Добірка наукової літератури з теми "Differential Flatness-Based Control"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Differential Flatness-Based Control".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Differential Flatness-Based Control":

1

Rigatos, Gerasimos G. "Differential flatness theory-based control and filtering for a mobile manipulator." Cybernetics and Physics, Volume 9, 2020, Number 1 (June 30, 2020): 57–68. http://dx.doi.org/10.35470/2226-4116-2020-9-1-57-68.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The article proposes a differential flatness theory based control and filtering method for the model of a mobile manipulator. This is a difficult control and robotics problem due to the system’s strong nonlinearities and due to its underactuation. Using the Euler-Lagrange approach, the dynamic model of the mobile manipulator is obtained. This is proven to be a differentially flat one, thus confirming that it can be transformed into an input-output linearized form. Through a change of state and control inputs variables the dynamic model of the manipulator is finally written into the linear canonical (Brunovsky) form. For the latter representation of the system’s dynamics the solution of both the control and filtering problems becomes possible. The global asymptotic stability properties of the control loop are proven. Moreover, a differential flatness theory-based state estimator, under the name of Derivative-free nonlinear Kalman Filter, is developed. This comprises (i) the standard Kalman Filter recursion on the linearized equivalent model of the mobile manipulator and (ii) an inverse transformation, relying on the differential flatness properties of the system which allows for estimating the state variables of the initial nonlinear model. Finally, by redesigning the aforementioned Kalman Filter as a disturbance observer one can achieve estimation and compensation of the disturbance inputs that affect the model of the mobile manipulator.
2

Hagenmeyer, Veit, and Emmanuel Delaleau. "Exact feedforward linearization based on differential flatness." International Journal of Control 76, no. 6 (January 2003): 537–56. http://dx.doi.org/10.1080/0020717031000089570.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lu, Wen-Chi, Lili Duan, Fei-Bin Hsiao, and Félix Mora-Camino. "Neural Guidance Control for Aircraft Based on Differential Flatness." Journal of Guidance, Control, and Dynamics 31, no. 4 (July 2008): 892–98. http://dx.doi.org/10.2514/1.33276.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Liang, Dingkun, Ning Sun, Yiming Wu, and Yongchun Fang. "Differential Flatness-Based Robust Control of Self-balanced Robots." IFAC-PapersOnLine 51, no. 31 (2018): 949–54. http://dx.doi.org/10.1016/j.ifacol.2018.10.058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

An, Ningbo, Qishao Wang, Xiaochuan Zhao, and Qingyun Wang. "Differential flatness-based distributed control of underactuated robot swarms." Applied Mathematics and Mechanics 44, no. 10 (September 30, 2023): 1777–90. http://dx.doi.org/10.1007/s10483-023-3040-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Elango, P., and R. Mohan. "Trajectory optimisation of six degree of freedom aircraft using differential flatness." Aeronautical Journal 122, no. 1257 (November 2018): 1788–810. http://dx.doi.org/10.1017/aer.2018.99.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ABSTRACTThe flatness of a six-degree-of-freedom (6DoF) aircraft model with conventional control surfaces – aileron, flap, rudder and elevator, along with thrust vectoring ability is established in this work. Trajectory optimisation of an aircraft can be cast as an inverse problem where the solution for control inputs that yield desired trajectories for certain states is sought. The solution to the inverse problems for certain systems is made tractable when they exhibit differential flatness. Flatness-based trajectory optimisation has a significant advantage over an equivalent collocation-based method in terms of computational efficiency and viability for real-time implementation. An application for the flatness of 6DoF aircraft is shown in the trajectory optimisation for dynamic soaring, and its connection with an equivalent 3DoF flatness-based implementation is also brought out. The results are compared with that from a collocation-based approach.
7

Silva-Ortigoza, Ramón, Magdalena Marciano-Melchor, Rogelio Ernesto García-Chávez, Alfredo Roldán-Caballero, Victor Manuel Hernández-Guzmán, Eduardo Hernández-Márquez, José Rafael García-Sánchez, Rocío García-Cortés, and Gilberto Silva-Ortigoza. "Robust Flatness-Based Tracking Control for a “Full-Bridge Buck Inverter–DC Motor” System." Mathematics 10, no. 21 (November 4, 2022): 4110. http://dx.doi.org/10.3390/math10214110.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
By developing a robust control strategy based on the differential flatness concept, this paper presents a solution for the bidirectional trajectory tracking task in the “full-bridge Buck inverter–DC motor” system. The robustness of the proposed control is achieved by taking advantage of the differential flatness property related to the mathematical model of the system. The performance of the control, designed via the flatness concept, is verified in two ways. The first is by implementing experimentally the flatness control and proposing different shapes for the desired angular velocity profiles. For this aim, a built prototype of the “full-bridge Buck inverter–DC motor” system, along with Matlab–Simulink and a DS1104 board from dSPACE are used. The second is via simulation results, i.e., by programming the system in closed-loop with the proposed control algorithm through Matlab–Simulink. The experimental and the simulation results are similar, thus demonstrating the effectiveness of the designed robust control even when abrupt electrical variations are considered in the system.
8

Mounier, Hugues, Silviu-Iulian Niculescu, Arben Cela, and Marcel Stefan Geamanu. "Flatness-based longitudinal vehicle control with embedded torque constraint." IMA Journal of Mathematical Control and Information 36, no. 3 (September 6, 2018): 729–44. http://dx.doi.org/10.1093/imamci/dny005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract This paper aims at establishing a simple yet efficient solution to the problem of trajectory tracking with input constraint of a non-linear longitudinal vehicle model. We make use of differential flatness by embedding the constraint into the reference trajectory design.
9

Mahadevan, Radhakrishnan, Sunil K. Agrawal, and Francis J. Doyle III. "Differential flatness based nonlinear predictive control of fed-batch bioreactors." Control Engineering Practice 9, no. 8 (August 2001): 889–99. http://dx.doi.org/10.1016/s0967-0661(01)00054-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Rauniyar, Shyam, Sameer Bhalla, Daegyun Choi, and Donghoon Kim. "EKF-SLAM for Quadcopter Using Differential Flatness-Based LQR Control." Electronics 12, no. 5 (February 24, 2023): 1113. http://dx.doi.org/10.3390/electronics12051113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
SLAM (Simultaneous Localization And Mapping) in unmanned aerial vehicles can be an advantageous proposition during dangerous missions where aggressive maneuvers are paramount. This paper proposes to achieve it for a quadcopter using a differential flatness-based linear quadratic regulator while utilizing sensor measurements of an inertial measurement unit and light detection and ranging considering sensors’ constraints, such as a limited sensing range and field of view. Additionally, a strategy to reduce the computational effort of Extended Kalman Filter-based SLAM (EKF-SLAM) is proposed. To validate the performance of the proposed approach, this work considers a quadcopter traversing an 8-shape trajectory for two scenarios of known and unknown landmarks. The estimation errors for the quadcopter states are comparable for both cases. The accuracy of the proposed method is evident from the Root-Mean-Square Errors (RMSE) of 0.04 m, 0.04 m/s, and 0.34 deg for the position, velocity, and attitude estimation of the quadcopter, respectively, including the RMSE of 0.03 m for the landmark position estimation. Lastly, the averaged computational time for each step of EKF-SLAM with respect to the number of landmarks can help to strategically choose the respective number of landmarks for each step to maximize the use of sensor data and improve performance.

Дисертації з теми "Differential Flatness-Based Control":

1

Hermosillo, Valadez Jorge. "Motion planning & feedback control of bi-steerable robots : an approach based on differential flatness." Grenoble INPG, 2003. http://www.theses.fr/2003INPG0044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse s'attaque aux problèmes de planification et d'exécution de trajectoires pour un robot mobile à deux essieux de direction: nous appelons voiture Bi-guidable un véhicule capable d'orienter ses roues arrières en fonction de l'angle de direction avant. Les équations différentielles décrivant le système de commande de ce robot posent de nouveaux problèmes en planification et contrôle en robotique mobile. Cette thèse montre d'abord que la voiture Bi-guidable appartient à la classe des systèmes dits différentiellement plats, pour laquelle il est possible de trouver des solutions efficaces. Nous déterminons ensuite les transformations plates de la voiture Bi-guidable, principale difficulté à la synthèse de ces solutions. Nous validons enfin ces résultats théoriques par des expérimentations sur une voiture Bi-guidable réelle.
2

Bekcheva, Maria. "Flatness-based constrained control and model-free control applications to quadrotors and cloud computing." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS218.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La première partie de la thèse est consacrée à la commande avec contraintes de systèmes différentiellement plats. Deux types de systèmes sont étudiés : les systèmes non linéaires de dimension finie et les systèmes linéaires à retards. Nous présentons une approche unifiée pour intégrer les contraintes d'entrée/état/sortie dans la planification des trajectoires. Pour cela, nous spécialisons les sorties plates (ou les trajectoires de référence) sous forme de courbes de Bézier. En utilisant la propriété de platitude, les entrées/états du système peuvent être exprimés sous la forme d'une combinaison de sorties plates (courbes de Bézier) et de leurs dérivées. Par conséquent, nous obtenons explicitement les expressions des points de contrôle des courbes de Bézier d'entrées/états comme une combinaison des points de contrôle des sorties plates. En appliquant les contraintes souhaitées à ces derniers points de contrôle, nous trouvons les régions faisables pour les points de contrôle de Bézier de sortie, c'est-à-dire un ensemble de trajectoires de référence faisables. Ce cadre permet d’éviter le recours, en général fort coûteux d’un point de vue informatique, aux schémas d’optimisation. Pour résoudre les incertitudes liées à l'imprécision de l'identification et modélisation des modèles et les perturbations, nous utilisons la commande sans modèle (Model Free Control-MFC) et dans la deuxième partie de la thèse, nous présentons deux applications démontrant l'efficacité de notre approche : 1. Nous proposons une conception de contrôleur qui évite les procédures d'identification du système du quadrotor tout en restant robuste par rapport aux perturbations endogènes (la performance de contrôle est indépendante de tout changement de masse, inertie, effets gyroscopiques ou aérodynamiques) et aux perturbations exogènes (vent, bruit de mesure). Pour atteindre notre objectif en se basant sur la structure en cascade d'un quadrotor, nous divisons le système en deux sous-systèmes de position et d'attitude contrôlés chacun indépendamment par la commande sans modèle de deuxième ordre dynamique. Nous validons notre approche de contrôle avec trois scénarios réalistes : en présence d'un bruit inconnu, en présence d’un vent variant dans le temps et en présence des variations inconnues de masse, tout en suivant des manœuvres agressives. 2. Nous utilisons la commande sans modèle et les correcteurs « intelligents » associés, pour contrôler (maintenir) l'élasticité horizontale d'un système de Cloud Computing. Comparée aux algorithmes commerciaux d’Auto-Scaling, notre approche facilement implémentable se comporte mieux, même avec de fluctuations aigües de charge. Ceci est confirmé par des expériences sur le cloud public Amazon Web Services (AWS)
The first part of the thesis is devoted to the control of differentially flat systems with constraints. Two types of systems are studied: non-linear finite dimensional systems and linear time-delay systems. We present an approach to embed the input/state/output constraints in a unified manner into the trajectory design for differentially flat systems. To that purpose, we specialize the flat outputs (or the reference trajectories) as Bézier curves. Using the flatness property, the system’s inputs/states can be expressed as a combination of Bézier curved flat outputs and their derivatives. Consequently, we explicitly obtain the expressions of the control points of the inputs/states Bézier curves as a combination of the control points of the flat outputs. By applying desired constraints to the latter control points, we find the feasible regions for the output Bézier control points i.e. a set of feasible reference trajectories. This framework avoids the use of generally high computing cost optimization schemes. To resolve the uncertainties arising from imprecise model identification and the unknown pertubations, we employ the Model-Free Control (MFC) and in the second part of the thesis we present two applications demonstrating the effectiveness of our approach: 1. We propose a controller design that avoids the quadrotor’s system identification procedures while staying robust with respect to the endogenous (the control performance is independent of any mass change, inertia, gyroscopic or aerodynamic effects) and exogenous disturbances (wind, measurement noise). To reach our goal, based on the cascaded structure of a quadrotor, we divide the system into positional and attitude subsystems each controlled by an independent Model-Free controller of second order dynamics. We validate our control approach in three realistic scenarios: in presence of unknown measurement noise, with unknown time-varying wind disturbances and mass variation while tracking aggressive manoeuvres. 2. We employ the Model-Free Control to control (maintain) the “horizontal elasticity” of a Cloud Computing system. When compared to the commercial “Auto-Scaling” algorithms, our easily implementable approach behaves better, even with sharp workload fluctuations. This is confirmed by experiments on the Amazon Web Services (AWS) public cloud
3

Sriprang, Songklod. "High-Performance Nonlinear Control for Permanent Magnet Assisted Synchronous Reluctance Motor." Electronic Thesis or Diss., Université de Lorraine, 2021. http://www.theses.fr/2021LORR0269.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L'électrification des transports est l'une des solutions pertinentes pour réduire les émissions de gaz à effet de serre. En effet, les nouvelles normes européennes imposent des limites de plus en plus restrictives sur les émissions de CO₂ par km. Ce contexte constitue un enjeu industriel essentiel pour les constructeurs automobiles. Ainsi, les industriels s'orientent vers des véhicules électriques (VE) dans lesquels un groupe motopropulseur électrique est présent. Cette unité est constituée d'une machine électrique alimentée par un convertisseur électronique de puissance statique connecté à une source d'énergie électrique et à un stockage. Différentes topologies ont été étudiées depuis plus de deux décennies pour la traction électrique, et plusieurs solutions ont été commercialisées. En conséquence, ces produits sont de plus en plus légers, fiables et performants tout en respectant les contraintes des constructeurs automobiles sur les coûts. Récemment, les moteurs à réluctance synchrone (SynRM) assistés par aimant permanent (PMa) ont été considérés comme une machine sans terre rare possible pour des applications de haute performance adaptées aux groupes motopropulseurs des VE. Cependant, pour obtenir un moteur d'entraînement efficace, trois étapes de la conception de l'entraînement global ne sont pas inévitables. Ces étapes sont l'optimisation de la conception du moteur, l'identification des paramètres du moteur et la mise en œuvre d'un système de commande avancé pour assurer un fonctionnement optimal. Par conséquent, cette thèse traite de la commande non linéaire haute performance du PMa-SynRM afin de découvrir les limites des systèmes de commande non linéaires existants. La commande différentielle basée sur la planéité est d'abord développée pour le système d'entraînement PMa-SynRM. Comme il s'agit d'une commande basée sur un modèle, les performances du système dépendent des paramètres du modèle du système, c'est-à-dire la résistance, l'inertie et la perturbation du couple externe. Ensuite, une commande sans modèle est présentée pour être utilisée dans la commande du SPMSM et du PMa-SynRM. Enfin, cette thèse a atteint l'objectif principal de découvrir la commande non linéaire haute performance du PMa-SynRM. En utilisant un prototype de PMa-SynRM comme banc d'essai fourni par le GREEN Lab. de l'Université de Loraine, cet article donne une description exhaustive de la procédure de conception d'un MPC appliqué à la commande combinée de la vitesse et du courant du moteur. Après une brève introduction des principes fondamentaux du MPC, la conception est illustrée en détail, avec une discussion étape par étape des principaux points critiques et des conseils pour les traiter avec succès. Des suggestions pour étendre la conception à différentes commandes d'entraînement sont également incluses. Des simulations et de nombreux résultats expérimentaux mettent en évidence les caractéristiques prometteuses du MFC appliqué aux variateurs PMSM. En guise de dernière contribution, les potentiels du MFC soulignés dans cette thèse devraient stimuler une exploration et une étude plus poussées de ce type de commande afin d'atteindre la familiarité requise pour transférer les résultats vers des applications pratiques
The electrification of transportation is one of the relevant solutions to reduce greenhouse gas emissions. Indeed, new European standards impose increasingly restrictive limits on CO₂ emissions per km. This context is an essential industrial issue for automobile manufacturers. Therefore, the industries are moving towards electric vehicles (EVs) in which an electric powertrain unit is present. This unit consists of an electrical machine powered by a static power electronic converter connected to an electrical energy source and storage. Different topologies have been studied for more than two decades for electric traction, and several solutions have been marketed. As a result, these products are increasingly light, reliable, and efficient while respecting the constraints of the automobile manufacturers on the costs.Recently, permanent magnet assisted (PMa)-synchronous reluctance motors (SynRM) have been considered a rare-earth-free machine possible alternative motor drive for high-performance applications suitable for EV powertrain units. However, in order to have an efficient motor drive, performing three steps in the design of the overall drive is not inevitable. These steps are design optimization of the motor, identifying the motor parameter, and implementing an advanced control system to ensure optimum operation. Therefore, this dissertation deal with high-performance nonlinear control of PMa-SynRM to find out the limitation of exiting nonlinear control system. The differential flatness-based control is first developed for the PMa-SynRM drive system. As it is a model-based control, the system performance relies on system model parameters, i.e., resistance, inertia, and external torque disturbance. Next step, model-free control is presented to be used in the control of both the SPMSM and PMa-SynRM. Finally, this thesis has achieved the main objective of finding out the high-performance nonlinear control of PMa-SynRM. Using a prototype PMa-SynRM drive as a test bench provided by GREEN Lab. at Université de Loraine, this paper gives an exhaustive description of an MFC's design procedure applied to the combined control of the motor speed and current. After a brief introduction of the MPC fundamentals, the design is illustrated in detail, giving a step-by-step discussion of the main critical points and the hints for their successful handling. Suggestions for extending the design to different drive controllers are also included. Simulations and numerous experimental results highlight the promising features and characteristics of MFC applied to PMSM drives. As the last contribution, the MFC potentials pointed out in this dissertation should stimulate further exploration and study on this type of controller to achieve the familiarity required to transfer the results to practical applications
4

Suryawan, Fajar. "Constrained trajectory generation and fault tolerant control based on differential flatness and B-splines." Thesis, 2011. http://hdl.handle.net/1959.13/927247.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Research Doctorate - Doctor of Philosophy (PhD)
This thesis provides a unified treatment of the notions of differential flatness, for the characterisation of continuous-time linear systems, and B-splines, a mathematical concept commonly used in computer graphics. Differential flatness is a property of some controlled (linear or nonlinear) dynamical systems, often encountered in applications, which allows for a complete parameterisation of all system variables (inputs and states) in terms of a finite number of variables, called flat outputs, and a finite number of their time derivatives. The notion of differential flatness for a system is especially useful in situations when explicit trajectory generation is required. In fact, under the differential flatness formalism the motion planning problem, as far as the differential equation is concerned, is trivialised. However, a very important limitation, ubiquitous in all practical applications, is the presence of constraints. The problem of constrained trajectory generation is intimately related to that of optimal control, where one wants to achieve certain objectives with limited resources, and time-optimal control, in which one seeks to perform a task as fast as possible while, at the same time, satisfying all system constraints. In the literature, trajectory generation and [time-] optimal control often use some parameterisation to represent the system's signals. Polynomials and B-splines are a natural choice since they have several desirable properties. However, there has not been much work exploiting the combined properties of differential flatness for linear systems and B-splines. The first focus of this thesis is, hence, to investigate the use of B-splines for constrained trajectory generation of continuous-time linear flat systems in such a way that their respective properties are jointly exploited and complemented. This synthesis offers new methods and insights to the fields of constrained trajectory optimisation, optimal control, and minimum-time trajectory generation. The differential flatness parameterisation also offers analytical redundancy relations. That is, the value of some variables can be algebraically inferred from some other measured variables. This fact can be used to perform algebraic estimation and fault detection in linear and nonlinear systems. The second focus of this thesis is, thus, to develop a method to perform algebraic estimation and fault detection, based structurally on the differential flatness notion, for linear and nonlinear systems, and using a numerical method based on B-splines. The methodology to tackle the focal problems of constrained trajectory generation and fault tolerant control, based on differential flatness and B-splines, is primarily developed for linear systems. Then, experimental validations of the methods, using a laboratory-scale magnetic levitation system, are provided. Finally, some extensions of the ideas to nonlinear systems are discussed.

Частини книг з теми "Differential Flatness-Based Control":

1

Rigatos, Gerasimos G. "Differential Flatness Theory and Flatness-Based Control." In Nonlinear Control and Filtering Using Differential Flatness Approaches, 47–101. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16420-5_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rigatos, Gerasimos G. "Nonlinear Adaptive Control Based on Differential Flatness Theory." In Nonlinear Control and Filtering Using Differential Flatness Approaches, 103–39. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16420-5_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rigatos, Gerasimos G. "Nonlinear Kalman Filtering Based on Differential Flatness Theory." In Nonlinear Control and Filtering Using Differential Flatness Approaches, 141–81. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16420-5_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tsiu, Lintle, and Elisha Didam Markus. "Multiple Mobile Robotic Formation Control Based on Differential Flatness." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 113–28. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-35883-8_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sun, Jiali, Yushu Yu, and Bin Xu. "Towards Flying Carpet: Dynamics Modeling, and Differential-Flatness-Based Control and Planning." In Communications in Computer and Information Science, 351–70. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0617-8_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Finta, Barnabás, and Bálint Kiss. "Equivalent Control of a 2D Crane and a 2D Drone Using Exact Linearization Based on Differential Flatness." In 25th International Symposium on Measurements and Control in Robotics, 131–41. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-51085-4_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Differential Flatness-Based Control":

1

Wang, Yuxiao, Tao Chao, Songyan Wang, and Ming Yang. "Trajectory tracking control based on differential flatness." In 2016 35th Chinese Control Conference (CCC). IEEE, 2016. http://dx.doi.org/10.1109/chicc.2016.7555072.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Niazi, Yasaman, Azadeh Gholaminejad, Diego Fernando Valencia Garcia, Sumedh Dhale, and Babak Nahid-Mobarakeh. "Differential Flatness-Based Control of Switched Reluctance Motors." In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2024. http://dx.doi.org/10.4271/2024-01-2210.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
<div class="section abstract"><div class="htmlview paragraph">This paper presents a Differential Flatness-Based Control (FBC) approach for the current control of Switched Reluctance Machines (SRMs), a potential candidate for the automotive industry. The main challenges in SRM control methods stem from motor nonlinearity. In electrical drives, FBC has been applied in doubly-fed induction generators, permanent magnet motors, and magnet-assisted synchronous reluctance motors. Among the few papers that have used FBC for SRM, this research distinguishes itself by addressing current control and considering both current and flux-linkage separately as a flat output, an approach not found in previous literature. The performance of the proposed controls is assessed in a three-phase 12/8 SRM against the conventional hysteresis current controller (HCC) and PI controller. Additionally, it is integrated into a torque-sharing function based on a maximum torque per ampere control strategy. This work uses the Integral Time Absolute Error (ITAE) criterion to compare different control methods. The current ITAE of FBC has been reduced by 50% compared to HCC and 41% compared to the PI controller. This controller is well-suited for transportation applications, mainly traction and propulsion in vehicles, due to its low loss and torque ripple compared to conventional controllers. Moreover, dynamic response to changes in load and dyno speed evidence the enhanced performance of the proposed technique.</div></div>
3

Kandler, Christoph, Steven X. Ding, Tim Koenings, Nick Weinhold, and Matthias Schultalbers. "A differential flatness based model predictive control approach." In 2012 IEEE International Conference on Control Applications (CCA). IEEE, 2012. http://dx.doi.org/10.1109/cca.2012.6402435.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yoon, Jonghyun, Sung Wook Hwang, Jeong-Hyeon Bak, and Jong Hyeon Park. "Vibration Suppression of CDPRs Based on Differential Flatness." In 2018 IEEE Conference on Control Technology and Applications (CCTA). IEEE, 2018. http://dx.doi.org/10.1109/ccta.2018.8511527.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Melchior, Pierre, Mikae¨l Cugnet, Jocelyn Sabatier, and Alain Oustaloup. "Flatness Control: Application to a Fractional Thermal System." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85624.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper concerns the application of flatness principle to fractional systems. As soon as the path has been obtained by flatness, a new robust path tracking based on CRONE control is presented. The flatness concept in path planning is used when the trajectory is fixed (in space and in time), to determine the controls to apply without having to integrate any differential equations. A lot of developments have been made but, in the case of non integer differential systems (or fractional systems), few developments are still to be made. So, the aim of this paper is to apply flatness principle to a fractional system and to define a robust path tracking by CRONE control strategy. Firstly, we remind flatness principle definitions used in control’s theory. We study the fractional systems dynamic inversion. A robust path tracking based on CRONE control is presented. Finally, simulations with two different controllers (PID and CRONE) illustrate the path tracking robustness.
6

Abadi, Amine, Anis Ben Hadj Brahim, Hassen Mekki, Adnen El Amraoui, and Nacim Ramdani. "Sliding Mode Control of Quadrotor based on Differential Flatness." In 2018 International Conference on Control, Automation and Diagnosis (ICCAD). IEEE, 2018. http://dx.doi.org/10.1109/cadiag.2018.8751334.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Markus, Elisha D. "Differential Flatness Based Synchronization Control of Multiple Heterogeneous Robots." In IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2018. http://dx.doi.org/10.1109/iecon.2018.8591428.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lina Geng, Weimeng Sun, and Zhiqiang Zheng. "Trajectory optimization for guided bombs based on differential flatness." In 2009 Chinese Control and Decision Conference (CCDC). IEEE, 2009. http://dx.doi.org/10.1109/ccdc.2009.5192065.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Noda, Yoshiyuki, Michael Zeitz, Oliver Sawodny, and Kazuhiko Terashima. "Flow rate control based on differential flatness in automatic pouring robot." In Control (MSC). IEEE, 2011. http://dx.doi.org/10.1109/cca.2011.6044508.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ogunbodede, Oladapo, Souransu Nandi, and Tarunraj Singh. "Periodic Control of Unmanned Aerial Vehicles based on Differential Flatness." In 2018 Annual American Control Conference (ACC). IEEE, 2018. http://dx.doi.org/10.23919/acc.2018.8430793.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії