Добірка наукової літератури з теми "Differential thermometry"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Differential thermometry".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Differential thermometry"

1

Mackenzie, R. C. "Early thermometry and differential thermometry." Thermochimica Acta 135 (October 1988): 1. http://dx.doi.org/10.1016/0040-6031(88)87355-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mackenzie, R. C. "Early thermometry and differential thermometry." Thermochimica Acta 148 (August 1989): 57–62. http://dx.doi.org/10.1016/0040-6031(89)85204-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kisi, E. H., and D. P. Riley. "Diffraction thermometry and differential thermal analysis." Journal of Applied Crystallography 35, no. 6 (November 13, 2002): 664–68. http://dx.doi.org/10.1107/s0021889802016497.

Повний текст джерела
Анотація:
A unit-cell parameter anomaly observed during the precipitation and growth of Ti3SiC2from a Si-substituted TiC phase is interpreted as the release of latent heat. The observations are used to propose a powder diffraction method for conducting differential thermal analysis as part ofin situphase transition studies.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Riley, D. P., E. H. Kisi, R. I. Smith, and S. J. Kennedy. "Diffraction thermometry and differential thermal analysis." Acta Crystallographica Section A Foundations of Crystallography 58, s1 (August 6, 2002): c260. http://dx.doi.org/10.1107/s0108767302095363.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Talanov, A. V., J. Waissman, T. Taniguchi, K. Watanabe, and P. Kim. "High-bandwidth, variable-resistance differential noise thermometry." Review of Scientific Instruments 92, no. 1 (January 1, 2021): 014904. http://dx.doi.org/10.1063/5.0026488.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Aranda, A., M. Strojnik, G. Paez, and G. Moreno. "Two-wavelength differential thermometry for microscopic extended source." Infrared Physics & Technology 49, no. 3 (January 2007): 205–9. http://dx.doi.org/10.1016/j.infrared.2006.06.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Prangemeier, Tim, Iman Nejati, Andreas Müller, Philip Endres, Mario Fratzl, and Mathias Dietzel. "Optimized thermoelectric sensitivity measurement for differential thermometry with thermopiles." Experimental Thermal and Fluid Science 65 (July 2015): 82–89. http://dx.doi.org/10.1016/j.expthermflusci.2015.01.018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Patterson, W. M., D. V. Seletskiy, M. Sheik-Bahae, R. I. Epstein, and M. P. Hehlen. "Measurement of solid-state optical refrigeration by two-band differential luminescence thermometry." Journal of the Optical Society of America B 27, no. 3 (February 26, 2010): 611. http://dx.doi.org/10.1364/josab.27.000611.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Liu, Jing, Rik Van Deun та Anna M. Kaczmarek. "Eu3+, Tb3+- and Er3+, Yb3+-Doped α-MoO3 Nanosheets for Optical Luminescent Thermometry". Nanomaterials 9, № 4 (21 квітня 2019): 646. http://dx.doi.org/10.3390/nano9040646.

Повний текст джерела
Анотація:
Here we report a novel synthesis approach for the preparation of α-MoO3:Ln3+ materials employing a two-step synthesis. Additionally, in this work the α-MoO3:Ln3+ materials are reported as potential optical thermometers for the first time. In this synthesis approach, first MoS2 2D nanosheets were prepared, which were further heat treated to obtain α-MoO3. These materials were fully characterized by powder X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray fluorescence (XRF), thermogravimetry (TG) and differential thermal analysis (DTA), transmission electron microscopy (TEM), and luminescence spectroscopy. Temperature-dependent luminescence measurements were carried out to determine the optical thermometric properties of two different types of α-MoO3:Ln3+ materials (Eu3+/Tb3+ downshifting and Er3+/Yb3+ upconversion luminescence systems). We demonstrate in this study that this class of material could be a potential candidate for temperature-sensing applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ghaderi Aram, Morteza, Larisa Beilina, and Hana Dobsicek Trefna. "Microwave thermometry with potential application in non-invasive monitoring of hyperthermia." Journal of Inverse and Ill-posed Problems 28, no. 5 (November 1, 2020): 739–50. http://dx.doi.org/10.1515/jiip-2020-0102.

Повний текст джерела
Анотація:
AbstractIntegration of an adaptive finite element method (AFEM) with a conventional least squares method has been presented. As a 3D full-wave forward solver, CST Microwave Studio has been used to model and extract both electric field distribution in the region of interest (ROI) and S-parameters of a circular array consisting of 16 monopole antennas. The data has then been fed into a differential inversion scheme to get a qualitative indicator of how the temperature distribution evolves over a course of the cooling process of a heated object. Different regularization techniques within the Tikhonov framework are also discussed, and a balancing principle for optimal choice of the regularization parameter was used to improve the image reconstruction quality of every 2D slice of the final image. Targets are successfully imaged via proposed numerical methods.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Differential thermometry"

1

Самынина, Марина Геннадиевна. "Метод и устройство дифференциальной термометрии для диагностики репродуктивной функции самок млекопитающих". Thesis, НТУ "ХПИ", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/22610.

Повний текст джерела
Анотація:
Диссертация на соискание научной степени кандидата технических наук по специальности 05.11.17 – биологические и медицинские приборы и системы. – Национальный технический университет "Харьковский политехнический институт", Харьков, 2016. Работа посвящена созданию метода и технических средств термометрии с целью повышения достоверности диагностики репродуктивной сферы самок млекопитающих по температурному показателю. Наиболее распространенный метод, который основывается на определении базальной температуры, используется в сфере репродуктивной физиологии человека, чтобы способствовать или предупредить беременность без применения фармацевтических препаратов. Подобный подход был апробирован для достоверного определения полового статуса у животных, которые выступают в качестве модельного объекта исследований, для дальнейшего усовершенствования методов биомедицины. Несмотря на то, что результаты исследований термометрических методов показали их перспективность в диагностике репродуктивной сферы самок крупного рогатого скота, применение методов термометрии на практике имеет ограниченный, часто иллюстративный, характер. Изменения температуры тела, связанные с половыми циклами, сопоставимы с изменениями, вызванными другими факторами. Существующие алгоритмы обработки результатов измерений, которые минимизируют влияние сторонних факторов, имеют недостаточную с точки зрения диагностирования точность. На основе математического аппарата теории теплопроводности разработаны физико-математические модели распределения внутренних температур в половых путях, на примере половозрелых самок крупного рогатого скота оценены их точность и адекватность. Результаты моделирования позволили определить основные параметры термометрического устройства и основные положения для разработки метода определения фаз полового цикла у самок млекопитающих. По результатам моделирования показано, что в фолликулярную фазу полового цикла повышение теплопроводности в полости влагалища способствует снижению разности температур до 0,08 ºС на фиксированных расстояниях от поверхности тела. Для моделирования изменений разностного показателя использована электрическая аналогия теплопроводности и разработана электрофизическая модель формирования температурного градиента в половых путях. В работе приведены результаты создания портативного устройства, с помощью которого проведена отработка метода диагностики репродуктивной функции на основе дифференциальной термометрии при определении изменений температуры до сотых долей градуса. Приведены результаты исследования метрологических характеристик устройства. Экспериментальные исследования проведены на коровах и телках, выбранных в качестве модельного объекта. Показано, что на разность температур в половых путях влияние суточных ритмов и температуры окружающей среды минимально. Проверена гипотеза о том, что уровень разности температур в 0,08 ºС можно использовать в качестве порогового критерия для диагностики фазы полового цикла. Получены данные вариации порогового критерия по дням цикла. Приведены результаты проверки соответствия диагностического температурного показателя объективному состоянию репродуктивной сферы. Спроектирован автоматизированный образец устройства для дистанционного контроля физиологического состояния и изменений репродуктивной сферы самок млекопитающих по температурным показателям. Проверка метода определения фазы полового цикла по разности температур показала, что эффективность диагностики фолликулярной фазы составила 83,3 %, а общая эффективность диагностики фазы цикла – 97,3 %. Применение порогового критерия разности температур в качестве диагностического параметра овуляции способствовало повышению эффективности оплодотворения коров на 22,0 %.
Dissertation for the candidate’s degree of technical sciences by speciality 05.11.17 – Biological and Medical Devices and Systems. – National Technical University "Kharkov Politechnical Institute", Kharkov, 2016. The work is dedicated to developing the methods and means of thermometry in order to increase the likelihood of diagnosing of female mammals reproductive function by temperature indicator. The physico-mathematical models of internal temperature distribution in the genital tract are built. Its accuracy and adequacy are valued on the example cattle females. Modeling results are allowed to determine the conditions for experimental research. Electrical analogy of heat conduction and electric model of the temperature gradient in the female genital tract are used for explanation of temperature difference changes. This paper shows the results of development and metrological attestation of portable device for measuring small changes of temperature with a resolution to hundredths of a degree units. Based on the model and experimental data was showed that the specified level of temperature difference in the vagina of females can be used as a threshold criterion for increasing the likelihood of sexual cycle phase and of ovulation determining. An automated implementation of diagnosis of the cycle phase and ovulation by temperature difference is considered.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Саминіна, Марина Геннадіївна. "Метод та пристрій диференційної термометрії для діагностики репродуктивної функції самиць ссавців". Thesis, НТУ "ХПІ", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/22607.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.11.17 – біологічні та медичні прилади і системи. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2016. Робота присвячена розробці методу та технічного засобу термометрії з метою підвищення вірогідності діагностування репродуктивної функції самиць ссавців за температурним показником. Побудовані фізико-математичні моделі розподілу температур у статевих шляхах, на прикладі статевозрілих самиць ВРХ оцінені їх точність, інформативність та вірогідність. Результати моделювання дозволили визначити основні технічні параметри термометричного пристрою та теоретичні основи методу визначення фаз статевого циклу й овуляції за різністю температур. Для моделювання змін різністного температурного показника використано електричну аналогію теплопровідності та розроблено електрофізичну модель формування температурного градієнту у статевих шляхах самиць ссавців. В роботі приведені результати розробки та метрологічної атестації технічного пристрою для вимірювання малих змін температури з роздільною здатністю до сотих частин градуса. На основі даних модельних та експериментальних досліджень показано, що певний рівень різності температур в піхві самиць можливо використовувати в якості порогового критерію для підвищення вірогідності визначення фази статевого циклу та овуляції. Спроектована автоматизована реалізація методу діагностування фази циклу і овуляції за різністю температур дозволяє проводити дистанційний моніторинг репродуктивної функції самиць ссавців.
Dissertation for the candidate’s degree of technical sciences by speciality 05.11.17 – Biological and Medical Devices and Systems. – National Technical University "Kharkov Politechnical Institute", Kharkov, 2016. The work is dedicated to developing the methods and means of thermometry in order to increase the likelihood of diagnosing of female mammals reproductive function by temperature indicator. The physico-mathematical models of internal temperature distribution in the genital tract are built. Its accuracy and adequacy are valued on the example cattle females. Modeling results are allowed to determine the conditions for experimental research. Electrical analogy of heat conduction and electric model of the temperature gradient in the female genital tract are used for explanation of temperature difference changes. This paper shows the results of development and metrological attestation of portable device for measuring small changes of temperature with a resolution to hundredths of a degree units. Based on the model and experimental data was showed that the specified level of temperature difference in the vagina of females can be used as a threshold criterion for increasing the likelihood of sexual cycle phase and of ovulation determining. An automated implementation of diagnosis of the cycle phase and ovulation by temperature difference is considered.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Li, Li. "Differential infrared radiometer-based thermometric instrument for non-contact temperature and friction measurements." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ58841.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Differential thermometry"

1

Li, Li. Differential infrared radiometer-based thermometric instrument for non-contact temperature and friction measurements. Ottawa: National Library of Canada, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Callanan, Jane E. Feasibility study for the development of standards using differential scanning calorimetry. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Differential thermometry"

1

Swendsen, Robert H. "Temperature, Pressure, Chemical Potential, and All That." In An Introduction to Statistical Mechanics and Thermodynamics, 99–112. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198853237.003.0008.

Повний текст джерела
Анотація:
The Maxwell–Boltzmann distribution of momentum is obtained from statistical mechanics. Expressions for the temperature, pressure, and chemical potential are formulated as partial derivatives of the entropy with respect to energy, volume, and particle-number. The temperature scale is derived from comparison with the ideal gas law. The concept of the fundamental relation is defined as an expression that contains all thermodynamic information about the system of interest. Its differential form is introduced. Equations of state contain partial information about the thermal properties of a system and can be expressed as partial derivatives of the fundamental relation. The function of thermometers, pressure gauges, and thermal reservoirs are derived from these principles.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Brock, Fred V., and Scott J. Richardson. "Static Performance Characteristics." In Meteorological Measurement Systems. Oxford University Press, 2001. http://dx.doi.org/10.1093/oso/9780195134513.003.0005.

Повний текст джерела
Анотація:
Sensor performance characteristics are generally divided into at least two categories: static and dynamic. Additional categories sometimes used include drift and exposure errors. The performance of sensors in conditions where the measurand is constant or very slowly changing can be characterized by static parameters. Dynamic performance modeling requires the use of differential equations to account for the relation between sensor input and output when the input is rapidly varying. Static characteristics due to friction or other nonlinear effects would vastly complicate the differential equations so, even when the input is not steady, static and dynamic characteristics are considered separately. Static characteristics are determined by carefully excluding dynamic effects. Dynamic characteristics are assessed by assuming that all static effects have been excluded or compensated. Many of these terms have been encountered in chaps. 1 and 2, although without formal definitions. Analog signal. A signal whose information content is continuously proportional to the measurand. If an electrical temperature sensor has a voltage output, that voltage signal fluctuates with the sensor temperature. Voltage output would be continuously proportional to the measurand (temperature) and is analogous to it, hence we refer to the sensor output as an analog signal. Data display. Any mechanism for displaying data to the user. The stem of a mercury-in-glass thermometer with attached scale is a data display. Data storage. A memory element or mechanism for holding data and later recovering them such as a disk or magnetic tape. Again, this could be as simple as a piece of paper. Data transmission. The process of sending a signal from one place to another. The data transmission medium could be a piece of paper, a magnetic tape, radio or light waves, or telephone wires. Digital signal. A signal whose information content varies in discrete steps. The step size can be made arbitrarily small such that a plot of a digitized signal could also resemble the analog signal. However, the granularity of a digital signal will be revealed if it is examined in sufficient detail.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Differential thermometry"

1

Seletskiy, Denis V., Michael P. Hasselbeck, Mansoor Sheik-Bahae, and Richard I. Epstein. "Fast differential luminescence thermometry." In SPIE OPTO: Integrated Optoelectronic Devices, edited by Richard I. Epstein and Mansoor Sheik-Bahae. SPIE, 2009. http://dx.doi.org/10.1117/12.810856.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Imangholi, Babak, Michael P. Hasselbeck, Daniel A. Bender, Chengao Wang, Mansoor Sheik-Bahae, Richard I. Epstein, and Sarah Kurtz. "Differential luminescence thermometry in semiconductor laser cooling." In Integrated Optoelectronic Devices 2006, edited by Marek Osinski, Fritz Henneberger, and Yasuhiko Arakawa. SPIE, 2006. http://dx.doi.org/10.1117/12.646346.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Patterson, W., E. Soto, M. Fleharty, and M. Sheik-Bahae. "Differential luminescence thermometry in laser cooling of solids." In Lasers and Applications in Science and Engineering, edited by Richard I. Epstein and Mansoor Sheik-Bahae. SPIE, 2007. http://dx.doi.org/10.1117/12.710004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tesarik, Jan, Jan Vrba, and Hana Dobsicek Trefna. "Non-invasive Thermometry During Hyperthermia Using Differential Microwave Imaging Approach." In 2021 15th European Conference on Antennas and Propagation (EuCAP). IEEE, 2021. http://dx.doi.org/10.23919/eucap51087.2021.9411253.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rostami, Saeid, and Mansoor Sheik-Bahae. "Fluorescence up-conversion for differential luminescence thermometry in Ho-doped crystals." In Photonic Heat Engines: Science and Applications II, edited by Richard I. Epstein, Denis V. Seletskiy, and Mansoor Sheik-Bahae. SPIE, 2020. http://dx.doi.org/10.1117/12.2545518.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Peysokhan, Mostafa, Behnam Abaie, Esmaeil Mobini Souchelmaei, and Arash Mafi. "Temperature measurement of rare-earth-doped optical fibers using a variant of the differential luminescence thermometry (Conference Presentation)." In Optical and Electronic Cooling of Solids III, edited by Richard I. Epstein, Denis V. Seletskiy, and Mansoor Sheik-Bahae. SPIE, 2018. http://dx.doi.org/10.1117/12.2289547.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhang, Shu, Yizhang Yang, Katayun Barmak, Yoed Rabin, and Mehdi Asheghi. "MEMS Based High Sensitivity Calorimetry." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-62332.

Повний текст джерела
Анотація:
The fundamental study of phase transformations continues to be a key for successful implementation of metals and alloys in micro- and nano-scale structures in integrated circuitry and magnetic recording devices and systems. The thermodynamic and thermokinetic properties of extremely thin layers can be altered due to the relative effect of boundaries and interfaces on the volume of the material. Calorimetry at the nano-scale requires measurement sensitivity on the order of 1 nJ or better, which requires improved thermal design, development of thermal modeling, and development of experimental measurement techniques. In this report, the specific heat of 144 nm thick CoFe layer is measured, using frequency-domain Joule heating and thermometry (3ω-technique), on Cu/SiO2 and Cu/SiO2/CoFe suspended bridges. Analyses of the heat transfer in suspended structures are performed to establish guidelines for design and fabrication of small-scale differential scanning calorimeters.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhang, Shu, Yizhang Yang, Yoed Rabin, Katayun Barmak, and Mehdi Asheghi. "A Novel Experimental Procedure and Technique for Smallscale Calorimetry." In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32894.

Повний текст джерела
Анотація:
By definition, a differential scanning calorimetry (DSC) requires a sample structure and a refrence structure to obtain the latent heat of a speicman. We propose a novel approach, named Phase Transition Calorimetry (PTC), to obtain the specimen’s latent heat by using only the signal from the sample bridge. The new setup and procedure are primarily based on electrical resistance heating and thermometry and the parametric estimation method by solving the heat conduction equation with and without the phase transformation. The new setup has two major advantages over widely used DSC setups: there are no errors associated with heat loss to the surroundings, and the uncertainty resulting from the difference between the sample and the reference is eliminated by removing the reference structure. Experimental validation of the new setup and procedure is demonstrated by measuring the latent heat of thin layers of tin. This was found to be 4.1×108 Jm−3, which is different within 5% from the literature values of bulk specimens.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bakhtiyarov, Sayavur I., Elguja R. Kutelia, and Dennis A. Siginer. "Thermometric Studies of Newly Developed Nanolubricants." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65040.

Повний текст джерела
Анотація:
One of the primary requirements of space lubricants is that they have extremely low vapor pressures to withstand the space vacuum environment. Nanolubricants are known to have extremely low vapor pressure and some have attractive lubricant properties such as low coefficient of friction and good lifetimes. However, many other physical properties need to be evaluated in bringing forth new space liquid lubricants such as wide liquid temperature range and adequate heat transmission capabilities. The heat capacity and heat flow measurements for two newly developed nanolubricants Kolkhida 1 and Kolkhida 2 were conducted using Modulated Differential Scanning Calorimetry (MDSC). The experimental results revealed that the tested ionic liquids have large heat storage capacity as compare to the conventional heat transfer fluids.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lucki, M., L. Bohac, R. Zeleny, and M. Davidkova Antosova. "Precise optical differential thermometer sensor based on interferometric measurement of thermal expansion coefficient." In SPIE Photonics Europe, edited by Francis Berghmans, Anna G. Mignani, and Piet De Moor. SPIE, 2014. http://dx.doi.org/10.1117/12.2054346.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії