.11130/00-1735-0000-0005-12A1-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dutta, Saikat. "Mapping The Reaction Coordinate For The Oxidative Addition Of Molecular Hydrogen To A Metal Center." Thesis, 2008. http://hdl.handle.net/2005/754.

Повний текст джерела
Анотація:
The binding of molecular hydrogen to a metal center leads to the elongation of the H−H bond and subsequently to its cleavage along the reaction coordinate for the oxidative addition of H2. There has been considerable interest in the study of the activation of dihydrogen and map out the reaction coordinate for the homolysis of H2 on a metal center. A large number of H2 complexes reported to date possess H−H distances ranging from 0.8 to 1.0 Å. A relatively fewer examples of elongated dihydrogen complexes wherein the H−H distances fall in the range of 1.0 to 1.5 Å, are known. Study of the elongated dihydrogen complexes is of great significance because of its relevance in important catalytic processes such as hydrogenation, hydrogenolysis, and hydroformylation. Objectives The objectives of this work are as follows: (a) Synthesis and characterization of elongated dihydrogen complexes with chelating phosphine coligands by varying the electron donor ability. (b) Trap the various intermediate states in the process of oxidative addition of H2 to a metal center. (c) Map the reaction coordinate for the oxidative addition for the oxidative addition of H2 to a metal center. Results We have synthesized and characterized two new elongated dihydrogen complexes cis-[Ir(H)(η2-S2CH)(η2-H2)(PR3)2][BF4] (PR3 = PCy3, PPh3) wherein hydrogen atom undergoes site exchange between the H2 and the hydride sites. The dynamics of the exchange was studied using NMR spectroscopy. In addition, a series of ruthenium dihydrogen complexes of the type trans-[Ru(Cl)(η2-H2)(PP)][BF4] (PP = 1,2- Synopsis bis(diarylphosphino)ethane) has been synthesized and characterized wherein the aryl group is a benzyl moiety with a substituent (p-fluoro, H, m-methyl, p-methyl, p-isopropyl); in this series of complexes, a small increment in the electron donor ability (decrease in Hammett substituent constants) of the chelating phosphine ligand resulted in an elongation of the H−H bond by a small, yet significant amount. We also synthesized a series of 16-electron dicationic dihydrogen complexes bearing elongated dihydrogen ligand. In addition, we prepared a series of dihydrogen complexes of the type [RuCp/Cp*(PP)(η2-H2)][OTf] (PP = 1,2-bis(diarylphosphino)ethane, 1,2-bis(diarylphosphino)methane, 1,2-bis(dialkylphosphino)methane) bearing elongated H2 ligand (dHH = 1.0 to 1.17 Å); in this series of complexes as well, we found that the H−H bond distances increased as the donor ability of the chelating phosphines increased in small increments, along the reaction coordinate for the oxidative addition of H2 to a metal center. This investigation therefore, has established a very nice correlation between the H−H bond lengths and the Hammett substitutent constants (donor properties) resulting in the construction of dihydrogen complexes along the reaction coordinate for the oxidative addition of H2 to a metal center.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bera, Barun. "Influence of Ancillary Ligands in the Chemistry of Transition Metal σ-Complexes". Thesis, 2014. http://etd.iisc.ernet.in/handle/2005/2691.

Повний текст джерела
Анотація:
This thesis work is based on an investigation of intermediates involved in various metal mediated catalytic reactions such as hydrogenation, hydroboration, functionalization of methane etc. An intermediate dictates the energetics of the catalytic cycle of these reactions. Therefore, it is important to study such types of intermediates in order to design a better catalyst. These intermediates are called σ-complexes in which a σ-bond is coordinated to the metal center at some stage of the reaction coordinate. These species are rarely stable at ambient conditions which create difficulties in exploring their chemistry. Our aim is to study the effect of ancillary ligands on the coordination properties of a σ-bond ligand. We chose two different classes of σ-complexes – one contains a B–H σ-bond as a ligand, i.e., σ-borane complex and another contains a H–H σ-bond as a ligand, i.e., σ-dihydrogen complex. Both M–H–B and M–H2 interactions are 3-center-2-electron coordination bonds comprised of two bonding components. One is σ-donation, which is present in both and another is π-back donation from the metal center, which is negligible in the σ-borane complexes contrary to the σ-dihydrogen complexes. The bonding characteristics of M–H–B and M–H2 interactions suggest that an electron deficient metal center is necessary to study the σ-borane complexes with reasonable stability. Thus, we selected an early transition metal, i.e., Cr(0) bearing arene and CO ancillary ligands, for studying the σ-borane complexes. On the other hand, the cis-dihydrogen/hydride and cis-dihydrogen chloride complexes were studied on a late transition metal center, i.e., Ru(II) bearing phosphine and N–N bidentate ligands. Ammonia-borane is known to be a potential hydrogen storage material. Therefore, we picked up the catalytic dehydrogenation reaction of this compound and intended to investigate the interaction between a metal center and the BH σ-bonds of amine-boranes. We characterized the σ-borane complexes [(η6-arene)Cr(CO)2(η1-H–BH2•NMe3)] (arene = fluorobenzene, benzene, and mesitylene), and observed an interesting correlation between the electronics and stability of these species. This was the first report of σ-borane systems possessing an η6-arene ligand. A prototype homobimetallic σ-borane complex, [(η6-C6H5CH2NMe2•BH2–HCr(CO)5)Cr(CO)3] was characterized using single crystal X-ray crystallography. An intramolecular σ-borane complex, (η1-(η6-C6H5CH2NMe2•BH2–H))Cr(CO)2 was found to possess an interesting chelation of the η6-arene, and BH coordination sites of its amine-borane moiety with the Cr(0) center. These σ-borane complexes showed an interesting dynamics in the binding interface between the metal center and the borane ligand. Free energy of activation (ΔG#) for this process was estimated to be 30-40 kJ/mol. To explore certain σ-dihydrogen complexes we investigated the chemistry of cis-dihydrogen/hydride complexes of Ru(II) bearing phosphine and N-N bidentate ligands cis,trans-[RuH(η2-H2)(PPh3)2(N-N)][OTf] (N-N = 2, 2′-bipyridyl, 2, 2′-bipyrimidine) in detail. In those cases, we established that the adjacent hydride ligand has large influence on the dihydrogen coordination. The η2-H2 and hydride ligands showed a single 1H NMR spectral signal due to fast site exchange among each other. We established the mechanism and calculated the free energy of activation (ΔG# = 8-13 kJ/mol) of this dynamics. These complexes were found to be stable at ambient conditions although, a labile dihydrogen ligand is present in the coordination sphere of the metal center. In fact, we could obtain the single crystals of cis,trans-[RuH(η2-H2)(PPh3)2(bpy)][OTf]. The molecular structure of a σ-complex in which a σ-bond (before it gets completely formed or broken) acts as a ligand is what fascinates this area in chemistry. A cis-dihydrogen chloride complex, cis,trans-[RuCl(η2-H2)(PPh3)2(bpm)][OTf] was characterized unambiguously using NMR spectroscopy. The H-H distance (dHH) for the η2-H2 ligand of these complexes were estimated to be 0.9-1.0 Å. We attempted to observe some σ-methane species spectroscopically at low temperatures. Unfortunately, these species were quite unstable for exhibiting the NMR spectral signals even at low temperatures. Nevertheless, we investigated the reactivity of cis,trans-[RuHX(PPh3)2(N-N)] (X = H, Cl; N-N = 2, 2′-bipyridyl, 2, 2′-bipyrimidine) towards a methylating agent, CH3OTf. This reaction resulted in methane evolution by the combination of the hydride ligand of a Ru(II) complex and the CH3+ moiety of CH3OTf. This reaction was carried out in a sealed tube inside a NMR probe at ~183 K and monitored for a long period of time; however, the methane bound metal species was not observed. Perhaps, the longevity of this class of σ-methane complex falls below the NMR time scale.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ramaraj, A. "Activation of H-X (X = H, Si, B, C) Sigma Bonds in Small Molecules by Transition Metal Pincer Complexes." Thesis, 2017. http://etd.iisc.ernet.in/2005/3795.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Dihydrogen Ligands"

1

Schlaf, Marcel. Heterolytic activation of the dihydrogen ligand in complexes of ruthenium and osmium. 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Dihydrogen Ligands"

1

Morris, R. H. "The Chemistry of the Dihydrogen Ligand in Transition Metal Compounds with Sulphur-Donor Ligands." In Transition Metal Sulphides, 57–87. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-3577-3_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hidai, Masanobu. "Chemical Nitrogen Fixation: Protonation of Coordinated Dinitrogen with Coordinated Dihydrogen or Bridging Hydrosulfido Ligands." In Nitrogen Fixation: From Molecules to Crop Productivity, 51–52. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/0-306-47615-0_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

"Thermodynamics, Kinetics, and Isotope Effects of the Binding and Cleavage of σ Ligands versus Classical Ligands". У Metal Dihydrogen and σ-Bond Complexes, 207–44. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-47597-9_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

"Bonding and Activation of Dihydrogen and σ Ligands: Theory versus Experiment". У Metal Dihydrogen and σ-Bond Complexes, 59–141. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-47597-9_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Epstein, Lina M., Natalia V. Belkova, and Elena S. Shubina. "Dihydrogen Bonded Complexes and Proton Transfer to Hydride Ligands by Spectral (IR, NMR) Studies." In Recent Advances in Hydride Chemistry, 391–418. Elsevier, 2001. http://dx.doi.org/10.1016/b978-044450733-4/50014-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

"Activation of Hydrogen and Related Small Molecules by Metalloenzymes and Sulfur Ligand Systems". У Metal Dihydrogen and σ-Bond Complexes, 297–325. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-47597-9_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

"Intramolecular Dynamics of Dihydrogen-hydride Ligand Systems: Hydrogen Rotation, Exchange, and Quantum-mechanical Effects". У Metal Dihydrogen and σ-Bond Complexes, 171–205. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-47597-9_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії